/* * Copyright (c) 2018 Foundries.io Ltd * Copyright (c) 2019 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DT_DRV_COMPAT st_stm32_lptim #if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1 #error Only one LPTIM instance should be enabled #endif #define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0) #if DT_INST_NUM_CLOCKS(0) == 1 #warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree. static const struct stm32_pclken lptim_clk[] = { STM32_CLOCK_INFO(0, DT_DRV_INST(0)), /* Use Kconfig to configure source clocks fields */ /* Fortunately, values are consistent across enabled series */ #ifdef CONFIG_STM32_LPTIM_CLOCK_LSI {.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)} #else {.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)} #endif }; #else static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0); #endif static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); /* * Assumptions and limitations: * * - system clock based on an LPTIM instance, clocked by LSI or LSE * - prescaler is set to a 2^value from 1 (division of the LPTIM source clock by 1) * to 128 (division of the LPTIM source clock by 128) * - using LPTIM AutoReload capability to trig the IRQ (timeout irq) * - when timeout irq occurs the counter is already reset * - the maximum timeout duration is reached with the lptim_time_base value * - with prescaler of 1, the max timeout (LPTIM_TIMEBASE) is 2 seconds: * 0xFFFF / (LSE freq (32768Hz) / 1) * - with prescaler of 128, the max timeout (LPTIM_TIMEBASE) is 256 seconds: * 0xFFFF / (LSE freq (32768Hz) / 128) */ static uint32_t lptim_clock_freq = KHZ(32); static int32_t lptim_time_base; /* The prescaler given by the DTS and to apply to the lptim_clock_freq */ #define LPTIM_CLOCK_RATIO DT_PROP(DT_DRV_INST(0), st_prescaler) /* Minimum nb of clock cycles to have to set autoreload register correctly */ #define LPTIM_GUARD_VALUE 2 /* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles. * This is for example about of 65000 x 2000ms when clocked by LSI */ static uint32_t accumulated_lptim_cnt; /* Next autoreload value to set */ static uint32_t autoreload_next; /* Indicate if the autoreload register is ready for a write */ static bool autoreload_ready = true; static struct k_spinlock lock; /* For tick accuracy, a specific tick to freq ratio is expected */ /* This check assumes LSI@32KHz or LSE@32768Hz */ #if !defined(CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE) #if (((DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(0), 1, bus) == STM32_SRC_LSI) && \ (CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4000)) || \ ((DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(0), 1, bus) == STM32_SRC_LSE) && \ (CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4096))) #warning Advised tick freq is 4096 for LSE / 4000 for LSI #endif #endif /* !CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE */ static inline bool arrm_state_get(void) { return (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) && LL_LPTIM_IsEnabledIT_ARRM(LPTIM)); } static void lptim_irq_handler(const struct device *unused) { ARG_UNUSED(unused); uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM); if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0) && LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) { LL_LPTIM_ClearFlag_ARROK(LPTIM); if ((autoreload_next > 0) && (autoreload_next != autoreload)) { /* the new autoreload value change, we set it */ autoreload_ready = false; LL_LPTIM_SetAutoReload(LPTIM, autoreload_next); } else { autoreload_ready = true; } } if (arrm_state_get()) { k_spinlock_key_t key = k_spin_lock(&lock); /* do not change ARR yet, sys_clock_announce will do */ LL_LPTIM_ClearFLAG_ARRM(LPTIM); /* increase the total nb of autoreload count * used in the sys_clock_cycle_get_32() function. */ autoreload++; accumulated_lptim_cnt += autoreload; k_spin_unlock(&lock, key); /* announce the elapsed time in ms (count register is 16bit) */ uint32_t dticks = (autoreload * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq; sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : (dticks > 0)); } } static void lptim_set_autoreload(uint32_t arr) { /* Update autoreload register */ autoreload_next = arr; if (!autoreload_ready) return; /* The ARR register ready, we could set it directly */ if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) { /* The new autoreload value change, we set it */ autoreload_ready = false; LL_LPTIM_ClearFlag_ARROK(LPTIM); LL_LPTIM_SetAutoReload(LPTIM, arr); } } static inline uint32_t z_clock_lptim_getcounter(void) { uint32_t lp_time; uint32_t lp_time_prev_read; /* It should be noted that to read reliably the content * of the LPTIM_CNT register, two successive read accesses * must be performed and compared */ lp_time = LL_LPTIM_GetCounter(LPTIM); do { lp_time_prev_read = lp_time; lp_time = LL_LPTIM_GetCounter(LPTIM); } while (lp_time != lp_time_prev_read); return lp_time; } void sys_clock_set_timeout(int32_t ticks, bool idle) { /* new LPTIM AutoReload value to set (aligned on Kernel ticks) */ uint32_t next_arr = 0; ARG_UNUSED(idle); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return; } if (ticks == K_TICKS_FOREVER) { clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); return; } /* if LPTIM clock was previously stopped, it must now be restored */ clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); /* passing ticks==1 means "announce the next tick", * ticks value of zero (or even negative) is legal and * treated identically: it simply indicates the kernel would like the * next tick announcement as soon as possible. */ ticks = CLAMP(ticks - 1, 1, lptim_time_base); k_spinlock_key_t key = k_spin_lock(&lock); /* read current counter value (cannot exceed 16bit) */ uint32_t lp_time = z_clock_lptim_getcounter(); uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM); if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) || ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) { /* interrupt happens or happens soon. * It's impossible to set autoreload value. */ k_spin_unlock(&lock, key); return; } /* calculate the next arr value (cannot exceed 16bit) * adjust the next ARR match value to align on Ticks * from the current counter value to first next Tick */ next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq) + 1) * lptim_clock_freq / (CONFIG_SYS_CLOCK_TICKS_PER_SEC); next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq) / CONFIG_SYS_CLOCK_TICKS_PER_SEC; /* if the lptim_clock_freq < one ticks/sec, then next_arr must be > 0 */ /* maximise to TIMEBASE */ if (next_arr > lptim_time_base) { next_arr = lptim_time_base; } /* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles * after current lptim to make sure we don't miss * an autoreload interrupt */ else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) { next_arr = lp_time + LPTIM_GUARD_VALUE; } /* with slow lptim_clock_freq, LPTIM_GUARD_VALUE of 1 is enough */ next_arr = next_arr - 1; /* Update autoreload register */ lptim_set_autoreload(next_arr); k_spin_unlock(&lock, key); } static uint32_t sys_clock_lp_time_get(void) { uint32_t lp_time; do { /* In case of counter roll-over, add the autoreload value, * because the irq has not yet been handled */ if (arrm_state_get()) { lp_time = LL_LPTIM_GetAutoReload(LPTIM) + 1; lp_time += z_clock_lptim_getcounter(); break; } lp_time = z_clock_lptim_getcounter(); /* Check if the flag ARRM wasn't be set during the process */ } while (arrm_state_get()); return lp_time; } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint32_t lp_time = sys_clock_lp_time_get(); k_spin_unlock(&lock, key); /* gives the value of LPTIM counter (ms) * since the previous 'announce' */ uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq; return (uint32_t)(ret); } uint32_t sys_clock_cycle_get_32(void) { /* just gives the accumulated count in a number of hw cycles */ k_spinlock_key_t key = k_spin_lock(&lock); uint32_t lp_time = sys_clock_lp_time_get(); lp_time += accumulated_lptim_cnt; /* convert lptim count in a nb of hw cycles with precision */ uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq; k_spin_unlock(&lock, key); /* convert in hw cycles (keeping 32bit value) */ return (uint32_t)(ret); } /* Wait for the IER register of the stm32U5 ready, after any bit write operation */ void stm32_lptim_wait_ready(void) { #ifdef CONFIG_SOC_SERIES_STM32U5X while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) { } LL_LPTIM_ClearFlag_DIEROK(LPTIM); #else /* Empty : not relevant */ #endif } static int sys_clock_driver_init(void) { uint32_t count_per_tick; int err; if (!device_is_ready(clk_ctrl)) { return -ENODEV; } /* Enable LPTIM bus clock */ err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); if (err < 0) { return -EIO; } #if defined(LL_APB1_GRP1_PERIPH_LPTIM1) LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM1); #elif defined(LL_APB3_GRP1_PERIPH_LPTIM1) LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN); #elif