/* * Copyright (c) 2023 Prevas A/S * Copyright (c) 2023 Syslinbit * * SPDX-License-Identifier: Apache-2.0 * */ #define DT_DRV_COMPAT st_stm32_rtc #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL); #if defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT) /* subsecond counting is not supported by some STM32L1x MCUs */ #define HW_SUBSECOND_SUPPORT (0) #else #define HW_SUBSECOND_SUPPORT (1) #endif /* RTC start time: 1st, Jan, 2000 */ #define RTC_YEAR_REF 2000 /* struct tm start time: 1st, Jan, 1900 */ #define TM_YEAR_REF 1900 /* Convert part per billion calibration value to a number of clock pulses added or removed each * 2^20 clock cycles so it is suitable for the CALR register fields * * nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125 */ #define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125) /* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles) * to part ber billion calibration value * * ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048 */ #define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048) /* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses * added every 2^20 clock cycles */ #define MAX_CALP (512) #define MAX_CALM (511) #define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP) #define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM) /* Timeout in microseconds used to wait for flags */ #define RTC_TIMEOUT 1000000 struct rtc_stm32_config { uint32_t async_prescaler; uint32_t sync_prescaler; const struct stm32_pclken *pclken; #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) uint32_t cal_out_freq; #endif }; struct rtc_stm32_data { struct k_mutex lock; }; static int rtc_stm32_configure(const struct device *dev) { const struct rtc_stm32_config *cfg = dev->config; int err = 0; uint32_t hour_format = LL_RTC_GetHourFormat(RTC); uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC); uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC); LL_RTC_DisableWriteProtection(RTC); /* configuration process requires to stop the RTC counter so do it * only if needed to avoid inducing time drift at each reset */ if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) || (sync_prescaler != cfg->sync_prescaler) || (async_prescaler != cfg->async_prescaler)) { ErrorStatus status = LL_RTC_EnterInitMode(RTC); if (status == SUCCESS) { LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR); LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler); LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler); } else { err = -EIO; } LL_RTC_DisableInitMode(RTC); } #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) LL_RTC_CAL_SetOutputFreq(RTC, cfg->cal_out_freq); #else LL_RTC_CAL_SetOutputFreq(RTC, LL_RTC_CALIB_OUTPUT_NONE); #endif #ifdef RTC_CR_BYPSHAD LL_RTC_EnableShadowRegBypass(RTC); #endif /* RTC_CR_BYPSHAD */ LL_RTC_EnableWriteProtection(RTC); return err; } static int rtc_stm32_init(const struct device *dev) { const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); const struct rtc_stm32_config *cfg = dev->config; struct rtc_stm32_data *data = dev->data; int err = 0; if (!device_is_ready(clk)) { LOG_ERR("clock control device not ready"); return -ENODEV; } /* Enable RTC bus clock */ if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) { LOG_ERR("clock op failed\n"); return -EIO; } k_mutex_init(&data->lock); /* Enable Backup access */ #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_EnableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ /* Enable RTC clock source */ if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) { LOG_ERR("clock configure failed\n"); return -EIO; } z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); LL_RCC_EnableRTC(); z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); err = rtc_stm32_configure(dev); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_DisableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ return err; } static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr) { struct rtc_stm32_data *data = dev->data; uint32_t real_year = timeptr->tm_year + TM_YEAR_REF; int err = 0; if (real_year < RTC_YEAR_REF) { /* RTC does not support years before 2000 */ return -EINVAL; } if (timeptr->tm_wday == -1) { /* day of the week is expected */ return -EINVAL; } err = k_mutex_lock(&data->lock, K_NO_WAIT); if (err) { return err; } LOG_INF("Setting clock"); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_EnableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ LL_RTC_DisableWriteProtection(RTC); ErrorStatus status = LL_RTC_EnterInitMode(RTC); if (status != SUCCESS) { #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_DisableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ k_mutex_unlock(&data->lock); return -EIO; } LL_RTC_DATE_SetYear(RTC, bin2bcd(real_year - RTC_YEAR_REF)); LL_RTC_DATE_SetMonth(RTC, bin2bcd(timeptr->tm_mon + 1)); LL_RTC_DATE_SetDay(RTC, bin2bcd(timeptr->tm_mday)); if (timeptr->tm_wday == 0) { /* sunday (tm_wday = 0) is not represented by the same value in hardware */ LL_RTC_DATE_SetWeekDay(RTC, LL_RTC_WEEKDAY_SUNDAY); } else { /* all the other values are consistent with what is expected by hardware */ LL_RTC_DATE_SetWeekDay(RTC, timeptr->tm_wday); } LL_RTC_TIME_SetHour(RTC, bin2bcd(timeptr->tm_hour)); LL_RTC_TIME_SetMinute(RTC, bin2bcd(timeptr->tm_min)); LL_RTC_TIME_SetSecond(RTC, bin2bcd(timeptr->tm_sec)); LL_RTC_DisableInitMode(RTC); LL_RTC_EnableWriteProtection(RTC); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_DisableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ k_mutex_unlock(&data->lock); return err; } static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr) { struct rtc_stm32_data *data = dev->data; uint32_t rtc_date, rtc_time; #if HW_SUBSECOND_SUPPORT const struct rtc_stm32_config *cfg = dev->config; uint32_t rtc_subsecond; #endif int err = k_mutex_lock(&data->lock, K_NO_WAIT); if (err) { return err; } if (!LL_RTC_IsActiveFlag_INITS(RTC)) { /* INITS flag is set when the calendar has been initialiazed. This flag is * reset only on backup domain reset, so it can be read after a system * reset to check if the calendar has been initialized. */ k_mutex_unlock(&data->lock); return -ENODATA; } do { /* read date, time and subseconds and relaunch if a day increment occurred * while doing so as it will result in an erroneous result otherwise */ rtc_date = LL_RTC_DATE_Get(RTC); do { /* read time and subseconds and relaunch if a second increment occurred * while doing so as it will result in an erroneous result otherwise */ rtc_time = LL_RTC_TIME_Get(RTC); #if HW_SUBSECOND_SUPPORT rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC); #endif } while (rtc_time != LL_RTC_TIME_Get(RTC)); } while (rtc_date != LL_RTC_DATE_Get(RTC)); k_mutex_unlock(&data->lock); timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + RTC_YEAR_REF - TM_YEAR_REF; /* tm_mon allowed values are 0-11 */ timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1; timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date)); int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date); if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) { /* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */ timeptr->tm_wday = 0; } else { /* all other values are consistent between hardware and rtc_time structure */ timeptr->tm_wday = hw_wday; } timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time)); timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time)); timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time)); #if HW_SUBSECOND_SUPPORT uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L; timeptr->tm_nsec = DIV_ROUND_CLOSEST(temp, cfg->sync_prescaler + 1); #else timeptr->tm_nsec = 0; #endif /* unknown values */ timeptr->tm_yday = -1; timeptr->tm_isdst = -1; return 0; } #ifdef CONFIG_RTC_CALIBRATION #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration) { ARG_UNUSED(dev); /* Note : calibration is considered here to be ppb value to apply * on clock period (not frequency) but with an opposite sign */ if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) { /* out of supported range */ return -EINVAL; } int32_t nb_pulses = PPB_TO_NB_PULSES(calibration); /* we tested calibration against supported range * so theoretically nb_pulses is also within range */ __ASSERT_NO_MSG(nb_pulses <= MAX_CALP); __ASSERT_NO_MSG(nb_pulses >= -MAX_CALM); uint32_t calp, calm; if (nb_pulses > 0) { calp = LL_RTC_CALIB_INSERTPULSE_SET; calm = MAX_CALP - nb_pulses; } else { calp = LL_RTC_CALIB_INSERTPULSE_NONE; calm = -nb_pulses; } /* wait for recalibration to be ok if a previous recalibration occurred */ if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) { return -EIO; } #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_EnableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ LL_RTC_DisableWriteProtection(RTC); MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm); LL_RTC_EnableWriteProtection(RTC); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_DisableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ return 0; } static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration) { ARG_UNUSED(dev); uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR); bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP); uint32_t calm = READ_BIT(calr, RTC_CALR_CALM); int32_t nb_pulses = -((int32_t) calm); if (calp_enabled) { nb_pulses += MAX_CALP; } *calibration = NB_PULSES_TO_PPB(nb_pulses); return 0; } #endif #endif /* CONFIG_RTC_CALIBRATION */ static const struct rtc_driver_api rtc_stm32_driver_api = { .set_time = rtc_stm32_set_time, .get_time = rtc_stm32_get_time, /* RTC_ALARM not supported */ /* RTC_UPDATE not supported */ #ifdef CONFIG_RTC_CALIBRATION #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) .set_calibration = rtc_stm32_set_calibration, .get_calibration = rtc_stm32_get_calibration, #else #error RTC calibration for devices without smooth calibration feature is not supported yet #endif #endif /* CONFIG_RTC_CALIBRATION */ }; static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0); BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree"); static const struct rtc_stm32_config rtc_config = { #if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI /* prescaler values for LSI @ 32 KHz */ .async_prescaler = 0x7F, .sync_prescaler = 0x00F9, #else /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE */ /* prescaler values for LSE @ 32768 Hz */ .async_prescaler = 0x7F, .sync_prescaler = 0x00FF, #endif .pclken = rtc_clk, #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) .cal_out_freq = _CONCAT(_CONCAT(LL_RTC_CALIB_OUTPUT_, DT_INST_PROP(0, calib_out_freq)), HZ), #endif }; static struct rtc_stm32_data rtc_data; DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1, CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api);