/* * Copyright (c) 2016 Open-RnD Sp. z o.o. * Copyright (c) 2016 Linaro Limited. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_uart /** * @brief Driver for UART port on STM32 family processor. * @note LPUART and U(S)ART have the same base and * majority of operations are performed the same way. * Please validate for newly added series. */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_UART_ASYNC_API #include #include #endif #include #include #include "uart_stm32.h" #include #include #if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) #include #endif /* CONFIG_PM */ #include #include LOG_MODULE_REGISTER(uart_stm32, CONFIG_UART_LOG_LEVEL); /* This symbol takes the value 1 if one of the device instances */ /* is configured in dts with a domain clock */ #if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT #define STM32_UART_DOMAIN_CLOCK_SUPPORT 1 #else #define STM32_UART_DOMAIN_CLOCK_SUPPORT 0 #endif #define HAS_LPUART DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) /* Available everywhere except l1, f1, f2, f4. */ #ifdef USART_CR3_DEM #define HAS_DRIVER_ENABLE 1 #else #define HAS_DRIVER_ENABLE 0 #endif #if HAS_LPUART #ifdef USART_PRESC_PRESCALER uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx, const uint32_t baud_rate) { uint64_t lpuartdiv; lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx]; lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL; lpuartdiv += baud_rate / 2; lpuartdiv /= baud_rate; return (uint32_t)lpuartdiv; } #else uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate) { uint64_t lpuartdiv; lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL; lpuartdiv += baud_rate / 2; lpuartdiv /= baud_rate; return (uint32_t)lpuartdiv; } #endif /* USART_PRESC_PRESCALER */ #endif /* HAS_LPUART */ #ifdef CONFIG_PM static void uart_stm32_pm_policy_state_lock_get(const struct device *dev) { struct uart_stm32_data *data = dev->data; if (!data->pm_policy_state_on) { data->pm_policy_state_on = true; pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); if (IS_ENABLED(CONFIG_PM_S2RAM)) { pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); } } } static void uart_stm32_pm_policy_state_lock_put(const struct device *dev) { struct uart_stm32_data *data = dev->data; if (data->pm_policy_state_on) { data->pm_policy_state_on = false; pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); if (IS_ENABLED(CONFIG_PM_S2RAM)) { pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); } } } #endif /* CONFIG_PM */ static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; uint32_t clock_rate; /* Get clock rate */ if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { if (clock_control_get_rate(data->clock, (clock_control_subsys_t)&config->pclken[1], &clock_rate) < 0) { LOG_ERR("Failed call clock_control_get_rate(pclken[1])"); return; } } else { if (clock_control_get_rate(data->clock, (clock_control_subsys_t)&config->pclken[0], &clock_rate) < 0) { LOG_ERR("Failed call clock_control_get_rate(pclken[0])"); return; } } #if HAS_LPUART if (IS_LPUART_INSTANCE(config->usart)) { uint32_t lpuartdiv; #ifdef USART_PRESC_PRESCALER uint8_t presc_idx; uint32_t presc_val; for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) { lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate); if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) { break; } } if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) { LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); return; } presc_val = presc_idx << USART_PRESC_PRESCALER_Pos; LL_LPUART_SetPrescaler(config->usart, presc_val); #else lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate); if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) { LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); return; } #endif /* USART_PRESC_PRESCALER */ LL_LPUART_SetBaudRate(config->usart, clock_rate, #ifdef USART_PRESC_PRESCALER presc_val, #endif baud_rate); /* Check BRR is greater than or equal to 0x300 */ __ASSERT(LL_LPUART_ReadReg(config->usart, BRR) >= 0x300U, "BaudRateReg >= 0x300"); /* Check BRR is lower than or equal to 0xFFFFF */ __ASSERT(LL_LPUART_ReadReg(config->usart, BRR) < 0x000FFFFFU, "BaudRateReg < 0xFFFF"); } else { #endif /* HAS_LPUART */ #ifdef USART_CR1_OVER8 LL_USART_SetOverSampling(config->usart, LL_USART_OVERSAMPLING_16); #endif LL_USART_SetBaudRate(config->usart, clock_rate, #ifdef USART_PRESC_PRESCALER LL_USART_PRESCALER_DIV1, #endif #ifdef USART_CR1_OVER8 LL_USART_OVERSAMPLING_16, #endif baud_rate); /* Check BRR is greater than or equal to 16d */ __ASSERT(LL_USART_ReadReg(config->usart, BRR) >= 16, "BaudRateReg >= 16"); #if HAS_LPUART } #endif /* HAS_LPUART */ } static inline void uart_stm32_set_parity(const struct device *dev, uint32_t parity) { const struct uart_stm32_config *config = dev->config; LL_USART_SetParity(config->usart, parity); } static inline uint32_t uart_stm32_get_parity(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_GetParity(config->usart); } static inline void uart_stm32_set_stopbits(const struct device *dev, uint32_t stopbits) { const struct uart_stm32_config *config = dev->config; LL_USART_SetStopBitsLength(config->usart, stopbits); } static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_GetStopBitsLength(config->usart); } static inline void uart_stm32_set_databits(const struct device *dev, uint32_t databits) { const struct uart_stm32_config *config = dev->config; LL_USART_SetDataWidth(config->usart, databits); } static inline uint32_t uart_stm32_get_databits(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_GetDataWidth(config->usart); } static inline void uart_stm32_set_hwctrl(const struct device *dev, uint32_t hwctrl) { const struct uart_stm32_config *config = dev->config; LL_USART_SetHWFlowCtrl(config->usart, hwctrl); } static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_GetHWFlowCtrl(config->usart); } #if HAS_DRIVER_ENABLE static inline void uart_stm32_set_driver_enable(const struct device *dev, bool driver_enable) { const struct uart_stm32_config *config = dev->config; if (driver_enable) { LL_USART_EnableDEMode(config->usart); } else { LL_USART_DisableDEMode(config->usart); } } static inline bool uart_stm32_get_driver_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_IsEnabledDEMode(config->usart); } #endif static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) { switch (parity) { case UART_CFG_PARITY_ODD: return LL_USART_PARITY_ODD; case UART_CFG_PARITY_EVEN: return LL_USART_PARITY_EVEN; case UART_CFG_PARITY_NONE: default: return LL_USART_PARITY_NONE; } } static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) { switch (parity) { case LL_USART_PARITY_ODD: return UART_CFG_PARITY_ODD; case LL_USART_PARITY_EVEN: return UART_CFG_PARITY_EVEN; case LL_USART_PARITY_NONE: default: return UART_CFG_PARITY_NONE; } } static inline uint32_t uart_stm32_cfg2ll_stopbits(const struct uart_stm32_config *config, enum uart_config_stop_bits sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case UART_CFG_STOP_BITS_0_5: #if HAS_LPUART if (IS_LPUART_INSTANCE(config->usart)) { /* return the default */ return LL_USART_STOPBITS_1; } #endif /* HAS_LPUART */ return LL_USART_STOPBITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case