defined(LL_APB7_GRP1_PERIPH_LPTIM1) LL_APB7_GRP1_ReleaseReset(LL_APB7_GRP1_PERIPH_LPTIM1); #endif /* Enable LPTIM clock source */ err = clock_control_configure(clk_ctrl, (clock_control_subsys_t) &lptim_clk[1], NULL); if (err < 0) { return -EIO; } /* Get LPTIM clock freq */ err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t) &lptim_clk[1], &lptim_clock_freq); if (err < 0) { return -EIO; } #if defined(CONFIG_SOC_SERIES_STM32L0X) /* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz, * which will overflow the LPTIM counter. * Previous LPTIM configuration using device tree was doing forcing this * with a Kconfig default. Impact is that time is 1.13 faster than reality. * Following lines reproduce this behavior in order not to change behavior. * This issue will be fixed by implementation LPTIM prescaler support. */ if (lptim_clk[1].bus == STM32_SRC_LSI) { lptim_clock_freq = KHZ(32); } #endif /* Set LPTIM time base based on clock source freq */ if (lptim_clock_freq == KHZ(32)) { lptim_time_base = 0xF9FF; } else if (lptim_clock_freq == 32768) { lptim_time_base = 0xFFFF; } else { return -EIO; } if (IS_ENABLED(DT_PROP(DT_DRV_INST(0), st_static_prescaler))) { /* * LPTIM of the stm32, like stm32U5, which has a clock source x2. * A full 16bit LPTIM counter is counting 4s at 2 * 1/32768 (with LSE) * Time base = (4s * freq) - 1 */ lptim_clock_freq = lptim_clock_freq / 2; } /* * Else, a full 16bit LPTIM counter is counting 2s at 1/32768 (with LSE) * Time base = (2s * freq) - 1 */ /* Actual lptim clock freq when the clock source is reduced by the prescaler */ lptim_clock_freq = lptim_clock_freq / LPTIM_CLOCK_RATIO; /* Clear the event flag and possible pending interrupt */ IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), lptim_irq_handler, 0, 0); irq_enable(DT_INST_IRQN(0)); #ifdef CONFIG_SOC_SERIES_STM32WLX /* Enable the LPTIM wakeup EXTI line */ LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29); #endif /* configure the LPTIM counter */ LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL); /* the LPTIM clock freq is affected by the prescaler */ LL_LPTIM_SetPrescaler(LPTIM, (__CLZ(__RBIT(LPTIM_CLOCK_RATIO)) << LPTIM_CFGR_PRESC_Pos)); #if defined(CONFIG_SOC_SERIES_STM32U5X) || \ defined(CONFIG_SOC_SERIES_STM32WBAX) LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1, LL_LPTIM_OUTPUT_POLARITY_REGULAR); #else LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR); #endif LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE); LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL); LL_LPTIM_DisableTimeout(LPTIM); /* counting start is initiated by software */ LL_LPTIM_TrigSw(LPTIM); #if defined(CONFIG_SOC_SERIES_STM32U5X) || \ defined(CONFIG_SOC_SERIES_STM32WBAX) /* Enable the LPTIM before proceeding with configuration */ LL_LPTIM_Enable(LPTIM); LL_LPTIM_DisableIT_CC1(LPTIM); stm32_lptim_wait_ready(); LL_LPTIM_ClearFLAG_CC1(LPTIM); #else /* LPTIM interrupt set-up before enabling */ /* no Compare match Interrupt */ LL_LPTIM_DisableIT_CMPM(LPTIM); LL_LPTIM_ClearFLAG_CMPM(LPTIM); #endif /* Autoreload match Interrupt */ LL_LPTIM_EnableIT_ARRM(LPTIM); stm32_lptim_wait_ready(); LL_LPTIM_ClearFLAG_ARRM(LPTIM); /* ARROK bit validates the write operation to ARR register */ LL_LPTIM_EnableIT_ARROK(LPTIM); stm32_lptim_wait_ready(); LL_LPTIM_ClearFlag_ARROK(LPTIM); accumulated_lptim_cnt = 0; #if !defined(CONFIG_SOC_SERIES_STM32U5X) && \ !defined(CONFIG_SOC_SERIES_STM32WBAX) /* Enable the LPTIM counter */ LL_LPTIM_Enable(LPTIM); #endif /* Set the Autoreload value once the timer is enabled */ if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { /* LPTIM is triggered on a LPTIM_TIMEBASE period */ lptim_set_autoreload(lptim_time_base); } else { /* nb of LPTIM counter unit per kernel tick (depends on lptim clock prescaler) */ count_per_tick = (lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC); /* LPTIM is triggered on a Tick period */ lptim_set_autoreload(count_per_tick - 1); } /* Start the LPTIM counter in continuous mode */ LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS); #ifdef CONFIG_DEBUG /* stop LPTIM during DEBUG */ #if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP) LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP); #elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP) LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP); #endif #endif return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);