/* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef Z_LIBC_PARTITION_EXISTS K_APPMEM_PARTITION_DEFINE(z_libc_partition); #endif /* TODO: Find a better place to put this. Since we pull the entire * libext__lib__crypto__mbedtls.a globals into app shared memory * section, we can't put this in ext/lib/crypto/mbedtls/zephyr_init.c */ #ifdef CONFIG_MBEDTLS K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition); #endif #define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL #include LOG_MODULE_DECLARE(kernel); /* The originally synchronization strategy made heavy use of recursive * irq_locking, which ports poorly to spinlocks which are * non-recursive. Rather than try to redesign as part of * spinlockification, this uses multiple locks to preserve the * original semantics exactly. The locks are named for the data they * protect where possible, or just for the code that uses them where * not. */ #ifdef CONFIG_DYNAMIC_OBJECTS static struct k_spinlock lists_lock; /* kobj rbtree/dlist */ static struct k_spinlock objfree_lock; /* k_object_free */ #endif static struct k_spinlock obj_lock; /* kobj struct data */ #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8) #ifdef CONFIG_DYNAMIC_OBJECTS extern u8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES]; #endif static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr); const char *otype_to_str(enum k_objects otype) { const char *ret; /* -fdata-sections doesn't work right except in very very recent * GCC and these literal strings would appear in the binary even if * otype_to_str was omitted by the linker */ #ifdef CONFIG_PRINTK switch (otype) { /* otype-to-str.h is generated automatically during build by * gen_kobject_list.py */ #include default: ret = "?"; break; } #else ARG_UNUSED(otype); return NULL; #endif return ret; } struct perm_ctx { int parent_id; int child_id; struct k_thread *parent; }; #ifdef CONFIG_DYNAMIC_OBJECTS struct dyn_obj { struct _k_object kobj; sys_dnode_t obj_list; struct rbnode node; /* must be immediately before data member */ u8_t data[]; /* The object itself */ }; extern struct _k_object *z_object_gperf_find(void *obj); extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, void *context); static bool node_lessthan(struct rbnode *a, struct rbnode *b); /* * Red/black tree of allocated kernel objects, for reasonably fast lookups * based on object pointer values. */ static struct rbtree obj_rb_tree = { .lessthan_fn = node_lessthan }; /* * Linked list of allocated kernel objects, for iteration over all allocated * objects (and potentially deleting them during iteration). */ static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list); /* * TODO: Write some hash table code that will replace both obj_rb_tree * and obj_list. */ static size_t obj_size_get(enum k_objects otype) { size_t ret; switch (otype) { #include default: ret = sizeof(struct device); break; } return ret; } static bool node_lessthan(struct rbnode *a, struct rbnode *b) { return a < b; } static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node) { return CONTAINER_OF(node, struct dyn_obj, node); } static struct dyn_obj *dyn_object_find(void *obj) { struct rbnode *node; struct dyn_obj *ret; /* For any dynamically allocated kernel object, the object * pointer is just a member of the conatining struct dyn_obj, * so just a little arithmetic is necessary to locate the * corresponding struct rbnode */ node = (struct rbnode *)((char *)obj - sizeof(struct rbnode)); k_spinlock_key_t key = k_spin_lock(&lists_lock); if (rb_contains(&obj_rb_tree, node)) { ret = node_to_dyn_obj(node); } else { ret = NULL; } k_spin_unlock(&lists_lock, key); return ret; } /** * @internal * * @brief Allocate a new thread index for a new thread. * * This finds an unused thread index that can be assigned to a new * thread. If too many threads have been allocated, the kernel will * run out of indexes and this function will fail. * * Note that if an unused index is found, that index will be marked as * used after return of