zephyr/drivers/can/can_shell.c
Henrik Brix Andersen 8eded2f76b drivers: can: add can_get_bitrate_{min,max}(), deprecate existing APIs
Since the minimum/maximum supported bitrates are now stored in the common
CAN controller driver configuration struct, retrieving these can no longer
fail.

Add new CAN controller API functions can_get_bitrate_min() and
can_get_bitrate_max() reflecting this and deprecate the existing
can_get_min_bitrate() and can_get_max_bitrate().

Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-04-11 17:08:35 -04:00

1064 lines
28 KiB
C

/*
* Copyright (c) 2022 Vestas Wind Systems A/S
* Copyright (c) 2019 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <stdio.h>
#include <zephyr/device.h>
#include <zephyr/drivers/can.h>
#include <zephyr/logging/log.h>
#include <zephyr/shell/shell.h>
LOG_MODULE_REGISTER(can_shell, CONFIG_CAN_LOG_LEVEL);
struct can_shell_tx_event {
unsigned int frame_no;
int error;
};
struct can_shell_mode_mapping {
const char *name;
can_mode_t mode;
};
#define CAN_SHELL_MODE_MAPPING(_name, _mode) { .name = _name, .mode = _mode }
static const struct can_shell_mode_mapping can_shell_mode_map[] = {
/* zephyr-keep-sorted-start */
CAN_SHELL_MODE_MAPPING("fd", CAN_MODE_FD),
CAN_SHELL_MODE_MAPPING("listen-only", CAN_MODE_LISTENONLY),
CAN_SHELL_MODE_MAPPING("loopback", CAN_MODE_LOOPBACK),
CAN_SHELL_MODE_MAPPING("manual-recovery", CAN_MODE_MANUAL_RECOVERY),
CAN_SHELL_MODE_MAPPING("normal", CAN_MODE_NORMAL),
CAN_SHELL_MODE_MAPPING("one-shot", CAN_MODE_ONE_SHOT),
CAN_SHELL_MODE_MAPPING("triple-sampling", CAN_MODE_3_SAMPLES),
/* zephyr-keep-sorted-stop */
};
K_MSGQ_DEFINE(can_shell_tx_msgq, sizeof(struct can_shell_tx_event),
CONFIG_CAN_SHELL_TX_QUEUE_SIZE, 4);
const struct shell *can_shell_tx_msgq_sh;
static struct k_work_poll can_shell_tx_msgq_work;
static struct k_poll_event can_shell_tx_msgq_events[] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_MSGQ_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&can_shell_tx_msgq, 0)
};
CAN_MSGQ_DEFINE(can_shell_rx_msgq, CONFIG_CAN_SHELL_RX_QUEUE_SIZE);
const struct shell *can_shell_rx_msgq_sh;
static struct k_work_poll can_shell_rx_msgq_work;
static struct k_poll_event can_shell_rx_msgq_events[] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_MSGQ_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&can_shell_rx_msgq, 0)
};
/* Forward declarations */
static void can_shell_tx_msgq_triggered_work_handler(struct k_work *work);
static void can_shell_rx_msgq_triggered_work_handler(struct k_work *work);
static void can_shell_print_frame(const struct shell *sh, const struct can_frame *frame)
{
uint8_t nbytes = can_dlc_to_bytes(frame->dlc);
int i;
#ifdef CONFIG_CAN_RX_TIMESTAMP
/* Timestamp */
shell_fprintf(sh, SHELL_NORMAL, "(%05d) ", frame->timestamp);
#endif /* CONFIG_CAN_RX_TIMESTAMP */
#ifdef CONFIG_CAN_FD_MODE
/* Flags */
shell_fprintf(sh, SHELL_NORMAL, "%c%c ",
(frame->flags & CAN_FRAME_BRS) == 0 ? '-' : 'B',
(frame->flags & CAN_FRAME_ESI) == 0 ? '-' : 'P');
#endif /* CONFIG_CAN_FD_MODE */
/* CAN ID */
shell_fprintf(sh, SHELL_NORMAL, "%*s%0*x ",
(frame->flags & CAN_FRAME_IDE) != 0 ? 0 : 5, "",
(frame->flags & CAN_FRAME_IDE) != 0 ? 8 : 3,
(frame->flags & CAN_FRAME_IDE) != 0 ?