UART_CFG_STOP_BITS_1: return LL_USART_STOPBITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case UART_CFG_STOP_BITS_1_5: #if HAS_LPUART if (IS_LPUART_INSTANCE(config->usart)) { /* return the default */ return LL_USART_STOPBITS_2; } #endif return LL_USART_STOPBITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case UART_CFG_STOP_BITS_2: default: return LL_USART_STOPBITS_2; } } static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case LL_USART_STOPBITS_0_5: return UART_CFG_STOP_BITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case LL_USART_STOPBITS_1: return UART_CFG_STOP_BITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case LL_USART_STOPBITS_1_5: return UART_CFG_STOP_BITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case LL_USART_STOPBITS_2: default: return UART_CFG_STOP_BITS_2; } } static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db, enum uart_config_parity p) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case UART_CFG_DATA_BITS_7: if (p == UART_CFG_PARITY_NONE) { return LL_USART_DATAWIDTH_7B; } else { return LL_USART_DATAWIDTH_8B; } #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case UART_CFG_DATA_BITS_9: return LL_USART_DATAWIDTH_9B; #endif /* LL_USART_DATAWIDTH_9B */ case UART_CFG_DATA_BITS_8: default: if (p == UART_CFG_PARITY_NONE) { return LL_USART_DATAWIDTH_8B; #ifdef LL_USART_DATAWIDTH_9B } else { return LL_USART_DATAWIDTH_9B; #endif } return LL_USART_DATAWIDTH_8B; } } static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db, uint32_t p) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case LL_USART_DATAWIDTH_7B: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_7; } else { return UART_CFG_DATA_BITS_6; } #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case LL_USART_DATAWIDTH_9B: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_9; } else { return UART_CFG_DATA_BITS_8; } #endif /* LL_USART_DATAWIDTH_9B */ case LL_USART_DATAWIDTH_8B: default: if (p == LL_USART_PARITY_NONE) { return UART_CFG_DATA_BITS_8; } else { return UART_CFG_DATA_BITS_7; } } } /** * @brief Get LL hardware flow control define from * Zephyr hardware flow control option. * @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485. * @param fc: Zephyr hardware flow control option. * @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. */ static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) { if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { return LL_USART_HWCONTROL_RTS_CTS; } else if (fc == UART_CFG_FLOW_CTRL_RS485) { /* Driver Enable is handled separately */ return LL_USART_HWCONTROL_NONE; } return LL_USART_HWCONTROL_NONE; } /** * @brief Get Zephyr hardware flow control option from * LL hardware flow control define. * @note Supports only LL_USART_HWCONTROL_RTS_CTS. * @param fc: LL hardware flow control definition. * @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. */ static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) { if (fc == LL_USART_HWCONTROL_RTS_CTS) { return UART_CFG_FLOW_CTRL_RTS_CTS; } return UART_CFG_FLOW_CTRL_NONE; } static void uart_stm32_parameters_set(const struct device *dev, const struct uart_config *cfg) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits); const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, cfg->parity); const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); #if HAS_DRIVER_ENABLE bool driver_enable = cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485; #endif if (cfg == uart_cfg) { /* Called via (re-)init function, so the SoC either just booted, * or is returning from a low-power state where it lost register * contents */ LL_USART_ConfigCharacter(config->usart, databits, parity, stopbits); uart_stm32_set_hwctrl(dev, flowctrl); uart_stm32_set_baudrate(dev, cfg->baudrate); } else { /* Called from application/subsys via uart_configure syscall */ if (parity != uart_stm32_get_parity(dev)) { uart_stm32_set_parity(dev, parity); } if (stopbits != uart_stm32_get_stopbits(dev)) { uart_stm32_set_stopbits(dev, stopbits); } if (databits != uart_stm32_get_databits(dev)) { uart_stm32_set_databits(dev, databits); } if (flowctrl != uart_stm32_get_hwctrl(dev)) { uart_stm32_set_hwctrl(dev, flowctrl); } #if HAS_DRIVER_ENABLE if (driver_enable != uart_stm32_get_driver_enable(dev)) { uart_stm32_set_driver_enable(dev, driver_enable); } #endif if (cfg->baudrate != uart_cfg->baudrate) { uart_stm32_set_baudrate(dev, cfg->baudrate); uart_cfg->baudrate = cfg->baudrate; } } } #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static int uart_stm32_configure(const struct device *dev, const struct uart_config *cfg) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits); const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, cfg->parity); /* Hardware doesn't support mark or space parity */ if ((cfg->parity == UART_CFG_PARITY_MARK) || (cfg->parity == UART_CFG_PARITY_SPACE)) { return -ENOTSUP; } /* Driver does not supports parity + 9 databits */ if ((cfg->parity != UART_CFG_PARITY_NONE) && (cfg->data_bits == UART_CFG_DATA_BITS_9)) { return -ENOTSUP; } /* When the transformed ll stop bits don't match with what was requested, then it's not * supported */ if (uart_stm32_ll2cfg_stopbits(stopbits) != cfg->stop_bits) { return -ENOTSUP; } /* When the transformed ll databits don't match with what was requested, then it's not * supported */ if (uart_stm32_ll2cfg_databits(databits, parity) != cfg->data_bits) { return -ENOTSUP; } /* Driver supports only RTS/CTS and RS485 flow control */ if (!(cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE || (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS && IS_UART_HWFLOW_INSTANCE(config->usart)) #if HAS_DRIVER_ENABLE || (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485 && IS_UART_DRIVER_ENABLE_INSTANCE(config->usart)) #endif )) { return -ENOTSUP; } LL_USART_Disable(config->usart); /* Set basic parameters, such as data-/stop-bit, parity, and baudrate */ uart_stm32_parameters_set(dev, cfg); LL_USART_Enable(config->usart); /* Upon successful configuration, persist the syscall-passed * uart_config. * This allows restoring it, should the device return from a low-power * mode in which register contents are lost. */ *uart_cfg = *cfg; return 0; }; static int uart_stm32_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_stm32_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; cfg->baudrate = uart_cfg->baudrate; cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); cfg->stop_bits = uart_stm32_ll2cfg_stopbits( uart_stm32_get_stopbits(dev)); cfg->data_bits = uart_stm32_ll2cfg_databits( uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)); cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( uart_stm32_get_hwctrl(dev)); #if HAS_DRIVER_ENABLE if (uart_stm32_get_driver_enable(dev)) { cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485; } #endif return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ typedef void (*poll_in_fn)( const struct uart_stm32_config *config, void *in); static int uart_stm32_poll_in_visitor(const struct device *dev, void *in, poll_in_fn get_fn) { const struct uart_stm32_config *config = dev->config; /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(config->usart)) { LL_USART_ClearFlag_ORE(config->usart); } /* * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by * the uart_err_check function call (on errors flags clearing) */ if (!LL_USART_IsActiveFlag_RXNE(config->usart)) { return -1; } get_fn(config, in); return 0; } typedef void (*poll_out_fn)( const struct uart_stm32_config *config, void *out); static void uart_stm32_poll_out_visitor(const struct device *dev, void *out, poll_out_fn set_fn) { const struct uart_stm32_config *config = dev->config; #ifdef CONFIG_PM struct uart_stm32_data *data = dev->data; #endif unsigned int key; /* Wait for TXE flag to be raised * When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart) * or thread switch. Then, we can safely send our character. The character sent will be * interlaced with the characters potentially send with interrupt transmission API */ while (1) { if (LL_USART_IsActiveFlag_TXE(config->usart)) { key = irq_lock(); if (LL_USART_IsActiveFlag_TXE(config->usart)) { break; } irq_unlock(key); } } #ifdef CONFIG_PM /* If an interrupt transmission is in progress, the pm constraint is already managed by the * call of uart_stm32_irq_tx_[en|dis]able */ if (!data->tx_poll_stream_on && !data->tx_int_stream_on) { data->tx_poll_stream_on = true; /* Don't allow system to suspend until stream * transmission has completed */ uart_stm32_pm_policy_state_lock_get(dev); /* Enable TC interrupt so we can release suspend * constraint when done */ LL_USART_EnableIT_TC(config->usart); } #endif /* CONFIG_PM */ set_fn(config, out); irq_unlock(key); } static void poll_in_u8(const struct uart_stm32_config *config, void *in) { *((unsigned char *)in) = (unsigned char)LL_USART_ReceiveData8(config->usart); } static void poll_out_u8(const struct uart_stm32_config *config, void *out) { LL_USART_TransmitData8(config->usart, *((uint8_t *)out)); } static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) { return uart_stm32_poll_in_visitor(dev, (void *)c, poll_in_u8); } static void uart_stm32_poll_out(const struct device *dev, unsigned char c) { uart_stm32_poll_out_visitor(dev, (void *)&c, poll_out_u8); } #ifdef CONFIG_UART_WIDE_DATA static void poll_out_u9(const struct uart_stm32_config *config, void *out) { LL_USART_TransmitData9(config->usart, *((uint16_t *)out)); } static void poll_in_u9(const struct uart_stm32_config *config, void *in) { *((uint16_t *)in) = LL_USART_ReceiveData9(config->usart); } static int uart_stm32_poll_in_u16(const struct device *dev, uint16_t *in_u16) { return uart_stm32_poll_in_visitor(dev, (void *)in_u16, poll_in_u9); } static void uart_stm32_poll_out_u16(const struct device *dev, uint16_t out_u16) { uart_stm32_poll_out_visitor(dev, (void *)&out_u16, poll_out_u9); } #endif static int uart_stm32_err_check(const struct device *dev) { const struct uart_stm32_config *config = dev->config; uint32_t err = 0U; /* Check for errors, then clear them. * Some SoC clear all error flags when at least * one is cleared. (e.g. F4X, F1X, and F2X). * The stm32 F4X, F1X, and F2X also reads the usart DR when clearing Errors */ if (LL_USART_IsActiveFlag_ORE(config->usart)) { err |= UART_ERROR_OVERRUN; } if (LL_USART_IsActiveFlag_PE(config->usart)) { err |= UART_ERROR_PARITY; } if (LL_USART_IsActiveFlag_FE(config->usart)) { err |= UART_ERROR_FRAMING; } if (LL_USART_IsActiveFlag_NE(config->usart)) { err |= UART_ERROR_NOISE; } #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) if (LL_USART_IsActiveFlag_LBD(config->usart)) { err |= UART_BREAK; } if (err & UART_BREAK) { LL_USART_ClearFlag_LBD(config->usart); } #endif /* Clearing error : * the stm32 F4X, F1X, and F2X sw sequence is reading the usart SR * then the usart DR to clear the Error flags ORE, PE, FE, NE * --> so is the RXNE flag also cleared ! */ if (err & UART_ERROR_OVERRUN) { LL_USART_ClearFlag_ORE(config->usart); } if (err & UART_ERROR_PARITY) { LL_USART_ClearFlag_PE(config->usart); } if (err & UART_ERROR_FRAMING) { LL_USART_ClearFlag_FE(config->usart); } if (err & UART_ERROR_NOISE) { LL_USART_ClearFlag_NE(config->usart); } return err; } static inline void __uart_stm32_get_clock(const struct device *dev) { struct uart_stm32_data *data = dev->data; const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); data->clock = clk; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN typedef void (*fifo_fill_fn)(const struct uart_stm32_config *config, const void *tx_data, const uint8_t offset); static int uart_stm32_fifo_fill_visitor(const struct device *dev, const void *tx_data, int size, fifo_fill_fn fill_fn) { const struct uart_stm32_config *config = dev->config; uint8_t num_tx = 0U; unsigned int key; if (!LL_USART_IsActiveFlag_TXE(config->usart)) { return num_tx; } /* Lock interrupts to prevent nested interrupts or thread switch */ key = irq_lock(); while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(config->usart)) { /* TXE flag will be cleared with byte write to DR|RDR register */ /* Send a character */ fill_fn(config, tx_data, num_tx); num_tx++; } irq_unlock(key); return num_tx; } static void fifo_fill_with_u8(const struct uart_stm32_config *config, const void *tx_data, const uint8_t offset) { const uint8_t *data = (const uint8_t *)tx_data; /* Send a character (8bit) */ LL_USART_TransmitData8(config->usart, data[offset]); } static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) == UART_CFG_DATA_BITS_9) { return -ENOTSUP; } return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size, fifo_fill_with_u8); } typedef void (*fifo_read_fn)(const struct uart_stm32_config *config, void *rx_data, const uint8_t offset); static int uart_stm32_fifo_read_visitor(const struct device *dev, void *rx_data, const int size, fifo_read_fn read_fn) { const struct uart_stm32_config *config = dev->config; uint8_t num_rx = 0U; while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(config->usart)) { /* RXNE flag will be cleared upon read from DR|RDR register */ read_fn(config, rx_data, num_rx); num_rx++; /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(config->usart)) { LL_USART_ClearFlag_ORE(config->usart); /* * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by * the uart_err_check function call (on errors flags clearing) */ } } return num_rx; } static void fifo_read_with_u8(const struct uart_stm32_config *config, void *rx_data, const uint8_t offset) { uint8_t *data = (uint8_t *)rx_data; data[offset] = LL_USART_ReceiveData8(config->usart); } static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) == UART_CFG_DATA_BITS_9) { return -ENOTSUP; } return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size, fifo_read_with_u8); } #ifdef CONFIG_UART_WIDE_DATA static void fifo_fill_with_u16(const struct uart_stm32_config *config, const void *tx_data, const uint8_t offset) { const uint16_t *data = (const uint16_t *)tx_data; /* Send a character (9bit) */ LL_USART_TransmitData9(config->usart, data[offset]); } static int uart_stm32_fifo_fill_u16(const struct device *dev, const uint16_t *tx_data, int size) { if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) != UART_CFG_DATA_BITS_9) { return -ENOTSUP; } return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size, fifo_fill_with_u16); } static