/* * Copyright (c) 2023 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include "sensor_mgmt.h" #define DT_DRV_COMPAT zephyr_sensing BUILD_ASSERT(DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 1, "only one 'zephyr_sensing' compatible node may be present"); LOG_MODULE_REGISTER(sensing, CONFIG_SENSING_LOG_LEVEL); static struct sensing_context sensing_ctx = { }; RTIO_DEFINE_WITH_MEMPOOL(sensing_rtio_ctx, CONFIG_SENSING_RTIO_SQE_NUM, CONFIG_SENSING_RTIO_CQE_NUM, CONFIG_SENSING_RTIO_BLOCK_COUNT, CONFIG_SENSING_RTIO_BLOCK_SIZE, 4); static enum sensor_channel sensing_sensor_type_to_chan(const int32_t type) { switch (type) { case SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D: return SENSOR_CHAN_ACCEL_XYZ; case SENSING_SENSOR_TYPE_MOTION_GYROMETER_3D: return SENSOR_CHAN_GYRO_XYZ; default: break; } return SENSOR_CHAN_PRIV_START; } /* sensor_later_config including arbitrate/set interval/sensitivity */ static uint32_t arbitrate_interval(struct sensing_sensor *sensor) { struct sensing_connection *conn; uint32_t min_interval = UINT32_MAX; uint32_t interval; /* search from all clients, arbitrate the interval */ for_each_client_conn(sensor, conn) { LOG_INF("arbitrate interval, sensor:%s for each conn:%p, interval:%d(us)", sensor->dev->name, conn, conn->interval); if (!is_client_request_data(conn)) { continue; } if (conn->interval < min_interval) { min_interval = conn->interval; } } /* min_interval == UINT32_MAX means sensor is not opened by any clients, * then interval should be 0 */ interval = (min_interval == UINT32_MAX ? 0 : min_interval); LOG_DBG("arbitrate interval, sensor:%s, interval:%d(us)", sensor->dev->name, interval); return interval; } static int set_arbitrate_interval(struct sensing_sensor *sensor, uint32_t interval) { struct sensing_submit_config *config = sensor->iodev->data; struct sensor_value odr = {0}; int ret; __ASSERT(sensor && sensor->dev, "set arbitrate interval, sensor or sensor device is NULL"); LOG_INF("set arbitrate interval:%d, sensor:%s, is_streaming:%d", interval, sensor->dev->name, config->is_streaming); if (interval) { odr.val1 = USEC_PER_SEC / interval; odr.val2 = (uint64_t)USEC_PER_SEC * 1000000 / interval % 1000000; } ret = sensor_attr_set(sensor->dev, config->chan, SENSOR_ATTR_SAMPLING_FREQUENCY, &odr); if (ret) { LOG_ERR("%s set attr freq failed:%d", sensor->dev->name, ret); return ret; } if (sensor->interval) { if (config->is_streaming) { rtio_sqe_cancel(sensor->stream_sqe); } else { k_timer_stop(&sensor->timer); } } if (interval) { if (config->is_streaming) { ret = sensor_stream(sensor->iodev, &sensing_rtio_ctx, sensor, &sensor->stream_sqe); } else { k_timer_start(&sensor->timer, K_USEC(interval), K_USEC(interval)); } } sensor->interval = interval; return ret; } static int config_interval(struct sensing_sensor *sensor) { uint32_t interval = arbitrate_interval(sensor); LOG_INF("config interval, sensor:%s, interval:%d", sensor->dev->name, interval); return set_arbitrate_interval(sensor, interval); } static uint32_t arbitrate_sensitivity(struct sensing_sensor *sensor, int index) { struct sensing_connection *conn; uint32_t min_sensitivity = UINT32_MAX; /* search from all clients, arbitrate the sensitivity */ for_each_client_conn(sensor, conn) { LOG_DBG("arbitrate sensitivity, sensor:%s for each conn:%p, idx:%d, sens:%d", sensor->dev->name, conn, index, conn->sensitivity[index]); if (!is_client_request_data(conn)) { continue; } if (conn->sensitivity[index] < min_sensitivity) { min_sensitivity = conn->sensitivity[index]; } } LOG_DBG("arbitrate sensitivity, sensor:%s, min_sensitivity:%d", sensor->dev->name, min_sensitivity); /* min_sensitivity == UINT32_MAX means no client is requesting to open sensor, * by any client, in this case, return sensitivity 0 */ return (min_sensitivity == UINT32_MAX ? 