frame->id & CAN_EXT_ID_MASK : frame->id & CAN_STD_ID_MASK);
/* DLC as number of bytes */
shell_fprintf(sh, SHELL_NORMAL, "%s[%0*d] ",
(frame->flags & CAN_FRAME_FDF) != 0 ? "" : " ",
(frame->flags & CAN_FRAME_FDF) != 0 ? 2 : 1,
nbytes);
/* Data payload */
if ((frame->flags & CAN_FRAME_RTR) != 0) {
shell_fprintf(sh, SHELL_NORMAL, "remote transmission request");
} else {
for (i = 0; i < nbytes; i++) {
shell_fprintf(sh, SHELL_NORMAL, "%02x ", frame->data[i]);
}
}
shell_fprintf(sh, SHELL_NORMAL, "\n");
}
static int can_shell_tx_msgq_poll_submit(const struct shell *sh)
{
int err;
if (can_shell_tx_msgq_sh == NULL) {
can_shell_tx_msgq_sh = sh;
k_work_poll_init(&can_shell_tx_msgq_work, can_shell_tx_msgq_triggered_work_handler);
}
err = k_work_poll_submit(&can_shell_tx_msgq_work, can_shell_tx_msgq_events,
ARRAY_SIZE(can_shell_tx_msgq_events), K_FOREVER);
if (err != 0) {
shell_error(can_shell_tx_msgq_sh, "failed to submit tx msgq polling (err %d)",
err);
}
return err;
}
static void can_shell_tx_msgq_triggered_work_handler(struct k_work *work)
{
struct can_shell_tx_event event;
while (k_msgq_get(&can_shell_tx_msgq, &event, K_NO_WAIT) == 0) {
if (event.error == 0) {
shell_print(can_shell_tx_msgq_sh, "CAN frame #%u successfully sent",
event.frame_no);
} else {
shell_error(can_shell_tx_msgq_sh, "failed to send CAN frame #%u (err %d)",
event.frame_no, event.error);
}
}
(void)can_shell_tx_msgq_poll_submit(can_shell_tx_msgq_sh);
}
static void can_shell_tx_callback(const struct device *dev, int error, void *user_data)
{
struct can_shell_tx_event event;
int err;
ARG_UNUSED(dev);
event.frame_no = POINTER_TO_UINT(user_data);
event.error = error;
err = k_msgq_put(&can_shell_tx_msgq, &event, K_NO_WAIT);
if (err != 0) {
LOG_ERR("CAN shell tx event queue full");
}
}
static int can_shell_rx_msgq_poll_submit(const struct shell *sh)
{
int err;
if (can_shell_rx_msgq_sh == NULL) {
can_shell_rx_msgq_sh = sh;
k_work_poll_init(&can_shell_rx_msgq_work, can_shell_rx_msgq_triggered_work_handler);
}
err = k_work_poll_submit(&can_shell_rx_msgq_work, can_shell_rx_msgq_events,
ARRAY_SIZE(can_shell_rx_msgq_events), K_FOREVER);
if (err != 0) {
shell_error(can_shell_rx_msgq_sh, "failed to submit rx msgq polling (err %d)",
err);
}
return err;
}
static void can_shell_rx_msgq_triggered_work_handler(struct k_work *work)
{
struct can_frame frame;
while (k_msgq_get(&can_shell_rx_msgq, &frame, K_NO_WAIT) == 0) {
can_shell_print_frame(can_shell_rx_msgq_sh, &frame);
}
(void)can_shell_rx_msgq_poll_submit(can_shell_rx_msgq_sh);
}
static const char *can_shell_state_to_string(enum can_state state)
{
switch (state) {
case CAN_STATE_ERROR_ACTIVE:
return "error-active";
case CAN_STATE_ERROR_WARNING:
return "error-warning";
case CAN_STATE_ERROR_PASSIVE:
return "error-passive";
case CAN_STATE_BUS_OFF:
return "bus-off";
case CAN_STATE_STOPPED:
return "stopped";
default:
return "unknown";
}
}
static void can_shell_print_extended_modes(const struct shell *sh, can_mode_t cap)
{
int bit;
int i;
for (bit = 0; bit < sizeof(cap) * 8; bit++) {
/* Skip unset bits */
if ((cap & BIT(bit)) == 0) {
continue;
}
/* Lookup symbolic mode name */
for (i = 0; i < ARRAY_SIZE(can_shell_mode_map); i++) {
if (BIT(bit) == can_shell_mode_map[i].mode) {
shell_fprintf(sh, SHELL_NORMAL, "%s ", can_shell_mode_map[i].name);