void fifo_read_with_u16(const struct uart_stm32_config *config, void *rx_data, const uint8_t offset) { uint16_t *data = (uint16_t *)rx_data; data[offset] = LL_USART_ReceiveData9(config->usart); } static int uart_stm32_fifo_read_u16(const struct device *dev, uint16_t *rx_data, const int size) { if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) != UART_CFG_DATA_BITS_9) { return -ENOTSUP; } return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size, fifo_read_with_u16); } #endif static void uart_stm32_irq_tx_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; #ifdef CONFIG_PM struct uart_stm32_data *data = dev->data; unsigned int key; #endif #ifdef CONFIG_PM key = irq_lock(); data->tx_poll_stream_on = false; data->tx_int_stream_on = true; uart_stm32_pm_policy_state_lock_get(dev); #endif LL_USART_EnableIT_TC(config->usart); #ifdef CONFIG_PM irq_unlock(key); #endif } static void uart_stm32_irq_tx_disable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; #ifdef CONFIG_PM struct uart_stm32_data *data = dev->data; unsigned int key; key = irq_lock(); #endif LL_USART_DisableIT_TC(config->usart); #ifdef CONFIG_PM data->tx_int_stream_on = false; uart_stm32_pm_policy_state_lock_put(dev); #endif #ifdef CONFIG_PM irq_unlock(key); #endif } static int uart_stm32_irq_tx_ready(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_IsActiveFlag_TXE(config->usart) && LL_USART_IsEnabledIT_TC(config->usart); } static int uart_stm32_irq_tx_complete(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return LL_USART_IsActiveFlag_TC(config->usart); } static void uart_stm32_irq_rx_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; LL_USART_EnableIT_RXNE(config->usart); } static void uart_stm32_irq_rx_disable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; LL_USART_DisableIT_RXNE(config->usart); } static int uart_stm32_irq_rx_ready(const struct device *dev) { const struct uart_stm32_config *config = dev->config; /* * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by * the uart_err_check function call (on errors flags clearing) */ return LL_USART_IsActiveFlag_RXNE(config->usart); } static void uart_stm32_irq_err_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; /* Enable FE, ORE interruptions */ LL_USART_EnableIT_ERROR(config->usart); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Enable Line break detection */ if (IS_UART_LIN_INSTANCE(config->usart)) { LL_USART_EnableIT_LBD(config->usart); } #endif /* Enable parity error interruption */ LL_USART_EnableIT_PE(config->usart); } static void uart_stm32_irq_err_disable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; /* Disable FE, ORE interruptions */ LL_USART_DisableIT_ERROR(config->usart); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Disable Line break detection */ if (IS_UART_LIN_INSTANCE(config->usart)) { LL_USART_DisableIT_LBD(config->usart); } #endif /* Disable parity error interruption */ LL_USART_DisableIT_PE(config->usart); } static int uart_stm32_irq_is_pending(const struct device *dev) { const struct uart_stm32_config *config = dev->config; return ((LL_USART_IsActiveFlag_RXNE(config->usart) && LL_USART_IsEnabledIT_RXNE(config->usart)) || (LL_USART_IsActiveFlag_TC(config->usart) && LL_USART_IsEnabledIT_TC(config->usart))); } static int uart_stm32_irq_update(const struct device *dev) { return 1; } static void uart_stm32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_stm32_data *data = dev->data; data->user_cb = cb; data->user_data = cb_data; #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) data->async_cb = NULL; data->async_user_data = NULL; #endif } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API static inline void async_user_callback(struct uart_stm32_data *data, struct uart_event *event) { if (data->async_cb) { data->async_cb(data->uart_dev, event, data->async_user_data); } } static inline void async_evt_rx_rdy(struct uart_stm32_data *data) { LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter); struct uart_event event = { .type = UART_RX_RDY, .data.rx.buf = data->dma_rx.buffer, .data.rx.len = data->dma_rx.counter - data->dma_rx.offset, .data.rx.offset = data->dma_rx.offset }; /* update the current pos for new data */ data->dma_rx.offset = data->dma_rx.counter; /* send event only for new data */ if (event.data.rx.len > 0) { async_user_callback(data, &event); } } static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code) { LOG_DBG("rx error: %d", err_code); struct uart_event event = { .type = UART_RX_STOPPED, .data.rx_stop.reason = err_code, .data.rx_stop.data.len = data->dma_rx.counter, .data.rx_stop.data.offset = 0, .data.rx_stop.data.buf = data->dma_rx.buffer }; async_user_callback(data, &event); } static inline void async_evt_tx_done(struct uart_stm32_data *data) { LOG_DBG("tx done: %d", data->dma_tx.counter); struct uart_event event = { .type = UART_TX_DONE, .data.tx.buf = data->dma_tx.buffer, .data.tx.len = data->dma_tx.counter }; /* Reset tx buffer */ data->dma_tx.buffer_length = 0; data->dma_tx.counter = 0; async_user_callback(data, &event); } static inline void async_evt_tx_abort(struct uart_stm32_data *data) { LOG_DBG("tx abort: %d", data->dma_tx.counter); struct uart_event event = { .type = UART_TX_ABORTED, .data.tx.buf = data->dma_tx.buffer, .data.tx.len = data->dma_tx.counter }; /* Reset tx buffer */ data->dma_tx.buffer_length = 0; data->dma_tx.counter = 0; async_user_callback(data, &event); } static inline void async_evt_rx_buf_request(struct uart_stm32_data *data) { struct uart_event evt = { .type = UART_RX_BUF_REQUEST, }; async_user_callback(data, &evt); } static inline void async_evt_rx_buf_release(struct uart_stm32_data *data) { struct uart_event evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf.buf = data->dma_rx.buffer, }; async_user_callback(data, &evt); } static inline void async_timer_start(struct k_work_delayable *work, int32_t timeout) { if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { /* start timer */ LOG_DBG("async timer started for %d us", timeout); k_work_reschedule(work, K_USEC(timeout)); } } static void uart_stm32_dma_rx_flush(const struct device *dev) { struct dma_status stat; struct uart_stm32_data *data = dev->data; if (dma_get_status(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &stat) == 0) { size_t rx_rcv_len = data->dma_rx.buffer_length - stat.pending_length; if (rx_rcv_len > data->dma_rx.offset) { data->dma_rx.counter = rx_rcv_len; async_evt_rx_rdy(data); } } } #endif /* CONFIG_UART_ASYNC_API */ #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ defined(CONFIG_UART_ASYNC_API) || \ defined(CONFIG_PM) static void uart_stm32_isr(const struct device *dev) { struct uart_stm32_data *data = dev->data; #if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API) const struct uart_stm32_config *config = dev->config; #endif #ifdef CONFIG_PM if (LL_USART_IsEnabledIT_TC(config->usart) && LL_USART_IsActiveFlag_TC(config->usart)) { if (data->tx_poll_stream_on) { /* A poll stream transmission just completed, * allow system to suspend */ LL_USART_DisableIT_TC(config->usart); data->tx_poll_stream_on = false; uart_stm32_pm_policy_state_lock_put(dev); } /* Stream transmission was either async or IRQ based, * constraint will be released at the same time TC IT * is disabled */ } #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN if (data->user_cb) { data->user_cb(dev, data->user_data); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API if (LL_USART_IsEnabledIT_IDLE(config->usart) && LL_USART_IsActiveFlag_IDLE(config->usart)) { LL_USART_ClearFlag_IDLE(config->usart); LOG_DBG("idle interrupt occurred"); if (data->dma_rx.timeout == 0) { uart_stm32_dma_rx_flush(dev); } else { /* Start the RX timer not null */ async_timer_start(&data->dma_rx.timeout_work, data->dma_rx.timeout); } } else if (LL_USART_IsEnabledIT_TC(config->usart) && LL_USART_IsActiveFlag_TC(config->usart)) { LL_USART_DisableIT_TC(config->usart); /* Generate TX_DONE event when transmission is done */ async_evt_tx_done(data); #ifdef CONFIG_PM uart_stm32_pm_policy_state_lock_put(dev); #endif } else if (LL_USART_IsEnabledIT_RXNE(config->usart) && LL_USART_IsActiveFlag_RXNE(config->usart)) { #ifdef USART_SR_RXNE /* clear the RXNE flag, because Rx data was not read */ LL_USART_ClearFlag_RXNE(config->usart); #else /* clear the RXNE by flushing the fifo, because Rx data was not read */ LL_USART_RequestRxDataFlush(config->usart); #endif /* USART_SR_RXNE */ } /* Clear errors */ uart_stm32_err_check(dev); #endif /* CONFIG_UART_ASYNC_API */ #if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) \ && defined(USART_CR3_WUFIE) if (LL_USART_IsEnabledIT_WKUP(config->usart) && LL_USART_IsActiveFlag_WKUP(config->usart)) { LL_USART_ClearFlag_WKUP(config->usart); #ifdef USART_ISR_REACK while (LL_USART_IsActiveFlag_REACK(config->usart) == 0) { } #endif } #endif } #endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */ #ifdef CONFIG_UART_ASYNC_API static int uart_stm32_async_callback_set(const struct device *dev, uart_callback_t callback, void *user_data) { struct uart_stm32_data *data = dev->data; data->async_cb = callback; data->async_user_data = user_data; #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) data->user_cb = NULL; data->user_data = NULL; #endif return 0; } static inline void uart_stm32_dma_tx_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; LL_USART_EnableDMAReq_TX(config->usart); } static inline void uart_stm32_dma_tx_disable(const struct device *dev) { #ifdef CONFIG_UART_STM32U5_ERRATA_DMAT ARG_UNUSED(dev); /* * Errata Sheet ES0499 : STM32U575xx and STM32U585xx device errata * USART does not generate DMA requests after setting/clearing DMAT bit * (also seen on stm32H5 serie) */ #else const struct uart_stm32_config *config = dev->config; LL_USART_DisableDMAReq_TX(config->usart); #endif } static inline void uart_stm32_dma_rx_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; LL_USART_EnableDMAReq_RX(config->usart); data->dma_rx.enabled = true; } static inline void uart_stm32_dma_rx_disable(const struct device *dev) { struct uart_stm32_data *data = dev->data; data->dma_rx.enabled = false; } static int uart_stm32_async_rx_disable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; struct uart_event disabled_event = { .type = UART_RX_DISABLED }; if (!data->dma_rx.enabled) { async_user_callback(data, &disabled_event); return -EFAULT; } LL_USART_DisableIT_IDLE(config->usart); uart_stm32_dma_rx_flush(dev); async_evt_rx_buf_release(data); uart_stm32_dma_rx_disable(dev); (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel); if (data->rx_next_buffer) { struct uart_event rx_next_buf_release_evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf.buf = data->rx_next_buffer, }; async_user_callback(data, &rx_next_buf_release_evt); } data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; /* When async rx is disabled, enable interruptible instance of uart to function normally */ LL_USART_EnableIT_RXNE(config->usart); LOG_DBG("rx: disabled"); async_user_callback(data, &disabled_event); return 0; } void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; struct uart_stm32_data *data = uart_dev->data; struct dma_status stat; unsigned int key = irq_lock(); /* Disable TX */ uart_stm32_dma_tx_disable(uart_dev); (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) { data->dma_tx.counter = data->dma_tx.buffer_length - stat.pending_length; } data->dma_tx.buffer_length = 0; irq_unlock(key); } static void uart_stm32_dma_replace_buffer(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; /* Replace the buffer and reload the DMA */ LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len); /* reload DMA */ data->dma_rx.offset = 0; data->dma_rx.counter = 0; data->dma_rx.buffer = data->rx_next_buffer; data->dma_rx.buffer_length = data->rx_next_buffer_len; data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length; data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel, data->dma_rx.blk_cfg.source_address, data->dma_rx.blk_cfg.dest_address, data->dma_rx.blk_cfg.block_size); dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel); LL_USART_ClearFlag_IDLE(config->usart); /* Request next buffer */ async_evt_rx_buf_request(data); } void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; struct uart_stm32_data *data = uart_dev->data; if (status < 0) { async_evt_rx_err(data, status); return; } (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); /* true since this functions occurs when buffer if full */ data->dma_rx.counter = data->dma_rx.buffer_length; async_evt_rx_rdy(data); if (data->rx_next_buffer != NULL) { async_evt_rx_buf_release(data); /* replace the buffer when the current * is full and not the same as the next * one. */ uart_stm32_dma_replace_buffer(uart_dev); } else { /* Buffer full without valid next buffer, * an UART_RX_DISABLED event must be generated, * but uart_stm32_async_rx_disable() cannot be * called in ISR context. So force the RX timeout * to minimum value and let the RX timeout to do the job. */ k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1)); } } static int uart_stm32_async_tx(const struct device *dev, const uint8_t *tx_data, size_t buf_size, int32_t timeout) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; int ret; if (data->dma_tx.dma_dev == NULL) { return -ENODEV; } if (data->dma_tx.buffer_length != 0) { return -EBUSY; } data->dma_tx.buffer = (uint8_t *)tx_data; data->dma_tx.buffer_length = buf_size; data->dma_tx.timeout = timeout; LOG_DBG("tx: l=%d", data->dma_tx.buffer_length); /* Clear TC flag */ LL_USART_ClearFlag_TC(config->usart); /* Enable TC interrupt so we can signal correct TX done */ LL_USART_EnableIT_TC(config->usart); /* set source address */ data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer; data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length; ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &data->dma_tx.dma_cfg); if (ret != 0) { LOG_ERR("dma tx config error!"); return -EINVAL; } if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) { LOG_ERR("UART err: TX DMA start failed!"); return -EFAULT; } /* Start TX timer */ async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout); #ifdef CONFIG_PM /* Do not allow system to suspend until transmission has completed */ uart_stm32_pm_policy_state_lock_get(dev); #endif /* Enable TX DMA requests */ uart_stm32_dma_tx_enable(dev); return 0; } static