/* * Copyright (c) 2023 Antmicro * * SPDX-License-Identifier: Apache-2.0 */ #include "uart_rzt2m.h" #include "zephyr/spinlock.h" #include "zephyr/sys/printk.h" #include #include #include #include #include #include #include #define DT_DRV_COMPAT renesas_rzt2m_uart LOG_MODULE_REGISTER(uart_renesas_rzt2m, CONFIG_UART_LOG_LEVEL); struct rzt2m_device_config { mm_reg_t base; const struct pinctrl_dev_config *pin_config; uart_irq_config_func_t irq_config_func; }; struct rzt2m_device_data { struct uart_config uart_cfg; struct k_spinlock lock; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t callback; void *callback_data; #endif }; static int rzt2m_poll_in(const struct device *dev, unsigned char *c) { if (!dev || !dev->config || !dev->data) { return -ENODEV; } const struct rzt2m_device_config *config = dev->config; struct rzt2m_device_data *data = dev->data; k_spinlock_key_t key = k_spin_lock(&data->lock); if (FRSR_R(*FRSR(config->base)) == 0) { k_spin_unlock(&data->lock, key); return -1; } *c = *RDR(config->base) & RDR_MASK_RDAT; *CFCLR(config->base) |= CFCLR_MASK_RDRFC; if (FRSR_R(*FRSR(config->base)) == 0) { *FFCLR(config->base) |= FFCLR_MASK_DRC; } k_spin_unlock(&data->lock, key); return 0; } static void rzt2m_poll_out(const struct device *dev, unsigned char c) { if (!dev || !dev->config || !dev->data) { return; } const struct rzt2m_device_config *config = dev->config; struct rzt2m_device_data *data = dev->data; k_spinlock_key_t key = k_spin_lock(&data->lock); int fifo_count = FTSR_T(*FTSR(config->base)); while (fifo_count == MAX_FIFO_DEPTH) { fifo_count = FTSR_T(*FTSR(config->base)); } *TDR(config->base) = c; /* Clear `Transmit data empty flag`. */ *CFCLR(config->base) |= CFCLR_MASK_TDREC; k_spin_unlock(&data->lock, key); } static int rzt2m_err_check(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; uint32_t status = *CSR(config->base); uint32_t retval = 0; if (status & CSR_MASK_ORER) { retval |= UART_ERROR_OVERRUN; } if (status & CSR_MASK_FER) { retval |= UART_ERROR_FRAMING; } if (status & CSR_MASK_PER) { retval |= UART_ERROR_PARITY; } return retval; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_rzt2m_irq_tx_ready(const struct device *dev); static int rzt2m_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { struct rzt2m_device_data *data = dev->data; const struct rzt2m_device_config *config = dev->config; int num_tx = 0; k_spinlock_key_t key = k_spin_lock(&data->lock); while ((size - num_tx > 0) && uart_rzt2m_irq_tx_ready(dev)) { *TDR(config->base) = (uint8_t)tx_data[num_tx++]; } k_spin_unlock(&data->lock, key); return num_tx; } static int rzt2m_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { struct rzt2m_device_data *data = dev->data; const struct rzt2m_device_config *config = dev->config; int num_rx = 0; k_spinlock_key_t key = k_spin_lock(&data->lock); while (num_rx < size && (FRSR_R(*FRSR(config->base)))) { rx_data[num_rx++] = *RDR(config->base); } *CFCLR(config->base) = CFCLR_MASK_RDRFC; *FFCLR(config->base) = FFCLR_MASK_DRC; k_spin_unlock(&data->lock, key); return num_rx; } static void uart_rzt2m_irq_rx_enable(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; *CCR0(config->base) |= CCR0_MASK_RIE | CCR0_MASK_RE; } static void uart_rzt2m_irq_rx_disable(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; *CCR0(config->base) &= ~CCR0_MASK_RIE; } static void uart_rzt2m_irq_tx_enable(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; /* These bits must be set simultaneously. */ *CCR0(config->base) |= CCR0_MASK_TE | CCR0_MASK_TIE | CCR0_MASK_TEIE; } static void uart_rzt2m_irq_tx_disable(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; *CCR0(config->base) &= ~(CCR0_MASK_TIE | CCR0_MASK_TEIE); } static int