/* * Copyright (c) 2016 Open-RnD Sp. z o.o. * Copyright (c) 2016 Linaro Limited. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_uart /** * @brief Driver for UART port on STM32 family processor. * @note LPUART and U(S)ART have the same base and * majority of operations are performed the same way. * Please validate for newly added series. */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_UART_ASYNC_API #include #include #endif #include #include #include "uart_stm32.h" #include #include #include LOG_MODULE_REGISTER(uart_stm32); #define HAS_LPUART_1 (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(lpuart1), \ st_stm32_lpuart, okay)) /* convenience defines */ #define DEV_CFG(dev) \ ((const struct uart_stm32_config *const)(dev)->config) #define DEV_DATA(dev) \ ((struct uart_stm32_data *const)(dev)->data) #define UART_STRUCT(dev) \ ((USART_TypeDef *)(DEV_CFG(dev))->uconf.base) #define TIMEOUT 1000 #ifdef CONFIG_PM static void uart_stm32_pm_constraint_set(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); if (!data->pm_constraint_on) { data->pm_constraint_on = true; pm_constraint_set(PM_STATE_SUSPEND_TO_IDLE); } } static void uart_stm32_pm_constraint_release(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); if (data->pm_constraint_on) { data->pm_constraint_on = false; pm_constraint_release(PM_STATE_SUSPEND_TO_IDLE); } } #endif /* CONFIG_PM */ static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate) { const struct uart_stm32_config *config = DEV_CFG(dev); struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t clock_rate; /* Get clock rate */ if (clock_control_get_rate(data->clock, (clock_control_subsys_t *)&config->pclken, &clock_rate) < 0) { LOG_ERR("Failed call clock_control_get_rate"); return; } #if HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance)) { LL_LPUART_SetBaudRate(UartInstance, clock_rate, #ifdef USART_PRESC_PRESCALER LL_USART_PRESCALER_DIV1, #endif baud_rate); } else { #endif /* HAS_LPUART_1 */ #ifdef USART_CR1_OVER8 LL_USART_SetOverSampling(UartInstance, LL_USART_OVERSAMPLING_16); #endif LL_USART_SetBaudRate(UartInstance, clock_rate, #ifdef USART_PRESC_PRESCALER LL_USART_PRESCALER_DIV1, #endif #ifdef USART_CR1_OVER8 LL_USART_OVERSAMPLING_16, #endif baud_rate); #if HAS_LPUART_1 } #endif /* HAS_LPUART_1 */ } static inline void uart_stm32_set_parity(const struct device *dev, uint32_t parity) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetParity(UartInstance, parity); } static inline uint32_t uart_stm32_get_parity(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetParity(UartInstance); } static inline void uart_stm32_set_stopbits(const struct device *dev, uint32_t stopbits) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetStopBitsLength(UartInstance, stopbits); } static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetStopBitsLength(UartInstance); } static inline void uart_stm32_set_databits(const struct device *dev, uint32_t databits) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetDataWidth(UartInstance, databits); } static inline uint32_t uart_stm32_get_databits(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetDataWidth(UartInstance); } static inline void uart_stm32_set_hwctrl(const struct device *dev, uint32_t hwctrl) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetHWFlowCtrl(UartInstance, hwctrl); } static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetHWFlowCtrl(UartInstance); } static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) { switch (parity) { case UART_CFG_PARITY_ODD: return LL_USART_PARITY_ODD; case UART_CFG_PARITY_EVEN: return LL_USART_PARITY_EVEN; case UART_CFG_PARITY_NONE: default: return LL_USART_PARITY_NONE; } } static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) { switch (parity) { case LL_USART_PARITY_ODD: return UART_CFG_PARITY_ODD; case LL_USART_PARITY_EVEN: return UART_CFG_PARITY_EVEN; case LL_USART_PARITY_NONE: default: return UART_CFG_PARITY_NONE; } } static inline uint32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case UART_CFG_STOP_BITS_0_5: return LL_USART_STOPBITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case UART_CFG_STOP_BITS_1: return LL_USART_STOPBITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case UART_CFG_STOP_BITS_1_5: return LL_USART_STOPBITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case UART_CFG_STOP_BITS_2: default: return LL_USART_STOPBITS_2; } } static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case LL_USART_STOPBITS_0_5: return