break;
}
}
if (i == ARRAY_SIZE(can_shell_mode_map)) {
/* Symbolic name not found, use raw mode */
shell_fprintf(sh, SHELL_NORMAL, "0x%08x ", (can_mode_t)BIT(bit));
}
}
}
static int cmd_can_start(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
shell_print(sh, "starting %s", argv[1]);
err = can_start(dev);
if (err != 0) {
shell_error(sh, "failed to start CAN controller (err %d)", err);
return err;
}
return 0;
}
static int cmd_can_stop(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
shell_print(sh, "stopping %s", argv[1]);
err = can_stop(dev);
if (err != 0) {
shell_error(sh, "failed to stop CAN controller (err %d)", err);
return err;
}
return 0;
}
static int cmd_can_show(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
const struct device *phy;
const struct can_timing *timing_min;
const struct can_timing *timing_max;
struct can_bus_err_cnt err_cnt;
enum can_state state;
uint32_t bitrate_max;
int max_std_filters;
int max_ext_filters;
uint32_t core_clock;
can_mode_t cap;
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
err = can_get_core_clock(dev, &core_clock);
if (err != 0) {
shell_error(sh, "failed to get CAN core clock (err %d)", err);
return err;
}
bitrate_max = can_get_bitrate_max(dev);
max_std_filters = can_get_max_filters(dev, false);
if (max_std_filters < 0 && max_std_filters != -ENOSYS) {
shell_error(sh, "failed to get maximum standard (11-bit) filters (err %d)", err);
return err;
}
max_ext_filters = can_get_max_filters(dev, true);
if (max_ext_filters < 0 && max_ext_filters != -ENOSYS) {
shell_error(sh, "failed to get maximum extended (29-bit) filters (err %d)", err);
return err;
}
err = can_get_capabilities(dev, &cap);
if (err != 0) {
shell_error(sh, "failed to get CAN controller capabilities (err %d)", err);
return err;
}
err = can_get_state(dev, &state, &err_cnt);
if (err != 0) {
shell_error(sh, "failed to get CAN controller state (%d)", err);
return err;
}
shell_print(sh, "core clock: %d Hz", core_clock);
shell_print(sh, "max bitrate: %d bps", bitrate_max);
shell_print(sh, "max std filters: %d", max_std_filters);
shell_print(sh, "max ext filters: %d", max_ext_filters);
shell_fprintf(sh, SHELL_NORMAL, "capabilities: normal ");
can_shell_print_extended_modes(sh, cap);
shell_fprintf(sh, SHELL_NORMAL, "\n");
shell_fprintf(sh, SHELL_NORMAL, "mode: normal ");
can_shell_print_extended_modes(sh, can_get_mode(dev));
shell_fprintf(sh, SHELL_NORMAL, "\n");
shell_print(sh, "state: %s", can_shell_state_to_string(state));
shell_print(sh, "rx errors: %d", err_cnt.rx_err_cnt);
shell_print(sh, "tx errors: %d", err_cnt.tx_err_cnt);
timing_min = can_get_timing_min(dev);
timing_max = can_get_timing_max(dev);
shell_print(sh, "timing: sjw %u..%u, prop_seg %u..%u, "
"phase_seg1 %u..%u, phase_seg2 %u..%u, prescaler %u..%u",
timing_min->sjw, timing_max->sjw,
timing_min->prop_seg, timing_max->prop_seg,
timing_min->phase_seg1, timing_max->phase_seg1,
timing_min->phase_seg2, timing_max->phase_seg2,
timing_min->prescaler, timing_max->prescaler);
if (IS_ENABLED(CONFIG_CAN_FD_MODE) && (cap & CAN_MODE_FD) != 0) {
timing_min = can_get_timing_data_min(dev);
timing_max = can_get_timing_data_max(dev);
shell_print(sh, "timing data: sjw %u..%u, prop_seg %u..%u, "
"phase_seg1 %u..%u, phase_seg2 %u..%u, prescaler %u..%u",