uart_rzt2m_irq_tx_ready(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; if (FTSR_T(*FTSR(config->base)) == MAX_FIFO_DEPTH || ((*CCR0(config->base) & CCR0_MASK_TIE) == 0)) { return 0; } return 1; } static int uart_rzt2m_irq_rx_ready(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; if (FRSR_R(*FRSR(config->base))) { return 1; } return 0; } static int uart_rzt2m_irq_is_pending(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; if ((*CSR(config->base) & (CSR_MASK_RDRF)) || (*FRSR(config->base) & FRSR_MASK_DR)) { return 1; } return 0; } static void uart_rzt2m_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct rzt2m_device_data *data = dev->data; data->callback = cb; data->callback_data = cb_data; } static int uart_rzt2m_irq_update(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; *CFCLR(config->base) = CFCLR_MASK_RDRFC; *FFCLR(config->base) = FFCLR_MASK_DRC; return 1; } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_driver_api rzt2m_uart_api = { .poll_in = rzt2m_poll_in, .poll_out = rzt2m_poll_out, .err_check = rzt2m_err_check, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = rzt2m_fifo_fill, .fifo_read = rzt2m_fifo_read, .irq_rx_enable = uart_rzt2m_irq_rx_enable, .irq_rx_disable = uart_rzt2m_irq_rx_disable, .irq_tx_enable = uart_rzt2m_irq_tx_enable, .irq_tx_disable = uart_rzt2m_irq_tx_disable, .irq_tx_ready = uart_rzt2m_irq_tx_ready, .irq_rx_ready = uart_rzt2m_irq_rx_ready, .irq_is_pending = uart_rzt2m_irq_is_pending, .irq_callback_set = uart_rzt2m_irq_callback_set, .irq_update = uart_rzt2m_irq_update, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; static int rzt2m_module_start(const struct device *dev) { if (!dev || !dev->config || !dev->data) { return -ENODEV; } const struct rzt2m_device_config *config = dev->config; struct rzt2m_device_data *data = dev->data; int interface_id = BASE_TO_IFACE_ID(config->base); unsigned int irqkey = irq_lock(); volatile uint32_t dummy; k_spinlock_key_t key = k_spin_lock(&data->lock); if (interface_id < 5) { /* Dummy-read at least one time as stated in 8.3.1 of the User's Manual: Hardware */ *MSTPCRA &= ~(MSTPCRA_MASK_SCIx(interface_id)); dummy = *MSTPCRA; } else { LOG_ERR("SCI modules in the secure domain on RZT2M are not supported."); return -ENOTSUP; } /* Dummy-read at least five times as stated in 8.3.1 of the User's Manual: Hardware */ dummy = *RDR(config->base); dummy = *RDR(config->base); dummy = *RDR(config->base); dummy = *RDR(config->base); dummy = *RDR(config->base); k_spin_unlock(&data->lock, key); irq_unlock(irqkey); return 0; } static int rzt2m_uart_init(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; struct rzt2m_device_data *data = dev->data; uint32_t baud_setting = 0; uint32_t baud_settings[] = {CCR2_BAUD_SETTING_9600, CCR2_BAUD_SETTING_115200}; rzt2m_unlock_prcrs(PRCRS_GPIO); rzt2m_unlock_prcrn(PRCRN_PRC1 | PRCRN_PRC2); /* The module needs to be started * to allow any operation on the registers of Serial Communications Interface. */ int ret = rzt2m_module_start(dev); if (ret) { return ret; } /* Disable transmitter, receiver, interrupts. */ *CCR0(config->base) = CCR0_DEFAULT_VALUE; while (*CCR0(config->base) & (CCR0_MASK_RE | CCR0_MASK_TE)) { } *CCR1(config->base) = CCR1_DEFAULT_VALUE; *CCR2(config->base) = CCR2_DEFAULT_VALUE; *CCR3(config->base) = CCR3_DEFAULT_VALUE; *CCR4(config->base) = CCR4_DEFAULT_VALUE; /* Configure pinmuxes */ ret = pinctrl_apply_state(config->pin_config, PINCTRL_STATE_DEFAULT); if (ret) { return ret; } *CFCLR(config->base) = CFCLR_ALL_FLAG_CLEAR; *FFCLR(config->base) = FFCLR_MASK_DRC; /* Use FIFO mode. */ *CCR3(config->base) |= (CCR3_MASK_FM); switch (data->uart_cfg.stop_bits) { case UART_CFG_STOP_BITS_1: /* Default value, already set. */ break; case UART_CFG_STOP_BITS_2: *CCR3(config->base) |= CCR3_MASK_STP; break; default: LOG_ERR("Selected bit stop length is not supported: %u.", data->uart_cfg.stop_bits); return -ENOTSUP; } switch (data->uart_cfg.data_bits) { case UART_CFG_DATA_BITS_7: *CCR3(config->base) |= CCR3_CHR_7BIT; break; case UART_CFG_DATA_BITS_8: *CCR3(config->base) |= CCR3_CHR_8BIT; break; default: LOG_ERR("Selected number of data bits is not supported: %u.", data->uart_cfg.data_bits); return -ENOTSUP; } if (data->uart_cfg.baudrate > ARRAY_SIZE(baud_settings)) { LOG_ERR("Selected baudrate variant is not supported: %u.", data->uart_cfg.baudrate); return -ENOTSUP; } baud_setting = baud_settings[data->uart_cfg.baudrate]; *CCR2(config->base) &= ~(CCR2_MASK_BAUD_SETTING); *CCR2(config->base) |= (baud_setting & CCR2_MASK_BAUD_SETTING); *CCR1(config->base) |= (CCR1_MASK_NFEN | CCR1_MASK_SPB2DT | CCR1_MASK_SPB2IO); switch (data->uart_cfg.parity) { case UART_CFG_PARITY_NONE: /* Default value, already set. */ break; case UART_CFG_PARITY_EVEN: *CCR1(config->base) |= CCR1_MASK_PE; break; case UART_CFG_PARITY_ODD: *CCR1(config->base) |= (CCR1_MASK_PE | CCR1_MASK_PM); break; default: LOG_ERR("Unsupported parity: %u", data->uart_cfg.parity); } /* Specify trigger thresholds and clear FIFOs. */ *FCR(config->base) = FCR_MASK_TFRST | FCR_MASK_RFRST | FCR_TTRG_15 | FCR_RTRG_15; /* Enable the clock. */ *CCR3(config->base) &= ~CCR3_MASK_CKE; *CCR3(config->base) |= CCR3_CKE_ENABLE; /* Clear status flags. */ *CFCLR(config->base) = CFCLR_ALL_FLAG_CLEAR; *FFCLR(config->base) = FFCLR_MASK_DRC; #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->irq_config_func(dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ /* Start transmitter and receiver. */ *CCR0(config->base) |= (CCR0_MASK_TE | CCR0_MASK_RE); while (!(*CCR0(config->base) & CCR0_MASK_RE)) { } while (!(*CCR0(config->base) & CCR0_MASK_TE)) { } rzt2m_lock_prcrs(PRCRS_GPIO); rzt2m_lock_prcrn(PRCRN_PRC1 | PRCRN_PRC2); return 0; } static void uart_rzt2m_isr(const struct device *dev) { const struct rzt2m_device_config *config = dev->config; #ifdef CONFIG_UART_INTERRUPT_DRIVEN struct rzt2m_device_data *data = dev->data; if (data->callback) { data->callback(dev, data->callback_data); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ *CFCLR(config->base) = CFCLR_MASK_RDRFC; *FFCLR(config->base) = FFCLR_MASK_DRC; } #define UART_RZT2M_IRQ_CONNECT(n, irq_name) \ do { \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, irq_name, irq), \ DT_INST_IRQ_BY_NAME(n, irq_name, priority), uart_rzt2m_isr, \ DEVICE_DT_INST_GET(n), DT_INST_IRQ_BY_NAME(n, irq_name, flags)); \ irq_enable(DT_INST_IRQ_BY_NAME(n, irq_name, irq)); \ } while (false) #define UART_RZT2M_CONFIG_FUNC(n) \ static void uart##n##_rzt2m_irq_config(const struct device *port) \ { \ UART_RZT2M_IRQ_CONNECT(n, rx_err); \ UART_RZT2M_IRQ_CONNECT(n, rx); \ UART_RZT2M_IRQ_CONNECT(n, tx); \ UART_RZT2M_IRQ_CONNECT(n, tx_end); \ } #define UART_RZT2M_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ static struct rzt2m_device_data rzt2m_uart_##n##data = { \ .uart_cfg = \ { \ .baudrate = DT_INST_ENUM_IDX(n, current_speed), \ .parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \ .stop_bits = \ DT_INST_ENUM_IDX_OR(n, stop_bits, UART_CFG_STOP_BITS_1), \ .data_bits = \ DT_INST_ENUM_IDX_OR(n, data_bits, UART_CFG_DATA_BITS_8), \ }, \ }; \ UART_RZT2M_CONFIG_FUNC(n); \ static const struct rzt2m_device_config rzt2m_uart_##n##_config = { \ .base = DT_INST_REG_ADDR(n), \ .irq_config_func = uart##n##_rzt2m_irq_config, \ .pin_config = PINCTRL_DT_INST_DEV_CONFIG_GET(n)}; \ DEVICE_DT_INST_DEFINE(n, &rzt2m_uart_init, NULL, &rzt2m_uart_##n##data, \ &rzt2m_uart_##n##_config, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ &rzt2m_uart_api); DT_INST_FOREACH_STATUS_OKAY(UART_RZT2M_INIT)