/* * Copyright (c) 2021 Intel Corporation * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #define IA32_TSC_DEADLINE_MSR 0x6e0 #define IA32_TSC_ADJUST_MSR 0x03b #define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ / (uint64_t) CONFIG_SYS_CLOCK_TICKS_PER_SEC) struct apic_timer_lvt { uint8_t vector : 8; uint8_t unused0 : 8; uint8_t masked : 1; enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2; uint32_t unused2 : 13; }; static struct k_spinlock lock; static uint64_t last_announce; static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg; static ALWAYS_INLINE uint64_t rdtsc(void) { uint32_t hi, lo; __asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo)); return lo + (((uint64_t)hi) << 32); } static void isr(const void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ticks = (rdtsc() - last_announce) / CYC_PER_TICK; last_announce += ticks * CYC_PER_TICK; k_spin_unlock(&lock, key); sys_clock_announce(ticks); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { sys_clock_set_timeout(1, false); } } static inline void wrmsr(int32_t msr, uint64_t val) { uint32_t hi = (uint32_t) (val >> 32); uint32_t lo = (uint32_t) val; __asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr)); } void sys_clock_set_timeout(int32_t ticks, bool idle) { ARG_UNUSED(idle); uint64_t now = rdtsc(); k_spinlock_key_t key = k_spin_lock(&lock); uint64_t expires = now + MAX(ticks - 1, 0) * CYC_PER_TICK; expires = last_announce + (((expires - last_announce + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK); /* The second condition is to catch the wraparound. * Interpreted strictly, the IA SDM description of the * TSC_DEADLINE MSR implies that it will trigger an immediate * interrupt if we try to set an expiration across the 64 bit * rollover. Unfortunately there's no way to test that as on * real hardware it requires more than a century of uptime, * but this is cheap and safe. */ if (ticks == K_TICKS_FOREVER || expires < last_announce) { expires = UINT64_MAX; } wrmsr(IA32_TSC_DEADLINE_MSR, expires); k_spin_unlock(&lock, key); } uint32_t sys_clock_elapsed(void) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = (rdtsc() - last_announce) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } uint32_t sys_clock_cycle_get_32(void) { return (uint32_t) rdtsc(); } uint64_t sys_clock_cycle_get_64(void) { return rdtsc(); } static inline uint32_t timer_irq(void) { /* The Zephyr APIC API is... idiosyncratic. The timer is a * "local vector table" interrupt. These aren't system IRQs * presented to the IO-APIC, they're indices into a register * array in the local APIC. By Zephyr convention they come * after all the external IO-APIC interrupts, but that number * changes depending on device configuration so we have to * fetch it at runtime. The timer happens to be the first * entry in the table. */ return z_loapic_irq_base(); } /* The TSC_ADJUST MSR implements a synchronized offset such that * multiple CPUs (within a socket, anyway) can synchronize exactly, or * implement managed timing spaces for guests in a recoverable way, * etc... We set it to zero on all cores for simplicity, because * firmware often leaves it in an inconsistent state between cores. */ static void clear_tsc_adjust(void) { /* But don't touch it on ACRN, where an hypervisor bug * confuses the APIC emulation and deadline interrupts don't * arrive. */ #ifndef CONFIG_BOARD_ACRN wrmsr(IA32_TSC_ADJUST_MSR, 0); #endif } void smp_timer_init(void) { /* Copy the LVT configuration from CPU0, because IRQ_CONNECT() * doesn't know how to manage LVT interrupts for anything * other than the calling/initial CPU. Same fence needed to * prevent later MSR writes from reordering before the APIC * configuration write. */ x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); __asm__ volatile("mfence" ::: "memory"); clear_tsc_adjust(); irq_enable(timer_irq()); } static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { __asm__ volatile("cpuid" : "=b"(*ebx), "=c"(*ecx), "=d"(*edx) : "a"(*eax), "c"(*ecx)); } static int sys_clock_driver_init(const struct device *dev) { #ifdef CONFIG_ASSERT uint32_t eax, ebx, ecx, edx; eax = 1; ecx = 0; cpuid(&eax, &ebx, &ecx, &edx); __ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support"); eax = 0x80000007; ecx = 0; cpuid(&eax, &ebx, &ecx, &edx); __ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support"); eax = 7; ecx = 0; cpuid(&eax, &ebx, &ecx, &edx); __ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support"); #endif clear_tsc_adjust(); /* Timer interrupt number is runtime-fetched, so can't use * static IRQ_CONNECT() */ irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0); lvt_reg.val = x86_read_loapic(LOAPIC_TIMER); lvt_reg.lvt.mode = TSC_DEADLINE; lvt_reg.lvt.masked = 0; x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); /* Per the SDM, the TSC_DEADLINE MSR is not serializing, so * this fence is needed to be sure that an upcoming MSR write * (i.e. a timeout we're about to set) cannot possibly reorder * around the initialization we just did. */ __asm__ volatile("mfence" ::: "memory"); last_announce = rdtsc(); irq_enable(timer_irq()); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { sys_clock_set_timeout(1, false); } return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);