timing_min->sjw, timing_max->sjw,
timing_min->prop_seg, timing_max->prop_seg,
timing_min->phase_seg1, timing_max->phase_seg1,
timing_min->phase_seg2, timing_max->phase_seg2,
timing_min->prescaler, timing_max->prescaler);
}
phy = can_get_transceiver(dev);
shell_print(sh, "transceiver: %s", phy != NULL ? phy->name : "passive/none");
#ifdef CONFIG_CAN_STATS
shell_print(sh, "statistics:");
shell_print(sh, " bit errors: %u", can_stats_get_bit_errors(dev));
shell_print(sh, " bit0 errors: %u", can_stats_get_bit0_errors(dev));
shell_print(sh, " bit1 errors: %u", can_stats_get_bit1_errors(dev));
shell_print(sh, " stuff errors: %u", can_stats_get_stuff_errors(dev));
shell_print(sh, " crc errors: %u", can_stats_get_crc_errors(dev));
shell_print(sh, " form errors: %u", can_stats_get_form_errors(dev));
shell_print(sh, " ack errors: %u", can_stats_get_ack_errors(dev));
shell_print(sh, " rx overruns: %u", can_stats_get_rx_overruns(dev));
#endif /* CONFIG_CAN_STATS */
return 0;
}
static int cmd_can_bitrate_set(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
struct can_timing timing = { 0 };
uint16_t sample_pnt;
uint32_t bitrate;
char *endptr;
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
bitrate = (uint32_t)strtoul(argv[2], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse bitrate");
return -EINVAL;
}
if (argc >= 4) {
sample_pnt = (uint32_t)strtoul(argv[3], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse sample point");
return -EINVAL;
}
err = can_calc_timing(dev, &timing, bitrate, sample_pnt);
if (err < 0) {
shell_error(sh, "failed to calculate timing for "
"bitrate %d bps, sample point %d.%d%% (err %d)",
bitrate, sample_pnt / 10, sample_pnt % 10, err);
return err;
}
if (argc >= 5) {
/* Overwrite calculated default SJW with user-provided value */
timing.sjw = (uint16_t)strtoul(argv[4], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse SJW");
return -EINVAL;
}
}
shell_print(sh, "setting bitrate to %d bps, sample point %d.%d%% "
"(+/- %d.%d%%), sjw %d",
bitrate, sample_pnt / 10, sample_pnt % 10, err / 10, err % 10,
timing.sjw);
LOG_DBG("sjw %u, prop_seg %u, phase_seg1 %u, phase_seg2 %u, prescaler %u",
timing.sjw, timing.prop_seg, timing.phase_seg1, timing.phase_seg2,
timing.prescaler);
err = can_set_timing(dev, &timing);
if (err != 0) {
shell_error(sh, "failed to set timing (err %d)", err);
return err;
}
} else {
shell_print(sh, "setting bitrate to %d bps", bitrate);
err = can_set_bitrate(dev, bitrate);
if (err != 0) {
shell_error(sh, "failed to set bitrate (err %d)", err);
return err;
}
}
return 0;
}
static int cmd_can_dbitrate_set(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
struct can_timing timing = { 0 };
uint16_t sample_pnt;
uint32_t bitrate;
char *endptr;
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
bitrate = (uint32_t)strtoul(argv[2], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse data bitrate");
return -EINVAL;
}
if (argc >= 4) {
sample_pnt = (uint32_t)strtoul(argv[3], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse sample point");
return -EINVAL;
}
err = can_calc_timing_data(dev, &timing, bitrate, sample_pnt);
if (err < 0) {
shell_error(sh, "failed to calculate timing for "
"data bitrate %d bps, sample point %d.%d%% (err %d)",