int uart_stm32_async_rx_enable(const struct device *dev, uint8_t *rx_buf, size_t buf_size, int32_t timeout) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; int ret; if (data->dma_rx.dma_dev == NULL) { return -ENODEV; } if (data->dma_rx.enabled) { LOG_WRN("RX was already enabled"); return -EBUSY; } data->dma_rx.offset = 0; data->dma_rx.buffer = rx_buf; data->dma_rx.buffer_length = buf_size; data->dma_rx.counter = 0; data->dma_rx.timeout = timeout; /* Disable RX interrupts to let DMA to handle it */ LL_USART_DisableIT_RXNE(config->usart); data->dma_rx.blk_cfg.block_size = buf_size; data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &data->dma_rx.dma_cfg); if (ret != 0) { LOG_ERR("UART ERR: RX DMA config failed!"); return -EINVAL; } if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) { LOG_ERR("UART ERR: RX DMA start failed!"); return -EFAULT; } /* Flush RX data buffer */ #ifdef USART_SR_RXNE LL_USART_ClearFlag_RXNE(config->usart); #else LL_USART_RequestRxDataFlush(config->usart); #endif /* USART_SR_RXNE */ /* Enable RX DMA requests */ uart_stm32_dma_rx_enable(dev); /* Enable IRQ IDLE to define the end of a * RX DMA transaction. */ LL_USART_ClearFlag_IDLE(config->usart); LL_USART_EnableIT_IDLE(config->usart); LL_USART_EnableIT_ERROR(config->usart); /* Request next buffer */ async_evt_rx_buf_request(data); LOG_DBG("async rx enabled"); return ret; } static int uart_stm32_async_tx_abort(const struct device *dev) { struct uart_stm32_data *data = dev->data; size_t tx_buffer_length = data->dma_tx.buffer_length; struct dma_status stat; if (tx_buffer_length == 0) { return -EFAULT; } (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) { data->dma_tx.counter = tx_buffer_length - stat.pending_length; } #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma) dma_suspend(data->dma_tx.dma_dev, data->dma_tx.dma_channel); #endif dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel); async_evt_tx_abort(data); return 0; } static void uart_stm32_async_rx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_dma_stream *rx_stream = CONTAINER_OF(dwork, struct uart_dma_stream, timeout_work); struct uart_stm32_data *data = CONTAINER_OF(rx_stream, struct uart_stm32_data, dma_rx); const struct device *dev = data->uart_dev; LOG_DBG("rx timeout"); if (data->dma_rx.counter == data->dma_rx.buffer_length) { uart_stm32_async_rx_disable(dev); } else { uart_stm32_dma_rx_flush(dev); } } static void uart_stm32_async_tx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_dma_stream *tx_stream = CONTAINER_OF(dwork, struct uart_dma_stream, timeout_work); struct uart_stm32_data *data = CONTAINER_OF(tx_stream, struct uart_stm32_data, dma_tx); const struct device *dev = data->uart_dev; uart_stm32_async_tx_abort(dev); LOG_DBG("tx: async timeout"); } static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) { struct uart_stm32_data *data = dev->data; unsigned int key; int err = 0; LOG_DBG("replace buffer (%d)", len); key = irq_lock(); if (data->rx_next_buffer != NULL) { err = -EBUSY; } else if (!data->dma_rx.enabled) { err = -EACCES; } else { data->rx_next_buffer = buf; data->rx_next_buffer_len = len; } irq_unlock(key); return err; } static int uart_stm32_async_init(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; data->uart_dev = dev; if (data->dma_rx.dma_dev != NULL) { if (!device_is_ready(data->dma_rx.dma_dev)) { return -ENODEV; } } if (data->dma_tx.dma_dev != NULL) { if (!device_is_ready(data->dma_tx.dma_dev)) { return -ENODEV; } } /* Disable both TX and RX DMA requests */ uart_stm32_dma_rx_disable(dev); uart_stm32_dma_tx_disable(dev); k_work_init_delayable(&data->dma_rx.timeout_work, uart_stm32_async_rx_timeout); k_work_init_delayable(&data->dma_tx.timeout_work, uart_stm32_async_tx_timeout); /* Configure dma rx config */ memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg)); #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ defined(CONFIG_SOC_SERIES_STM32F2X) || \ defined(CONFIG_SOC_SERIES_STM32F4X) || \ defined(CONFIG_SOC_SERIES_STM32L1X) data->dma_rx.blk_cfg.source_address = LL_USART_DMA_GetRegAddr(config->usart); #else data->dma_rx.blk_cfg.source_address = LL_USART_DMA_GetRegAddr(config->usart, LL_USART_DMA_REG_DATA_RECEIVE); #endif data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */ if (data->dma_rx.src_addr_increment) { data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (data->dma_rx.dst_addr_increment) { data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } /* RX disable circular buffer */ data->dma_rx.blk_cfg.source_reload_en = 0; data->dma_rx.blk_cfg.dest_reload_en = 0; data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; data->dma_rx.dma_cfg.user_data = (void *)dev; data->rx_next_buffer = NULL; data->rx_next_buffer_len = 0; /* Configure dma tx config */ memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg)); #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ defined(CONFIG_SOC_SERIES_STM32F2X) || \ defined(CONFIG_SOC_SERIES_STM32F4X) || \ defined(CONFIG_SOC_SERIES_STM32L1X) data->dma_tx.blk_cfg.dest_address = LL_USART_DMA_GetRegAddr(config->usart); #else data->dma_tx.blk_cfg.dest_address = LL_USART_DMA_GetRegAddr(config->usart, LL_USART_DMA_REG_DATA_TRANSMIT); #endif data->dma_tx.blk_cfg.source_address = 0; /* not ready */ if (data->dma_tx.src_addr_increment) { data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (data->dma_tx.dst_addr_increment) { data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; data->dma_tx.dma_cfg.user_data = (void *)dev; return 0; } #ifdef CONFIG_UART_WIDE_DATA static int uart_stm32_async_tx_u16(const struct device *dev, const uint16_t *tx_data, size_t buf_size, int32_t timeout) { return uart_stm32_async_tx(dev, (const uint8_t *)tx_data, buf_size * 2, timeout); } static int uart_stm32_async_rx_enable_u16(const struct device *dev, uint16_t *buf, size_t len, int32_t timeout) { return uart_stm32_async_rx_enable(dev, (uint8_t *)buf, len * 2, timeout); } static int uart_stm32_async_rx_buf_rsp_u16(const struct device *dev, uint16_t *buf, size_t len) { return uart_stm32_async_rx_buf_rsp(dev, (uint8_t *)buf, len * 2); } #endif #endif /* CONFIG_UART_ASYNC_API */ static const struct uart_driver_api uart_stm32_driver_api = { .poll_in = uart_stm32_poll_in, .poll_out = uart_stm32_poll_out, #ifdef CONFIG_UART_WIDE_DATA .poll_in_u16 = uart_stm32_poll_in_u16, .poll_out_u16 = uart_stm32_poll_out_u16, #endif .err_check = uart_stm32_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_stm32_configure, .config_get = uart_stm32_config_get, #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_stm32_fifo_fill, .fifo_read = uart_stm32_fifo_read, #ifdef CONFIG_UART_WIDE_DATA .fifo_fill_u16 = uart_stm32_fifo_fill_u16, .fifo_read_u16 = uart_stm32_fifo_read_u16, #endif .irq_tx_enable = uart_stm32_irq_tx_enable, .irq_tx_disable = uart_stm32_irq_tx_disable, .irq_tx_ready = uart_stm32_irq_tx_ready, .irq_tx_complete = uart_stm32_irq_tx_complete, .irq_rx_enable = uart_stm32_irq_rx_enable, .irq_rx_disable = uart_stm32_irq_rx_disable, .irq_rx_ready = uart_stm32_irq_rx_ready, .irq_err_enable = uart_stm32_irq_err_enable, .irq_err_disable = uart_stm32_irq_err_disable, .irq_is_pending = uart_stm32_irq_is_pending, .irq_update = uart_stm32_irq_update, .irq_callback_set = uart_stm32_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API .callback_set = uart_stm32_async_callback_set, .tx = uart_stm32_async_tx, .tx_abort = uart_stm32_async_tx_abort, .rx_enable = uart_stm32_async_rx_enable, .rx_disable = uart_stm32_async_rx_disable, .rx_buf_rsp = uart_stm32_async_rx_buf_rsp, #ifdef CONFIG_UART_WIDE_DATA .tx_u16 = uart_stm32_async_tx_u16, .rx_enable_u16 = uart_stm32_async_rx_enable_u16, .rx_buf_rsp_u16 = uart_stm32_async_rx_buf_rsp_u16, #endif #endif /* CONFIG_UART_ASYNC_API */ }; static int uart_stm32_clocks_enable(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; int err; __uart_stm32_get_clock(dev); if (!device_is_ready(data->clock)) { LOG_ERR("clock control device not ready"); return -ENODEV; } /* enable clock */ err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]); if (err != 0) { LOG_ERR("Could not enable (LP)UART clock"); return err; } if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), (clock_control_subsys_t) &config->pclken[1], NULL); if (err != 0) { LOG_ERR("Could not select UART domain clock"); return err; } } return 0; } static int uart_stm32_registers_configure(const struct device *dev) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; LL_USART_Disable(config->usart); if (!device_is_ready(config->reset.dev)) { LOG_ERR("reset controller not ready"); return -ENODEV; } /* Reset UART to default state using RCC */ (void)reset_line_toggle_dt(&config->reset); /* TX/RX direction */ LL_USART_SetTransferDirection(config->usart, LL_USART_DIRECTION_TX_RX); /* Set basic parameters, such as data-/stop-bit, parity, and baudrate */ uart_stm32_parameters_set(dev, uart_cfg); /* Enable the single wire / half-duplex mode */ if (config->single_wire) { LL_USART_EnableHalfDuplex(config->usart); } #ifdef LL_USART_TXRX_SWAPPED if (config->tx_rx_swap) { LL_USART_SetTXRXSwap(config->usart, LL_USART_TXRX_SWAPPED); } #endif #ifdef LL_USART_RXPIN_LEVEL_INVERTED if (config->rx_invert) { LL_USART_SetRXPinLevel(config->usart, LL_USART_RXPIN_LEVEL_INVERTED); } #endif #ifdef LL_USART_TXPIN_LEVEL_INVERTED if (config->tx_invert) { LL_USART_SetTXPinLevel(config->usart, LL_USART_TXPIN_LEVEL_INVERTED); } #endif #if HAS_DRIVER_ENABLE if (config->de_enable) { if (!IS_UART_DRIVER_ENABLE_INSTANCE(config->usart)) { LOG_ERR("%s does not support driver enable", dev->name); return -EINVAL; } uart_stm32_set_driver_enable(dev, true); LL_USART_SetDEAssertionTime(config->usart, config->de_assert_time); LL_USART_SetDEDeassertionTime(config->usart, config->de_deassert_time); if (config->de_invert) { LL_USART_SetDESignalPolarity(config->usart, LL_USART_DE_POLARITY_LOW); } } #endif #ifdef USART_CR1_FIFOEN if (config->fifo_enable) { LL_USART_EnableFIFO(config->usart); } #endif #if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) if (config->wakeup_source) { /* Enable ability to wakeup device in Stop mode * Effect depends on CONFIG_PM_DEVICE status: * CONFIG_PM_DEVICE=n : Always active * CONFIG_PM_DEVICE=y : Controlled by pm_device_wakeup_enable() */ #ifdef USART_CR3_WUFIE LL_USART_SetWKUPType(config->usart, LL_USART_WAKEUP_ON_RXNE); LL_USART_EnableIT_WKUP(config->usart); LL_USART_ClearFlag_WKUP(config->usart); #endif LL_USART_EnableInStopMode(config->usart); if (config->wakeup_line != STM32_EXTI_LINE_NONE) { /* Prepare the WAKEUP with the expected EXTI line */ LL_EXTI_EnableIT_0_31(BIT(config->wakeup_line)); } } #endif /* CONFIG_PM */ LL_USART_Enable(config->usart); #ifdef USART_ISR_TEACK /* Wait until TEACK flag is set */ while (!(LL_USART_IsActiveFlag_TEACK(config->usart))) { } #endif /* !USART_ISR_TEACK */ #ifdef USART_ISR_REACK /* Wait until REACK flag is set */ while (!(LL_USART_IsActiveFlag_REACK(config->usart))) { } #endif /* !USART_ISR_REACK */ return 0; } /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_stm32_init(const struct device *dev) { const struct uart_stm32_config *config = dev->config; int err; err = uart_stm32_clocks_enable(dev); if (err < 0) { return err; } /* Configure dt provided device signals when available */ err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } err = uart_stm32_registers_configure(dev); if (err < 0) { return err; } #if defined(CONFIG_PM) || \ defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ defined(CONFIG_UART_ASYNC_API) config->irq_config_func(dev); #endif /* CONFIG_PM || CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */ #ifdef CONFIG_UART_ASYNC_API return uart_stm32_async_init(dev); #else return 0; #endif } #ifdef CONFIG_PM_DEVICE static void uart_stm32_suspend_setup(const struct device *dev) { const struct uart_stm32_config *config = dev->config; #ifdef USART_ISR_BUSY /* Make sure that no USART transfer is on-going */ while (LL_USART_IsActiveFlag_BUSY(config->usart) == 1) { } #endif while (LL_USART_IsActiveFlag_TC(config->usart) == 0) { } #ifdef USART_ISR_REACK /* Make sure that USART is ready for reception */ while (LL_USART_IsActiveFlag_REACK(config->usart) == 0) { } #endif /* Clear OVERRUN flag */ LL_USART_ClearFlag_ORE(config->usart); } static int uart_stm32_pm_action(const struct device *dev, enum pm_device_action action) { const struct uart_stm32_config *config = dev->config; struct uart_stm32_data *data = dev->data; int err; switch (action) { case PM_DEVICE_ACTION_RESUME: /* Set pins to active state */ err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } /* Enable clock */ err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]); if (err < 0) { LOG_ERR("Could not enable (LP)UART clock"); return err; } if ((IS_ENABLED(CONFIG_PM_S2RAM)) && (!LL_USART_IsEnabled(config->usart))) { /* When exiting low power mode, check whether UART is enabled. * If not, it means we are exiting Suspend to RAM mode (STM32 * Standby), and the driver needs to be reinitialized. */ uart_stm32_init(dev); } break; case PM_DEVICE_ACTION_SUSPEND: uart_stm32_suspend_setup(dev); /* Stop device clock. Note: fixed clocks are not handled yet. */ err = clock_control_off(data->clock, (clock_control_subsys_t)&config->pclken[0]); if (err < 0) { LOG_ERR("Could not enable (LP)UART clock"); return err; } /* Move pins to sleep state */ err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); if ((err < 0) && (err != -ENOENT)) { /* * If returning -ENOENT, no pins where defined for sleep mode : * Do not output on console (might sleep already) when going to sleep, * "(LP)UART pinctrl sleep state not available" * and don't block PM suspend. * Else return the error. */ return err; } break; default: return -ENOTSUP; } return 0; } #endif /* CONFIG_PM_DEVICE */ #ifdef CONFIG_UART_ASYNC_API /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ #define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ .dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ .channel_direction = STM32_DMA_CONFIG_DIRECTION( \ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .source_burst_length = 1, /* SINGLE transfer */ \ .dest_burst_length = 1, \ .block_count = 1, \ .dma_callback = uart_stm32_dma_##dir##_cb, \ }, \ .