UART_CFG_STOP_BITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case LL_USART_STOPBITS_1: return UART_CFG_STOP_BITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case LL_USART_STOPBITS_1_5: return UART_CFG_STOP_BITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case LL_USART_STOPBITS_2: default: return UART_CFG_STOP_BITS_2; } } static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db, enum uart_config_parity p) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case UART_CFG_DATA_BITS_7: if (p == UART_CFG_PARITY_NONE) { return LL_USART_DATAWIDTH_7B; } else { return LL_USART_DATAWIDTH_8B; } #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case UART_CFG_DATA_BITS_9: return LL_USART_DATAWIDTH_9B; #endif /* LL_USART_DATAWIDTH_9B */ case UART_CFG_DATA_BITS_8: default: if (p == UART_CFG_PARITY_NONE) { return LL_USART_DATAWIDTH_8B; #ifdef LL_USART_DATAWIDTH_9B } else { return LL_USART_DATAWIDTH_9B; #endif } return LL_USART_DATAWIDTH_8B; } } static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db, uint32_t p) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case LL_USART_DATAWIDTH_7B: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_7; } else { return UART_CFG_DATA_BITS_6; } #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case LL_USART_DATAWIDTH_9B: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_9; } else { return UART_CFG_DATA_BITS_8; } #endif /* LL_USART_DATAWIDTH_9B */ case LL_USART_DATAWIDTH_8B: default: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_8; } else { return UART_CFG_DATA_BITS_7; } } } /** * @brief Get LL hardware flow control define from * Zephyr hardware flow control option. * @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS. * @param fc: Zephyr hardware flow control option. * @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. */ static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) { if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { return LL_USART_HWCONTROL_RTS_CTS; } return LL_USART_HWCONTROL_NONE; } /** * @brief Get Zephyr hardware flow control option from * LL hardware flow control define. * @note Supports only LL_USART_HWCONTROL_RTS_CTS. * @param fc: LL hardware flow control definition. * @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. */ static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) { if (fc == LL_USART_HWCONTROL_RTS_CTS) { return UART_CFG_FLOW_CTRL_RTS_CTS; } return UART_CFG_FLOW_CTRL_NONE; } #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static int uart_stm32_configure(const struct device *dev, const struct uart_config *cfg) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits); const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, cfg->parity); const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); /* Hardware doesn't support mark or space parity */ if ((cfg->parity == UART_CFG_PARITY_MARK) || (cfg->parity == UART_CFG_PARITY_SPACE)) { return -ENOTSUP; } /* Driver does not supports parity + 9 databits */ if ((cfg->parity != UART_CFG_PARITY_NONE) && (cfg->data_bits == UART_CFG_DATA_BITS_9)) { return -ENOTSUP; } #if defined(LL_USART_STOPBITS_0_5) && HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance) && (cfg->stop_bits == UART_CFG_STOP_BITS_0_5)) { return -ENOTSUP; } #else if (cfg->stop_bits == UART_CFG_STOP_BITS_0_5) { return -ENOTSUP; } #endif #if defined(LL_USART_STOPBITS_1_5) && HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance) && (cfg->stop_bits == UART_CFG_STOP_BITS_1_5)) { return -ENOTSUP; } #else if (cfg->stop_bits == UART_CFG_STOP_BITS_1_5) { return -ENOTSUP; } #endif /* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */ if ((cfg->data_bits == UART_CFG_DATA_BITS_5) || (cfg->data_bits == UART_CFG_DATA_BITS_6) #ifndef LL_USART_DATAWIDTH_7B || (cfg->data_bits == UART_CFG_DATA_BITS_7) #endif /* LL_USART_DATAWIDTH_7B */ || (cfg->data_bits == UART_CFG_DATA_BITS_9)) { return -ENOTSUP; } /* Driver supports only RTS CTS flow control */ if (cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) { if (!IS_UART_HWFLOW_INSTANCE(UartInstance) || UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) { return -ENOTSUP; } } LL_USART_Disable(UartInstance); if (parity != uart_stm32_get_parity(dev)) { uart_stm32_set_parity(dev, parity); } if (stopbits != uart_stm32_get_stopbits(dev)) { uart_stm32_set_stopbits(dev, stopbits); } if (databits != uart_stm32_get_databits(dev)) { uart_stm32_set_databits(dev, databits); } if (flowctrl != uart_stm32_get_hwctrl(dev)) { uart_stm32_set_hwctrl(dev, flowctrl); } if (cfg->baudrate != data->baud_rate) { uart_stm32_set_baudrate(dev, cfg->baudrate); data->baud_rate = cfg->baudrate; } LL_USART_Enable(UartInstance); return 0; }; static int uart_stm32_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_stm32_data *data = DEV_DATA(dev); cfg->baudrate = data->baud_rate; cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); cfg->stop_bits = uart_stm32_ll2cfg_stopbits( uart_stm32_get_stopbits(dev)); cfg->data_bits = uart_stm32_ll2cfg_databits( uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)); cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( uart_stm32_get_hwctrl(dev)); return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { LL_USART_ClearFlag_ORE(UartInstance); } if (!LL_USART_IsActiveFlag_RXNE(UartInstance)) { return -1; } *c = (unsigned char)LL_USART_ReceiveData8(UartInstance); return 0; } static void uart_stm32_poll_out(const struct device *dev, unsigned char c) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Wait for TXE flag to be raised */ while (!LL_USART_IsActiveFlag_TXE(UartInstance)) { } #ifdef CONFIG_PM struct uart_stm32_data *data = DEV_DATA(dev); if (!data->tx_poll_stream_on) { data->tx_poll_stream_on = true; /* Don't allow system to suspend until stream * transmission has completed */ uart_stm32_pm_constraint_set(dev); /* Enable TC interrupt so we can release suspend * constraint when done */ LL_USART_EnableIT_TC(UartInstance); } #endif /* CONFIG_PM */ LL_USART_TransmitData8(UartInstance, (uint8_t)c); } static int uart_stm32_err_check(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t err = 0U; /* Check for errors, but don't clear them here. * Some SoC clear all error flags when at least * one is cleared. (e.g. F4X, F1X, and F2X) */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { err |= UART_ERROR_OVERRUN; } if (LL_USART_IsActiveFlag_PE(UartInstance)) { err |= UART_ERROR_PARITY; } if (LL_USART_IsActiveFlag_FE(UartInstance)) { err |= UART_ERROR_FRAMING; } if (err & UART_ERROR_OVERRUN) { LL_USART_ClearFlag_ORE(UartInstance); } if (err & UART_ERROR_PARITY) { LL_USART_ClearFlag_PE(UartInstance); } if (err & UART_ERROR_FRAMING) { LL_USART_ClearFlag_FE(UartInstance); } /* Clear noise error as well, * it is not represented by the errors enum */ LL_USART_ClearFlag_NE(UartInstance); return err; } static inline void __uart_stm32_get_clock(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); data->clock = clk; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint8_t num_tx = 0U; while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(UartInstance)) { /* TXE flag will be cleared with byte write to DR|RDR register */ /* Send a character (8bit , parity none) */ LL_USART_TransmitData8(UartInstance, tx_data[num_tx++]); } return num_tx; } static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint8_t num_rx = 0U; while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(UartInstance)) { /* RXNE flag will be cleared upon read from DR|RDR register */ /* Receive a character (8bit , parity none) */ rx_data[num_rx++] = LL_USART_ReceiveData8(UartInstance); /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { LL_USART_ClearFlag_ORE(UartInstance); } } return num_rx; } static void uart_stm32_irq_tx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); #ifdef CONFIG_PM struct uart_stm32_data *data = DEV_DATA(dev); data->tx_poll_stream_on = false; uart_stm32_pm_constraint_set(dev); #endif LL_USART_EnableIT_TC(UartInstance); } static void uart_stm32_irq_tx_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_DisableIT_TC(UartInstance); #ifdef CONFIG_PM uart_stm32_pm_constraint_release(dev); #endif } static int uart_stm32_irq_tx_ready(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_TXE(UartInstance) && LL_USART_IsEnabledIT_TC(UartInstance); } static int uart_stm32_irq_tx_complete(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_TC(UartInstance); } static void uart_stm32_irq_rx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_EnableIT_RXNE(UartInstance); } static void uart_stm32_irq_rx_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_DisableIT_RXNE(UartInstance); } static int uart_stm32_irq_rx_ready(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_RXNE(UartInstance); } static void uart_stm32_irq_err_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Enable FE, ORE interruptions */ LL_USART_EnableIT_ERROR(UartInstance); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Enable Line break detection */ if (IS_UART_LIN_INSTANCE(UartInstance)) { LL_USART_EnableIT_LBD(UartInstance); } #endif /* Enable parity error