this function. * * @param tidx The new thread index if successful * * @return true if successful, false if failed **/ static bool thread_idx_alloc(u32_t *tidx) { int i; int idx; int base; base = 0; for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { idx = find_lsb_set(_thread_idx_map[i]); if (idx != 0) { *tidx = base + (idx - 1); sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map, *tidx); /* Clear permission from all objects */ z_object_wordlist_foreach(clear_perms_cb, (void *)*tidx); return true; } base += 8; } return false; } /** * @internal * * @brief Free a thread index. * * This frees a thread index so it can be used by another * thread. * * @param tidx The thread index to be freed **/ static void thread_idx_free(u32_t tidx) { /* To prevent leaked permission when index is recycled */ z_object_wordlist_foreach(clear_perms_cb, (void *)tidx); sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx); } void *z_impl_k_object_alloc(enum k_objects otype) { struct dyn_obj *dyn_obj; u32_t tidx; /* Stacks are not supported, we don't yet have mem pool APIs * to request memory that is aligned */ __ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST && otype != K_OBJ__THREAD_STACK_ELEMENT, "bad object type requested"); dyn_obj = z_thread_malloc(sizeof(*dyn_obj) + obj_size_get(otype)); if (dyn_obj == NULL) { LOG_WRN("could not allocate kernel object"); return NULL; } dyn_obj->kobj.name = (char *)&dyn_obj->data; dyn_obj->kobj.type = otype; dyn_obj->kobj.flags = K_OBJ_FLAG_ALLOC; (void)memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES); /* Need to grab a new thread index for k_thread */ if (otype == K_OBJ_THREAD) { if (!thread_idx_alloc(&tidx)) { k_free(dyn_obj); return NULL; } dyn_obj->kobj.data = tidx; } /* The allocating thread implicitly gets permission on kernel objects * that it allocates */ z_thread_perms_set(&dyn_obj->kobj, _current); k_spinlock_key_t key = k_spin_lock(&lists_lock); rb_insert(&obj_rb_tree, &dyn_obj->node); sys_dlist_append(&obj_list, &dyn_obj->obj_list); k_spin_unlock(&lists_lock, key); return dyn_obj->kobj.name; } void k_object_free(void *obj) { struct dyn_obj *dyn_obj; /* This function is intentionally not exposed to user mode. * There's currently no robust way to track that an object isn't * being used by some other thread */ k_spinlock_key_t key = k_spin_lock(&objfree_lock); dyn_obj = dyn_object_find(obj); if (dyn_obj != NULL) { rb_remove(&obj_rb_tree, &dyn_obj->node); sys_dlist_remove(&dyn_obj->obj_list); if (dyn_obj->kobj.type == K_OBJ_THREAD) { thread_idx_free(dyn_obj->kobj.data); } } k_spin_unlock(&objfree_lock, key); if (dyn_obj != NULL) { k_free(dyn_obj); } } struct _k_object *z_object_find(void *obj) { struct _k_object *ret; ret = z_object_gperf_find(obj); if (ret == NULL) { struct dyn_obj *dynamic_obj; dynamic_obj = dyn_object_find(obj); if (dynamic_obj != NULL) { ret = &dynamic_obj->kobj; } } return ret; } void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) { struct dyn_obj *obj, *next; z_object_gperf_wordlist_foreach(func, context); k_spinlock_key_t key = k_spin_lock(&lists_lock); SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, obj_list) { func(&obj->kobj, context); } k_spin_unlock(&lists_lock, key); } #endif /* CONFIG_DYNAMIC_OBJECTS */ static int thread_index_get(struct k_thread *t) { struct _k_object *ko; ko = z_object_find(t); if (ko == NULL) { return -1; } return ko->data; } static void unref_check(struct _k_object *ko, int index) { k_spinlock_key_t key = k_spin_lock(&obj_lock); sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); #ifdef CONFIG_DYNAMIC_OBJECTS struct dyn_obj *dyn_obj = CONTAINER_OF(ko, struct dyn_obj, kobj); if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) { goto out; } for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { if (ko->perms[i] != 0U) { goto out; } } /* This object has no more references. Some objects may have * dynamically allocated resources, require cleanup, or need to be * marked as uninitailized when all references are gone. What * specifically needs to happen depends on the object type. */ switch (ko->type) { case K_OBJ_PIPE: k_pipe_cleanup((struct k_pipe *)ko->name); break; case K_OBJ_MSGQ: k_msgq_cleanup((struct k_msgq *)ko->name); break; case K_OBJ_STACK: k_stack_cleanup((struct k_stack *)ko->name); break; default: /* Nothing to do */ break; } rb_remove(&obj_rb_tree, &dyn_obj->node); sys_dlist_remove(&dyn_obj->obj_list); k_free(dyn_obj); out: #endif k_spin_unlock(&obj_lock, key); } static void wordlist_cb(struct _k_object *ko, void *ctx_ptr) { struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr; if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) && (struct k_thread *)ko->name != ctx->parent) { sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id); } } void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child) { struct perm_ctx ctx = { thread_index_get(parent), thread_index_get(child), parent }; if ((ctx.parent_id != -1) && (ctx.child_id != -1)) { z_object_wordlist_foreach(wordlist_cb, &ctx); } } void z_thread_perms_set(struct _k_object *ko, struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { sys_bitfield_set_bit((mem_addr_t)&ko->perms, index); } } void z_thread_perms_clear(struct _k_object *ko, struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); unref_check(ko, index); } } static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr) { int id = (int)ctx_ptr; unref_check(ko, id); } void z_thread_perms_all_clear(struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { z_object_wordlist_foreach(clear_perms_cb, (void *)index); } } static int thread_perms_test(struct _k_object *ko) { int index; if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) { return 1; } index = thread_index_get(_current); if (index != -1) { return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index); } return 0; } static void dump_permission_error(struct _k_object *ko) { int index = thread_index_get(_current); printk("thread %p (%d) does not have permission on %s %p [", _current, index, otype_to_str(ko->type), ko->name); for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) { printk("%02x", ko->perms[i]); } printk("]\n"); } void z_dump_object_error(int retval, void *obj, struct _k_object *ko, enum k_objects otype) { switch (retval) { case -EBADF: printk("%p is not a valid %s\n", obj, otype_to_str(otype)); break; case -EPERM: dump_permission_error(ko); break; case -EINVAL: printk("%p used before initialization\n", obj); break; case -EADDRINUSE: printk("%p %s in use\n", obj, otype_to_str(otype)); break; default: /* Not handled error */ break; } } void z_impl_k_object_access_grant(void *object, struct k_thread *thread) { struct _k_object *ko = z_object_find(object); if (ko != NULL) { z_thread_perms_set(ko, thread); } } void k_object_access_revoke(void *object, struct k_thread *thread) { struct _k_object *ko = z_object_find(object); if (ko != NULL) { z_thread_perms_clear(ko, thread); } } void z_impl_k_object_release(void *object) { k_object_access_revoke(object, _current); } void k_object_access_all_grant(void *object) { struct _k_object *ko = z_object_find(object); if (ko != NULL) { ko->flags |= K_OBJ_FLAG_PUBLIC; } } int z_object_validate(struct _k_object *ko, enum k_objects otype, enum _obj_init_check init) { if (unlikely((ko == NULL) || (otype != K_OBJ_ANY && ko->type != otype))) { return -EBADF; } /* Manipulation of any kernel objects by a user thread requires that * thread be granted access first, even for uninitialized objects */ if (unlikely(thread_perms_test(ko) == 0)) { return -EPERM; } /* Initialization state checks. _OBJ_INIT_ANY, we don't care */ if (likely(init == _OBJ_INIT_TRUE)) { /* Object MUST be intialized */ if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) { return -EINVAL; } } else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */ /* Object MUST NOT be initialized */ if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) { return -EADDRINUSE; } } else { /* _OBJ_INIT_ANY */ } return 0; } void z_object_init(void *obj) { struct _k_object *ko; /* By the time we get here, if the caller was from userspace, all the * necessary checks have been done in z_object_validate(), which takes * place before the object is initialized. * * This function runs after the object has been initialized and * finalizes it */ ko = z_object_find(obj); if (ko == NULL) { /* Supervisor threads can ignore rules about kernel objects * and may declare them on stacks, etc. Such objects will never * be usable from userspace, but we shouldn't explode. */ return; } /* Allows non-initialization system calls to be made on this object */ ko->flags |= K_OBJ_FLAG_INITIALIZED; } void z_object_recycle(void *obj) { struct _k_object *ko = z_object_find(obj); if (ko != NULL) { (void)memset(ko->perms, 0, sizeof(ko->perms)); z_thread_perms_set(ko, k_current_get()); ko->flags |= K_OBJ_FLAG_INITIALIZED; } } void z_object_uninit(void *obj) { struct _k_object *ko; /* See comments in z_object_init() */ ko = z_object_find(obj); if (ko == NULL) { return; } ko->flags &= ~K_OBJ_FLAG_INITIALIZED; } /* * Copy to/from helper functions used in syscall handlers */ void *z_user_alloc_from_copy(const void *src, size_t size) { void *dst = NULL; /* Does the caller in user mode have access to read this memory? */ if (Z_SYSCALL_MEMORY_READ(src, size)) { goto out_err; } dst = z_thread_malloc(size); if (dst == NULL) { printk("out of thread resource pool memory (%zu)", size); goto out_err; } (void)memcpy(dst, src, size); out_err: return dst; } static int user_copy(void *dst, const void *src, size_t size, bool to_user) { int ret = EFAULT; /* Does the caller in user mode have access to this memory? */ if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) : Z_SYSCALL_MEMORY_READ(src, size)) { goto out_err; } (void)memcpy(dst, src, size); ret = 0; out_err: return ret; } int z_user_from_copy(void *dst, const void *src, size_t size) { return user_copy(dst, src, size, false); } int z_user_to_copy(void *dst, const void *src, size_t size) { return user_copy(dst, src, size, true); } char *z_user_string_alloc_copy(const char *src, size_t maxlen) { size_t actual_len; int err; char *ret = NULL; actual_len = z_user_string_nlen(src, maxlen, &err); if (err != 0) { goto out; } if (actual_len == maxlen) { /* Not NULL terminated */ printk("string too long %p (%zu)\n", src, actual_len); goto out; } if (size_add_overflow(actual_len, 1, &actual_len)) { printk("overflow\n"); goto out; } ret = z_user_alloc_from_copy(src, actual_len); /* Someone may have modified the source string during the above * checks. Ensure what we actually copied is still terminated * properly. */ if (ret != NULL) { ret[actual_len - 1] = '\0'; } out: return ret; } int z_user_string_copy(char *dst, const char *src, size_t maxlen) { size_t actual_len; int ret, err; actual_len = z_user_string_nlen(src, maxlen, &err); if (err != 0) { ret = EFAULT; goto out; } if (actual_len == maxlen) { /* Not NULL terminated */ printk("string too long %p (%zu)\n", src, actual_len); ret = EINVAL; goto out; } if (size_add_overflow(actual_len, 1, &actual_len)) { printk("overflow\n"); ret = EINVAL; goto out; } ret = z_user_from_copy(dst, src, actual_len); /* See comment above in z_user_string_alloc_copy() */ dst[actual_len - 1] = '\0'; out: return ret; } /* * Application memory region initialization */ extern char __app_shmem_regions_start[]; extern char __app_shmem_regions_end[]; void z_app_shmem_bss_zero(void) { struct z_app_region *region, *end; end = (struct z_app_region *)&__app_shmem_regions_end; region = (struct z_app_region *)&__app_shmem_regions_start; for ( ; region < end; region++) { (void)memset(region->bss_start, 0, region->bss_size); } } /* * Default handlers if otherwise unimplemented */ static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) { printk("Bad system call id %u invoked\n", bad_id); z_arch_syscall_oops(ssf); CODE_UNREACHABLE; } static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) { printk("Unimplemented system call\n"); z_arch_syscall_oops(ssf); CODE_UNREACHABLE; } #include