/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #define CYC_PER_TICK ((u32_t)((u64_t)sys_clock_hw_cycles_per_sec() \ / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC)) #define MAX_CYC 0xffffffffu #define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK) #define MIN_DELAY 1000 #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \ !IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND)) static struct k_spinlock lock; static u64_t last_count; static void set_mtimecmp(u64_t time) { #ifdef CONFIG_64BIT *(volatile u64_t *)RISCV_MTIMECMP_BASE = time; #else volatile u32_t *r = (u32_t *)RISCV_MTIMECMP_BASE; /* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, * but are NOT internally latched for multiword transfers. So * we have to be careful about sequencing to avoid triggering * spurious interrupts: always set the high word to a max * value first. */ r[1] = 0xffffffff; r[0] = (u32_t)time; r[1] = (u32_t)(time >> 32); #endif } static u64_t mtime(void) { #ifdef CONFIG_64BIT return *(volatile u64_t *)RISCV_MTIME_BASE; #else volatile u32_t *r = (u32_t *)RISCV_MTIME_BASE; u32_t lo, hi; /* Likewise, must guard against rollover when reading */ do { hi = r[1]; lo = r[0]; } while (r[1] != hi); return (((u64_t)hi) << 32) | lo; #endif } static void timer_isr(void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); u64_t now = mtime(); u32_t dticks = (u32_t)((now - last_count) / CYC_PER_TICK); last_count += dticks * CYC_PER_TICK; if (!TICKLESS) { u64_t next = last_count + CYC_PER_TICK; if ((s64_t)(next - now) < MIN_DELAY) { next += CYC_PER_TICK; } set_mtimecmp(next); } k_spin_unlock(&lock, key); z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1); } int z_clock_driver_init(struct device *device) { IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0); last_count = mtime(); set_mtimecmp(last_count + CYC_PER_TICK); irq_enable(RISCV_MACHINE_TIMER_IRQ); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND) /* RISCV has no idle handler yet, so if we try to spin on the * logic below to reset the comparator, we'll always bump it * forward to the "next tick" due to MIN_DELAY handling and * the interrupt will never fire! Just rely on the fact that * the OS gave us the proper timeout already. */ if (idle) { return; } ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0); k_spinlock_key_t key = k_spin_lock(&lock); u64_t now = mtime(); u32_t adj, cyc = ticks * CYC_PER_TICK; /* Round up to next tick boundary. */ adj = (u32_t)(now - last_count) + (CYC_PER_TICK - 1); if (cyc <= MAX_CYC - adj) { cyc += adj; } else { cyc = MAX_CYC; } cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; if ((s32_t)(cyc + last_count - now) < MIN_DELAY) { cyc += CYC_PER_TICK; } set_mtimecmp(cyc + last_count); k_spin_unlock(&lock, key); #endif } u32_t z_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); u32_t ret = ((u32_t)mtime() - (u32_t)last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } u32_t z_timer_cycle_get_32(void) { return (u32_t)mtime(); }