0 : min_sensitivity); } static int set_arbitrate_sensitivity(struct sensing_sensor *sensor, int index, uint32_t sensitivity) { struct sensing_submit_config *config = (struct sensing_submit_config *)sensor->iodev->data; struct sensor_value threshold = {.val1 = sensitivity}; int i; /* update sensor sensitivity */ sensor->sensitivity[index] = sensitivity; for (i = 0; i < sensor->sensitivity_count; i++) { threshold.val1 = MIN(sensor->sensitivity[i], threshold.val1); } return sensor_attr_set(sensor->dev, config->chan, SENSOR_ATTR_HYSTERESIS, &threshold); } static int config_sensitivity(struct sensing_sensor *sensor, int index) { uint32_t sensitivity = arbitrate_sensitivity(sensor, index); LOG_INF("config sensitivity, sensor:%s, index:%d, sensitivity:%d", sensor->dev->name, index, sensitivity); return set_arbitrate_sensitivity(sensor, index, sensitivity); } static int config_sensor(struct sensing_sensor *sensor) { int ret; int i = 0; ret = config_interval(sensor); if (ret) { LOG_WRN("sensor:%s config interval error", sensor->dev->name); } for (i = 0; i < sensor->sensitivity_count; i++) { ret = config_sensitivity(sensor, i); if (ret) { LOG_WRN("sensor:%s config sensitivity index:%d error:%d", sensor->dev->name, i, ret); } } return ret; } static void sensor_later_config(void) { LOG_INF("sensor later config begin..."); for_each_sensor_reverse(sensor) { if (atomic_test_and_clear_bit(&sensor->flag, SENSOR_LATER_CFG_BIT)) { LOG_INF("sensor later config, sensor:%s", sensor->dev->name); config_sensor(sensor); } } } static void sensing_runtime_thread(void *p1, void *p2, void *p3) { struct sensing_context *ctx = p1; int ret; LOG_INF("sensing runtime thread start..."); do { ret = k_sem_take(&ctx->event_sem, K_FOREVER); if (!ret) { if (atomic_test_and_clear_bit(&ctx->event_flag, EVENT_CONFIG_READY)) { LOG_INF("runtime thread triggered by EVENT_CONFIG_READY"); sensor_later_config(); } } } while (1); } static void save_config_and_notify(struct sensing_sensor *sensor) { struct sensing_context *ctx = &sensing_ctx; __ASSERT(sensor, "save config and notify, sensing_sensor not be NULL"); LOG_INF("save config and notify, sensor:%s", sensor->dev->name); /* remember sensor_later_config bit to sensor */ atomic_set_bit(&sensor->flag, SENSOR_LATER_CFG_BIT); /*remember event config ready and notify sensing_runtime_thread */ atomic_set_bit(&ctx->event_flag, EVENT_CONFIG_READY); k_sem_give(&ctx->event_sem); } static int set_sensor_state(struct sensing_sensor *sensor, enum sensing_sensor_state state) { __ASSERT(sensor, "set sensor state, sensing_sensor is NULL"); sensor->state = state; return 0; } static void init_connection(struct sensing_connection *conn, struct sensing_sensor *source, struct sensing_sensor *sink) { __ASSERT(conn, "init each connection, invalid connection"); if (source) { conn->source = source; } if (sink) { conn->sink = sink; } conn->interval = 0; memset(conn->sensitivity, 0x00, sizeof(conn->sensitivity)); /* link connection to its reporter's client_list */ sys_slist_append(&conn->source->client_list, &conn->snode); } static void sensing_sensor_polling_timer(struct k_timer *timer_id) { struct sensing_sensor *sensor = CONTAINER_OF(timer_id, struct sensing_sensor, timer); /* TODO: move it into sensing_runtime_thread */ sensor_read(sensor->iodev, &sensing_rtio_ctx, sensor); } static int init_sensor(struct sensing_sensor *sensor) { struct sensing_submit_config *config; struct sensing_connection *conn; int i; __ASSERT(sensor && sensor->dev, "init sensor, sensor or sensor device is NULL"); k_timer_init(&sensor->timer, sensing_sensor_polling_timer, NULL); sys_slist_init(&sensor->client_list); for (i = 0; i < sensor->reporter_num; i++) { conn = &sensor->conns[i]; /* source sensor has been assigned in compile time */ init_connection(conn, NULL, sensor); LOG_INF("init sensor, reporter:%s, client:%s, connection:%d(%p)", conn->source->dev->name, sensor->dev->name, i, conn); } config = sensor->iodev->data; config->chan = sensing_sensor_type_to_chan(sensor->info->type); return 0; } static int sensing_init(const struct device *dev) { struct sensing_context *ctx = dev->data; enum sensing_sensor_state state; int ret = 0; LOG_INF("sensing init begin..."); for_each_sensor(sensor) { ret = init_sensor(sensor); if (ret) { LOG_ERR("sensor:%s initial error", sensor->dev->name); } state = (ret ? SENSING_SENSOR_STATE_OFFLINE : SENSING_SENSOR_STATE_READY); ret = set_sensor_state(sensor, state); if (ret) { LOG_ERR("set sensor:%s state:%d error", sensor->dev->name, state); } LOG_INF("sensing init, sensor:%s, state:%d", sensor->dev->name, sensor->state); } k_sem_init(&ctx->event_sem, 0, 1); LOG_INF("create sensing runtime thread ok"); ctx->sensing_initialized = true; return ret; } int open_sensor(struct sensing_sensor *sensor, struct sensing_connection **conn) { struct sensing_connection *tmp_conn; if (sensor->state != SENSING_SENSOR_STATE_READY) { return -EINVAL; } /* create