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ STM32_DMA_FEATURES(index, dir)), \ #endif #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ defined(CONFIG_PM) #define STM32_UART_IRQ_HANDLER_DECL(index) \ static void uart_stm32_irq_config_func_##index(const struct device *dev); #define STM32_UART_IRQ_HANDLER(index) \ static void uart_stm32_irq_config_func_##index(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(index), \ DT_INST_IRQ(index, priority), \ uart_stm32_isr, DEVICE_DT_INST_GET(index), \ 0); \ irq_enable(DT_INST_IRQN(index)); \ } #else #define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */ #define STM32_UART_IRQ_HANDLER(index) /* Not used */ #endif #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ defined(CONFIG_PM) #define STM32_UART_IRQ_HANDLER_FUNC(index) \ .irq_config_func = uart_stm32_irq_config_func_##index, #else #define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ #endif #ifdef CONFIG_UART_ASYNC_API #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \ .dma_##dir = { \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \ (UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \ (NULL)) \ }, #else #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) #endif #ifdef CONFIG_PM #define STM32_UART_PM_WAKEUP(index) \ .wakeup_source = DT_INST_PROP(index, wakeup_source), \ .wakeup_line = COND_CODE_1(DT_INST_NODE_HAS_PROP(index, wakeup_line), \ (DT_INST_PROP(index, wakeup_line)), \ (STM32_EXTI_LINE_NONE)), #else #define STM32_UART_PM_WAKEUP(index) /* Not used */ #endif /* Ensure DTS doesn't present an incompatible parity configuration. * Mark/space parity isn't supported on the STM32 family. * If 9 data bits are configured, ensure that a parity bit isn't set. */ #define STM32_UART_CHECK_DT_PARITY(index) \ BUILD_ASSERT( \ !(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \ == UART_CFG_PARITY_MARK || \ DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \ == UART_CFG_PARITY_SPACE), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported parity configuration"); \ BUILD_ASSERT( \ !(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \ != UART_CFG_PARITY_NONE && \ DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_9), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported parity + data bits combination"); /* Ensure DTS doesn't present an incompatible data bits configuration * The STM32 family doesn't support 5 data bits, or 6 data bits without parity. * Only some series support 7 data bits. */ #ifdef LL_USART_DATAWIDTH_7B #define STM32_UART_CHECK_DT_DATA_BITS(index) \ BUILD_ASSERT( \ !(DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_5 || \ (DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_6 && \ DT_INST_ENUM_IDX_OR(index, parity, \ STM32_UART_DEFAULT_PARITY) \ == UART_CFG_PARITY_NONE)), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported data bits configuration"); #else #define STM32_UART_CHECK_DT_DATA_BITS(index) \ BUILD_ASSERT( \ !(DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_5 || \ DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_6 || \ (DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS) \ == UART_CFG_DATA_BITS_7 && \ DT_INST_ENUM_IDX_OR(index, parity, \ STM32_UART_DEFAULT_PARITY) \ == UART_CFG_PARITY_NONE)), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported data bits configuration"); #endif /* Ensure DTS doesn't present an incompatible stop bits configuration. * Some STM32 series USARTs don't support 0.5 stop bits, and it generally isn't * supported for LPUART. */ #ifndef LL_USART_STOPBITS_0_5 #define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ BUILD_ASSERT( \ !(DT_INST_ENUM_IDX_OR(index, stop_bits, \ STM32_UART_DEFAULT_STOP_BITS) \ == UART_CFG_STOP_BITS_0_5), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported stop bits configuration"); /* LPUARTs don't support 0.5 stop bits configurations */ #else #define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ BUILD_ASSERT( \ !(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \ DT_INST_ENUM_IDX_OR(index, stop_bits, \ STM32_UART_DEFAULT_STOP_BITS) \ == UART_CFG_STOP_BITS_0_5), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported stop bits configuration"); #endif /* Ensure DTS doesn't present an incompatible stop bits configuration. * Some STM32 series USARTs don't support 1.5 stop bits, and it generally isn't * supported for LPUART. */ #ifndef LL_USART_STOPBITS_1_5 #define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \ BUILD_ASSERT( \ DT_INST_ENUM_IDX_OR(index, stop_bits, \ STM32_UART_DEFAULT_STOP_BITS) \ != UART_CFG_STOP_BITS_1_5, \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported stop bits configuration"); /* LPUARTs don't support 1.5 stop bits configurations */ #else #define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \ BUILD_ASSERT( \ !(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \ DT_INST_ENUM_IDX_OR(index, stop_bits, \ STM32_UART_DEFAULT_STOP_BITS) \ == UART_CFG_STOP_BITS_1_5), \ "Node " DT_NODE_PATH(DT_DRV_INST(index)) \ " has unsupported stop bits configuration"); #endif #define STM32_UART_INIT(index) \ STM32_UART_IRQ_HANDLER_DECL(index) \ \ PINCTRL_DT_INST_DEFINE(index); \ \ static const struct stm32_pclken pclken_##index[] = \ STM32_DT_INST_CLOCKS(index);\ \ static struct uart_config uart_cfg_##index = { \ .baudrate = DT_INST_PROP_OR(index, current_speed, \ STM32_UART_DEFAULT_BAUDRATE), \ .parity = DT_INST_ENUM_IDX_OR(index, parity, \ STM32_UART_DEFAULT_PARITY), \ .stop_bits = DT_INST_ENUM_IDX_OR(index, stop_bits, \ STM32_UART_DEFAULT_STOP_BITS), \ .data_bits = DT_INST_ENUM_IDX_OR(index, data_bits, \ STM32_UART_DEFAULT_DATA_BITS), \ .flow_ctrl = DT_INST_PROP(index, hw_flow_control) \ ? UART_CFG_FLOW_CTRL_RTS_CTS \ : UART_CFG_FLOW_CTRL_NONE, \ }; \ \ static const struct uart_stm32_config uart_stm32_cfg_##index = { \ .usart = (USART_TypeDef *)DT_INST_REG_ADDR(index), \ .reset = RESET_DT_SPEC_GET(DT_DRV_INST(index)), \ .pclken = pclken_##index, \ .pclk_len = DT_INST_NUM_CLOCKS(index), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ .single_wire = DT_INST_PROP(index, single_wire), \ .tx_rx_swap = DT_INST_PROP(index, tx_rx_swap), \ .rx_invert = DT_INST_PROP(index, rx_invert), \ .tx_invert = DT_INST_PROP(index, tx_invert), \ .de_enable = DT_INST_PROP(index, de_enable), \ .de_assert_time = DT_INST_PROP(index, de_assert_time), \ .de_deassert_time = DT_INST_PROP(index, de_deassert_time), \ .de_invert = DT_INST_PROP(index, de_invert), \ .fifo_enable = DT_INST_PROP(index, fifo_enable), \ STM32_UART_IRQ_HANDLER_FUNC(index) \ STM32_UART_PM_WAKEUP(index) \ }; \ \ static struct uart_stm32_data uart_stm32_data_##index = { \ .uart_cfg = &uart_cfg_##index, \ UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \ UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \ }; \ \ PM_DEVICE_DT_INST_DEFINE(index, uart_stm32_pm_action); \ \ DEVICE_DT_INST_DEFINE(index, \ &uart_stm32_init, \ PM_DEVICE_DT_INST_GET(index), \ &uart_stm32_data_##index, &uart_stm32_cfg_##index, \ PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ &uart_stm32_driver_api); \ \ STM32_UART_IRQ_HANDLER(index) \ \ STM32_UART_CHECK_DT_PARITY(index) \ STM32_UART_CHECK_DT_DATA_BITS(index) \ STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ STM32_UART_CHECK_DT_STOP_BITS_1_5(index) DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)