interruption */ LL_USART_EnableIT_PE(UartInstance); } static void uart_stm32_irq_err_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Disable FE, ORE interruptions */ LL_USART_DisableIT_ERROR(UartInstance); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Disable Line break detection */ if (IS_UART_LIN_INSTANCE(UartInstance)) { LL_USART_DisableIT_LBD(UartInstance); } #endif /* Disable parity error interruption */ LL_USART_DisableIT_PE(UartInstance); } static int uart_stm32_irq_is_pending(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return ((LL_USART_IsActiveFlag_RXNE(UartInstance) && LL_USART_IsEnabledIT_RXNE(UartInstance)) || (LL_USART_IsActiveFlag_TC(UartInstance) && LL_USART_IsEnabledIT_TC(UartInstance))); } static int uart_stm32_irq_update(const struct device *dev) { return 1; } static void uart_stm32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_stm32_data *data = DEV_DATA(dev); data->user_cb = cb; data->user_data = cb_data; } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API static inline void async_user_callback(struct uart_stm32_data *data, struct uart_event *event) { if (data->async_cb) { data->async_cb(data->uart_dev, event, data->async_user_data); } } static inline void async_evt_rx_rdy(struct uart_stm32_data *data) { LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter); struct uart_event event = { .type = UART_RX_RDY, .data.rx.buf = data->dma_rx.buffer, .data.rx.len = data->dma_rx.counter - data->dma_rx.offset, .data.rx.offset = data->dma_rx.offset }; /* update the current pos for new data */ data->dma_rx.offset = data->dma_rx.counter; /* send event only for new data */ if (event.data.rx.len > 0) { async_user_callback(data, &event); } } static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code) { LOG_DBG("rx error: %d", err_code); struct uart_event event = { .type = UART_RX_STOPPED, .data.rx_stop.reason = err_code, .data.rx_stop.data.len = data->dma_rx.counter, .data.rx_stop.data.offset = 0, .data.rx_stop.data.buf = data->dma_rx.buffer }; async_user_callback(data, &event); } static inline void async_evt_tx_done(struct uart_stm32_data *data) { LOG_DBG("tx done: %d", data->dma_tx.counter); struct uart_event event = { .type = UART_TX_DONE, .data.tx.buf = data->dma_tx.buffer, .data.tx.len = data->dma_tx.counter }; /* Reset tx buffer */ data->dma_tx.buffer_length = 0; data->dma_tx.counter = 0; async_user_callback(data, &event); } static inline void async_evt_tx_abort(struct uart_stm32_data *data) { LOG_DBG("tx abort: %d", data->dma_tx.counter); struct uart_event event = { .type = UART_TX_ABORTED, .data.tx.buf = data->dma_tx.buffer, .data.tx.len = data->dma_tx.counter }; /* Reset tx buffer */ data->dma_tx.buffer_length = 0; data->dma_tx.counter = 0; async_user_callback(data, &event); } static inline void async_evt_rx_buf_request(struct uart_stm32_data *data) { struct uart_event evt = { .type = UART_RX_BUF_REQUEST, }; async_user_callback(data, &evt); } static inline void async_evt_rx_buf_release(struct uart_stm32_data *data) { struct uart_event evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf.buf = data->dma_rx.buffer, }; async_user_callback(data, &evt); } static inline void async_timer_start(struct k_work_delayable *work, int32_t timeout) { if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { /* start timer */ LOG_DBG("async timer started for %d us", timeout); k_work_reschedule(work, K_USEC(timeout)); } } static void uart_stm32_dma_rx_flush(const struct device *dev) { struct dma_status stat; struct uart_stm32_data *data = DEV_DATA(dev); if (dma_get_status(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &stat) == 0) { size_t rx_rcv_len = data->dma_rx.buffer_length - stat.pending_length; if (rx_rcv_len > data->dma_rx.offset) { data->dma_rx.counter = rx_rcv_len; async_evt_rx_rdy(data); } } } #endif /* CONFIG_UART_ASYNC_API */ #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ defined(CONFIG_UART_ASYNC_API) || \ defined(CONFIG_PM) static void uart_stm32_isr(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); #if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API) USART_TypeDef *UartInstance = UART_STRUCT(dev); #endif #ifdef CONFIG_PM if (LL_USART_IsEnabledIT_TC(UartInstance) && LL_USART_IsActiveFlag_TC(UartInstance)) { if (data->tx_poll_stream_on) { /* A poll stream transmition just completed, * allow system to suspend */ LL_USART_DisableIT_TC(UartInstance); data->tx_poll_stream_on = false; uart_stm32_pm_constraint_release(dev); } /* Stream transmition was either async or IRQ based, * constraint