connection from sensor to application(client = NULL) */ tmp_conn = malloc(sizeof(*tmp_conn)); if (!tmp_conn) { return -ENOMEM; } init_connection(tmp_conn, sensor, NULL); *conn = tmp_conn; return 0; } int close_sensor(struct sensing_connection **conn) { struct sensing_connection *tmp_conn = *conn; if (tmp_conn == NULL) { LOG_ERR("connection should not be NULL"); return -EINVAL; } __ASSERT(!tmp_conn->sink, "sensor derived from device tree cannot be closed"); __ASSERT(tmp_conn->source, "reporter should not be NULL"); sys_slist_find_and_remove(&tmp_conn->source->client_list, &tmp_conn->snode); save_config_and_notify(tmp_conn->source); free(*conn); *conn = NULL; return 0; } int sensing_register_callback(struct sensing_connection *conn, struct sensing_callback_list *cb_list) { if (conn == NULL) { LOG_ERR("register sensing callback list, connection not be NULL"); return -ENODEV; } __ASSERT(!conn->sink, "only connection to application could register sensing callback"); if (cb_list == NULL) { LOG_ERR("callback should not be NULL"); return -ENODEV; } conn->callback_list = cb_list; return 0; } int set_interval(struct sensing_connection *conn, uint32_t interval) { LOG_INF("set interval, sensor:%s, interval:%u(us)", conn->source->dev->name, interval); __ASSERT(conn && conn->source, "set interval, connection or reporter not be NULL"); if (interval > 0 && interval < conn->source->info->minimal_interval) { LOG_ERR("interval:%d(us) should no less than min interval:%d(us)", interval, conn->source->info->minimal_interval); return -EINVAL; } conn->interval = interval; conn->next_consume_time = EXEC_TIME_INIT; LOG_INF("set interval, sensor:%s, conn:%p, interval:%d", conn->source->dev->name, conn, interval); save_config_and_notify(conn->source); return 0; } int get_interval(struct sensing_connection *conn, uint32_t *interval) { __ASSERT(conn, "get interval, connection not be NULL"); *interval = conn->interval; LOG_INF("get interval, sensor:%s, interval:%u(us)", conn->source->dev->name, *interval); return 0; } int set_sensitivity(struct sensing_connection *conn, int8_t index, uint32_t sensitivity) { int i; __ASSERT(conn && conn->source, "set sensitivity, connection or reporter not be NULL"); LOG_INF("set sensitivity, sensor:%s, index:%d, sensitivity:%d, count:%d", conn->source->dev->name, index, sensitivity, conn->source->sensitivity_count); if (index < SENSING_SENSITIVITY_INDEX_ALL || index >= conn->source->sensitivity_count) { LOG_ERR("sensor:%s sensitivity index:%d invalid", conn->source->dev->name, index); return -EINVAL; } if (index == SENSING_SENSITIVITY_INDEX_ALL) { for (i = 0; i < conn->source->sensitivity_count; i++) { conn->sensitivity[i] = sensitivity; } } else { conn->sensitivity[index] = sensitivity; } return 0; } int get_sensitivity(struct sensing_connection *conn, int8_t index, uint32_t *sensitivity) { int i = 0; __ASSERT(conn && conn->source, "get sensitivity, connection or reporter not be NULL"); *sensitivity = UINT32_MAX; if (index < SENSING_SENSITIVITY_INDEX_ALL || index >= conn->source->sensitivity_count) { LOG_ERR("sensor:%s sensitivity index:%d invalid", conn->source->dev->name, index); return -EINVAL; } if (index == SENSING_SENSITIVITY_INDEX_ALL) { /* each sensitivity index value should be same for global sensitivity */ for (i = 1; i < conn->source->sensitivity_count; i++) { if (conn->sensitivity[i] != conn->sensitivity[0]) { LOG_ERR("sensitivity[%d]:%d should be same as sensitivity:%d", i, conn->sensitivity[i], conn->sensitivity[0]); return -EINVAL; } } *sensitivity = conn->sensitivity[0]; } else { *sensitivity = conn->sensitivity[index]; } LOG_INF("get_sensitivity, sensor:%s, index:%d, sensitivity:%d, count:%d", conn->source->dev->name, index, *sensitivity, conn->source->sensitivity_count); return 0; } int sensing_get_sensors(int *sensor_nums, const struct sensing_sensor_info **info) { if (info == NULL) { LOG_ERR("sensing_sensor_info should not be NULL"); return -ENODEV; } STRUCT_SECTION_COUNT(sensing_sensor_info, sensor_nums); STRUCT_SECTION_GET(sensing_sensor_info, 0, info); return 0; } K_THREAD_DEFINE(sensing_runtime, CONFIG_SENSING_RUNTIME_THREAD_STACK_SIZE, sensing_runtime_thread, &sensing_ctx, NULL, NULL, CONFIG_SENSING_RUNTIME_THREAD_PRIORITY, 0, 0); DEVICE_DT_INST_DEFINE(0, sensing_init, NULL, &sensing_ctx, NULL, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, NULL);