will be released at the same time TC IT * is disabled */ } #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN if (data->user_cb) { data->user_cb(dev, data->user_data); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API if (LL_USART_IsEnabledIT_IDLE(UartInstance) && LL_USART_IsActiveFlag_IDLE(UartInstance)) { LL_USART_ClearFlag_IDLE(UartInstance); LOG_DBG("idle interrupt occurred"); /* Start the RX timer */ async_timer_start(&data->dma_rx.timeout_work, data->dma_rx.timeout); if (data->dma_rx.timeout == 0) { uart_stm32_dma_rx_flush(dev); } } else if (LL_USART_IsEnabledIT_TC(UartInstance) && LL_USART_IsActiveFlag_TC(UartInstance)) { LL_USART_DisableIT_TC(UartInstance); LL_USART_ClearFlag_TC(UartInstance); /* Generate TX_DONE event when transmission is done */ async_evt_tx_done(data); #ifdef CONFIG_PM uart_stm32_pm_constraint_release(dev); #endif } else if (LL_USART_IsEnabledIT_RXNE(UartInstance) && LL_USART_IsActiveFlag_RXNE(UartInstance)) { #ifdef USART_SR_RXNE /* clear the RXNE flag, because Rx data was not read */ LL_USART_ClearFlag_RXNE(UartInstance); #else /* clear the RXNE by flushing the fifo, because Rx data was not read */ LL_USART_RequestRxDataFlush(UartInstance); #endif /* USART_SR_RXNE */ } /* Clear errors */ uart_stm32_err_check(dev); #endif /* CONFIG_UART_ASYNC_API */ } #endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */ #ifdef CONFIG_UART_ASYNC_API static int uart_stm32_async_callback_set(const struct device *dev, uart_callback_t callback, void *user_data) { struct uart_stm32_data *data = DEV_DATA(dev); data->async_cb = callback; data->async_user_data = user_data; return 0; } static inline void uart_stm32_dma_tx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_EnableDMAReq_TX(UartInstance); } static inline void uart_stm32_dma_tx_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_DisableDMAReq_TX(UartInstance); } static inline void uart_stm32_dma_rx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); struct uart_stm32_data *data = DEV_DATA(dev); LL_USART_EnableDMAReq_RX(UartInstance); data->dma_rx.enabled = true; } static inline void uart_stm32_dma_rx_disable(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); data->dma_rx.enabled = false; } static int uart_stm32_async_rx_disable(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); struct uart_event disabled_event = { .type = UART_RX_DISABLED }; if (!data->dma_rx.enabled) { async_user_callback(data, &disabled_event); return -EFAULT; } LL_USART_DisableIT_IDLE(UartInstance); uart_stm32_dma_rx_flush(dev); async_evt_rx_buf_release(data); uart_stm32_dma_rx_disable(dev); (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel); data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; /* When async rx is disabled, enable interruptable instance of uart to function normally*/ LL_USART_EnableIT_RXNE(UartInstance); LOG_DBG("rx: disabled"); async_user_callback(data, &disabled_event); return 0; } void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; struct uart_stm32_data *data = DEV_DATA(uart_dev); struct dma_status stat; unsigned int key = irq_lock(); /* Disable TX */ uart_stm32_dma_tx_disable(uart_dev); (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) { data->dma_tx.counter = data->dma_tx.buffer_length - stat.pending_length; } data->dma_tx.buffer_length = 0; irq_unlock(key); } static void uart_stm32_dma_replace_buffer(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); /* Replace the buffer and relod the DMA */ LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len); /* reload DMA */ data->dma_rx.offset = 0; data->dma_rx.counter = 0; data->dma_rx.buffer = data->rx_next_buffer; data->dma_rx.buffer_length = data->rx_next_buffer_len; data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length; data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel, data->dma_rx.blk_cfg.source_address, data->dma_rx.blk_cfg.dest_address, data->dma_rx.blk_cfg.block_size); dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel); USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_ClearFlag_IDLE(UartInstance); /* Request next buffer */ async_evt_rx_buf_request(data); } void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; struct uart_stm32_data *data = DEV_DATA(uart_dev); if (status != 0) { async_evt_rx_err(data, status); return; } (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); /* true since this functions occurs when buffer if full */ data->dma_rx.counter = data->dma_rx.buffer_length; async_evt_rx_rdy(data); if (data->rx_next_buffer != NULL) { async_evt_rx_buf_release(data); /* replace the buffer when the current * is full and not the same as the next * one. */ uart_stm32_dma_replace_buffer(uart_dev); } else { /* Buffer full without valid next buffer, * an UART_RX_DISABLED event must be generated, * but uart_stm32_async_rx_disable() cannot be * called in ISR context. So force the RX timeout * to minimum value and let the RX timeout to do the job. */ k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1)); } } static int uart_stm32_async_tx(const struct device *dev, const uint8_t *tx_data, size_t buf_size, int32_t timeout) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); int ret; if (data->dma_tx.dma_dev == NULL) { return -ENODEV; } if (data->dma_tx.buffer_length != 0) { return -EBUSY; } data->dma_tx.buffer = (uint8_t *)tx_data; data->dma_tx.buffer_length = buf_size; data->dma_tx.timeout = timeout; LOG_DBG("tx: l=%d", data->dma_tx.buffer_length); /* Clear TC flag */ LL_USART_ClearFlag_TC(UartInstance); /* Enable TC interrupt so we can signal correct TX done */ LL_USART_EnableIT_TC(UartInstance); /* set source address */ data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer; data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length; ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &data->dma_tx.dma_cfg); if (ret != 0) { LOG_ERR("dma tx config error!"); return -EINVAL; } if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) { LOG_ERR("UART err: TX DMA start failed!"); return -EFAULT; } /* Start TX timer */ async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout); #ifdef CONFIG_PM /* Do not allow system to suspend until transmission has completed */ uart_stm32_pm_constraint_set(dev); #endif /* Enable TX DMA requests */ uart_stm32_dma_tx_enable(dev); return 0; } static int uart_stm32_async_rx_enable(const struct device *dev, uint8_t *rx_buf, size_t buf_size, int32_t timeout) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); int ret; if (data->dma_rx.dma_dev == NULL) { return -ENODEV; } if (data->dma_rx.enabled) { LOG_WRN("RX was already enabled"); return -EBUSY; } data->dma_rx.offset = 0; data->dma_rx.buffer = rx_buf; data->dma_rx.buffer_length = buf_size; data->dma_rx.counter = 0; data->dma_rx.timeout = timeout; /* Disable RX interrupts to let DMA to handle it */ LL_USART_DisableIT_RXNE(UartInstance); data->dma_rx.blk_cfg.block_size = buf_size; data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &data->dma_rx.dma_cfg); if (ret != 0) { LOG_ERR("UART ERR: RX DMA config failed!"); return -EINVAL; } if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) { LOG_ERR("UART ERR: RX DMA start failed!"); return -EFAULT; } /* Enable RX DMA requests */ uart_stm32_dma_rx_enable(dev); /* Enable IRQ IDLE to define the end of a * RX DMA transaction. */ LL_USART_ClearFlag_IDLE(UartInstance); LL_USART_EnableIT_IDLE(UartInstance); LL_USART_EnableIT_ERROR(UartInstance); /* Request next buffer */ async_evt_rx_buf_request(data); LOG_DBG("async rx enabled"); return ret; } static int uart_stm32_async_tx_abort(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); size_t tx_buffer_length = data->dma_tx.buffer_length; struct dma_status stat; if (tx_buffer_length == 0) { return -EFAULT; } (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) { data->dma_tx.counter = tx_buffer_length - stat.pending_length; } dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel); async_evt_tx_abort(data); return 0; } static void uart_stm32_async_rx_timeout(struct k_work *work) { struct uart_dma_stream *rx_stream = CONTAINER_OF(work, struct uart_dma_stream, timeout_work); struct uart_stm32_data *data = CONTAINER_OF(rx_stream, struct uart_stm32_data, dma_rx); const struct device *dev = data->uart_dev; LOG_DBG("rx timeout"); if (data->dma_rx.counter == data->dma_rx.buffer_length) { uart_stm32_async_rx_disable(dev); } else { uart_stm32_dma_rx_flush(dev); } } static void uart_stm32_async_tx_timeout(struct k_work *work) { struct uart_dma_stream *tx_stream = CONTAINER_OF(work, struct uart_dma_stream, timeout_work); struct uart_stm32_data *data = CONTAINER_OF(tx_stream, struct uart_stm32_data, dma_tx); const struct device *dev = data->uart_dev; uart_stm32_async_tx_abort(dev); LOG_DBG("tx: async timeout"); } static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) { struct uart_stm32_data *data = DEV_DATA(dev); LOG_DBG("replace buffer (%d)", len); data->rx_next_buffer = buf; data->rx_next_buffer_len = len; return 0; } static int uart_stm32_async_init(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); data->uart_dev = dev; if (data->dma_rx.dma_dev != NULL) { if (!device_is_ready(data->dma_rx.dma_dev)) { return -ENODEV; } } if (data->dma_tx.dma_dev != NULL) { if (!device_is_ready(data->dma_rx.dma_dev)) { return -ENODEV; } } /* Disable both TX and RX DMA requests */ uart_stm32_dma_rx_disable(dev); uart_stm32_dma_tx_disable(dev); k_work_init_delayable(&data->dma_rx.timeout_work, uart_stm32_async_rx_timeout); k_work_init_delayable(&data->dma_tx.timeout_work, uart_stm32_async_tx_timeout); /* Configure dma rx config */ memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg)); #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ defined(CONFIG_SOC_SERIES_STM32F2X) || \ defined(CONFIG_SOC_SERIES_STM32F4X) || \ defined(CONFIG_SOC_SERIES_STM32L1X) data->dma_rx.blk_cfg.source_address = LL_USART_DMA_GetRegAddr(UartInstance); #else data->dma_rx.blk_cfg.source_address = LL_USART_DMA_GetRegAddr(UartInstance, LL_USART_DMA_REG_DATA_RECEIVE); #endif data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */ if (data->dma_rx.src_addr_increment) { data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (data->dma_rx.dst_addr_increment) { data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } /* RX disable circular buffer */ data->dma_rx.blk_cfg.source_reload_en = 0; data->dma_rx.blk_cfg.dest_reload_en = 0; data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; data->dma_rx.dma_cfg.user_data = (void *)dev; data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; /* Configure dma tx config */ memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg)); #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ defined(CONFIG_SOC_SERIES_STM32F2X) || \ defined(CONFIG_SOC_SERIES_STM32F4X) || \ defined(CONFIG_SOC_SERIES_STM32L1X) data->dma_tx.blk_cfg.dest_address = LL_USART_DMA_GetRegAddr(UartInstance); #else data->dma_tx.blk_cfg.dest_address = LL_USART_DMA_GetRegAddr(UartInstance, LL_USART_DMA_REG_DATA_TRANSMIT); #endif data->dma_tx.blk_cfg.source_address = 0; /* not ready */ if (data->dma_tx.src_addr_increment) { data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (data->dma_tx.dst_addr_increment) { data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; data->dma_tx.dma_cfg.user_data = (void *)dev; return 0; } #endif /* CONFIG_UART_ASYNC_API */ static const struct uart_driver_api uart_stm32_driver_api = { .poll_in = uart_stm32_poll_in, .poll_out = uart_stm32_poll_out, .err_check = uart_stm32_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_stm32_configure, .config_get = uart_stm32_config_get, #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_stm32_fifo_fill, .fifo_read = uart_stm32_fifo_read, .irq_tx_enable = uart_stm32_irq_tx_enable, .irq_tx_disable = uart_stm32_irq_tx_disable, .irq_tx_ready = uart_stm32_irq_tx_ready, .irq_tx_complete = uart_stm32_irq_tx_complete, .irq_rx_enable = uart_stm32_irq_rx_enable, .irq_rx_disable = uart_stm32_irq_rx_disable, .irq_rx_ready = uart_stm32_irq_rx_ready, .irq_err_enable = uart_stm32_irq_err_enable, .irq_err_disable = uart_stm32_irq_err_disable, .irq_is_pending = uart_stm32_irq_is_pending, .irq_update = uart_stm32_irq_update, .irq_callback_set = uart_stm32_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API .callback_set = uart_stm32_async_callback_set, .tx = uart_stm32_async_tx, .tx_abort = uart_stm32_async_tx_abort, .rx_enable = uart_stm32_async_rx_enable, .rx_disable = uart_stm32_async_rx_disable, .rx_buf_rsp = uart_stm32_async_rx_buf_rsp, #endif /* CONFIG_UART_ASYNC_API */ }; /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_stm32_init(const struct device *dev) { const struct uart_stm32_config *config = DEV_CFG(dev); struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t ll_parity; uint32_t ll_datawidth; int err; __uart_stm32_get_clock(dev); /* enable clock */ if (clock_control_on(data->clock, (clock_control_subsys_t *)&config->pclken) != 0) { return -EIO; } /* Configure dt provided device signals when available */ err = stm32_dt_pinctrl_configure(config->pinctrl_list, config->pinctrl_list_size, (uint32_t)UART_STRUCT(dev)); if (err < 0) { return err; } LL_USART_Disable(UartInstance); /* TX/RX direction */ LL_USART_SetTransferDirection(UartInstance, LL_USART_DIRECTION_TX_RX); /* Determine the datawidth and parity. If we use other parity than * 'none' we must use datawidth = 9 (to get 8 databit + 1 parity bit). */ if (config->parity == 2) { /* 8 databit, 1 parity bit, parity even */ ll_parity = LL_USART_PARITY_EVEN; ll_datawidth = LL_USART_DATAWIDTH_9B; } else if (config->parity == 1) { /* 8 databit, 1 parity bit, parity odd */ ll_parity = LL_USART_PARITY_ODD; ll_datawidth = LL_USART_DATAWIDTH_9B; } else { /* Default to 8N0, but show warning if invalid value */ if (config->parity != 0) { LOG_WRN("Invalid parity setting '%d'." "Defaulting to 'none'.", config->parity); } /* 8 databit, parity none */ ll_parity = LL_USART_PARITY_NONE; ll_datawidth = LL_USART_DATAWIDTH_8B; } /* Set datawidth and parity, 1 start bit, 1 stop bit */ LL_USART_ConfigCharacter(UartInstance, ll_datawidth, ll_parity, LL_USART_STOPBITS_1); if (config->hw_flow_control) { uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS); } /* Set the default baudrate */ uart_stm32_set_baudrate(dev, data->baud_rate); LL_USART_Enable(UartInstance); #ifdef USART_ISR_TEACK /* Wait until TEACK flag is set */ while (!(LL_USART_IsActiveFlag_TEACK(UartInstance))) { } #endif /* !USART_ISR_TEACK */ #ifdef USART_ISR_REACK /* Wait until REACK flag is set */ while (!(LL_USART_IsActiveFlag_REACK(UartInstance))) { } #endif /* !USART_ISR_REACK */ #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) config->uconf.irq_config_func(dev); #elif defined(CONFIG_PM) config->irq_config_func(dev); #endif /* defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) */ #ifdef CONFIG_UART_ASYNC_API return uart_stm32_async_init(dev); #else return 0; #endif } #ifdef CONFIG_UART_ASYNC_API /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ #define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ .dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ .channel_direction = STM32_DMA_CONFIG_DIRECTION( \ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .source_burst_length = 1, /* SINGLE transfer */ \ .dest_burst_length = 1, \ .block_count = 1, \ .dma_callback = uart_stm32_dma_##dir##_cb, \ }, \ .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ STM32_DMA_FEATURES(index, dir)), \ #endif #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ defined(CONFIG_PM) #define STM32_UART_IRQ_HANDLER_DECL(index) \ static void uart_stm32_irq_config_func_##index(const struct device *dev); #define STM32_UART_IRQ_HANDLER(index) \ static void uart_stm32_irq_config_func_##index(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(index), \ DT_INST_IRQ(index, priority), \ uart_stm32_isr, DEVICE_DT_INST_GET(index), \ 0); \ irq_enable(DT_INST_IRQN(index)); \ } #else #define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */ #define STM32_UART_IRQ_HANDLER(index) /* Not used */ #endif #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) #define STM32_UART_IRQ_HANDLER_FUNC(index) \ .irq_config_func = uart_stm32_irq_config_func_##index, #define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */ #elif defined(CONFIG_PM) #define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ #define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \ .irq_config_func = uart_stm32_irq_config_func_##index, #else #define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ #define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */ #endif #ifdef CONFIG_UART_ASYNC_API #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \ .dma_##dir = { \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \ (UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \ (NULL)) \ }, #else #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) #endif #define STM32_UART_INIT(index) \ STM32_UART_IRQ_HANDLER_DECL(index) \ \ static const struct soc_gpio_pinctrl uart_pins_##index[] = \ ST_STM32_DT_INST_PINCTRL(index, 0); \ \ static const struct uart_stm32_config uart_stm32_cfg_##index = { \ .uconf = { \ .base = (uint8_t *)DT_INST_REG_ADDR(index), \ STM32_UART_IRQ_HANDLER_FUNC(index) \ }, \ .pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \ .enr = DT_INST_CLOCKS_CELL(index, bits) \ }, \ .hw_flow_control = DT_INST_PROP(index, hw_flow_control), \ .parity = DT_INST_ENUM_IDX_OR(index, parity, UART_CFG_PARITY_NONE), \ STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \ .pinctrl_list = uart_pins_##index, \ .pinctrl_list_size = ARRAY_SIZE(uart_pins_##index), \ }; \ \ static struct uart_stm32_data uart_stm32_data_##index = { \ .baud_rate = DT_INST_PROP(index, current_speed), \ UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \ UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \ }; \ \ DEVICE_DT_INST_DEFINE(index, \ &uart_stm32_init, \ NULL, \ &uart_stm32_data_##index, &uart_stm32_cfg_##index, \ PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ &uart_stm32_driver_api); \ \ STM32_UART_IRQ_HANDLER(index) DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)