bitrate, sample_pnt / 10, sample_pnt % 10, err);
return err;
}
if (argc >= 5) {
/* Overwrite calculated default SJW with user-provided value */
timing.sjw = (uint16_t)strtoul(argv[4], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse SJW");
return -EINVAL;
}
}
shell_print(sh, "setting data bitrate to %d bps, sample point %d.%d%% "
"(+/- %d.%d%%), sjw %d",
bitrate, sample_pnt / 10, sample_pnt % 10, err / 10, err % 10,
timing.sjw);
LOG_DBG("sjw %u, prop_seg %u, phase_seg1 %u, phase_seg2 %u, prescaler %u",
timing.sjw, timing.prop_seg, timing.phase_seg1, timing.phase_seg2,
timing.prescaler);
err = can_set_timing_data(dev, &timing);
if (err != 0) {
shell_error(sh, "failed to set data timing (err %d)", err);
return err;
}
} else {
shell_print(sh, "setting data bitrate to %d bps", bitrate);
err = can_set_bitrate_data(dev, bitrate);
if (err != 0) {
shell_error(sh, "failed to set data bitrate (err %d)", err);
return err;
}
}
return 0;
}
static int can_shell_parse_timing(const struct shell *sh, size_t argc, char **argv,
struct can_timing *timing)
{
char *endptr;
timing->sjw = (uint32_t)strtoul(argv[2], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse sjw");
return -EINVAL;
}
timing->prop_seg = (uint32_t)strtoul(argv[3], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse prop_seg");
return -EINVAL;
}
timing->phase_seg1 = (uint32_t)strtoul(argv[4], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse phase_seg1");
return -EINVAL;
}
timing->phase_seg2 = (uint32_t)strtoul(argv[5], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse phase_seg2");
return -EINVAL;
}
timing->prescaler = (uint32_t)strtoul(argv[6], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse prescaler");
return -EINVAL;
}
return 0;
}
static int cmd_can_timing_set(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
struct can_timing timing = { 0 };
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
err = can_shell_parse_timing(sh, argc, argv, &timing);
if (err < 0) {
return err;
}
shell_print(sh, "setting timing to sjw %u, prop_seg %u, phase_seg1 %u, phase_seg2 %u, "
"prescaler %u", timing.sjw, timing.prop_seg, timing.phase_seg1,
timing.phase_seg2, timing.prescaler);
err = can_set_timing(dev, &timing);
if (err != 0) {
shell_error(sh, "failed to set timing (err %d)", err);
return err;
}
return 0;
}
static int cmd_can_dtiming_set(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
struct can_timing timing = { 0 };
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
err = can_shell_parse_timing(sh, argc, argv, &timing);
if (err < 0) {
return err;
}
shell_print(sh, "setting data phase timing to sjw %u, prop_seg %u, phase_seg1 %u, "
"phase_seg2 %u, prescaler %u", timing.sjw, timing.prop_seg, timing.phase_seg1,
timing.phase_seg2, timing.prescaler);
err = can_set_timing_data(dev, &timing);
if (err != 0) {
shell_error(sh, "failed to set data phase timing (err %d)", err);
return err;
}
return 0;
}
static int cmd_can_mode_set(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
can_mode_t mode = CAN_MODE_NORMAL;
can_mode_t raw;
char *endptr;
int err;
int i;
int j;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
for (i = 2; i < argc; i++) {
/* Lookup symbolic mode name */
for (j = 0; j < ARRAY_SIZE(can_shell_mode_map); j++) {
if (strcmp(argv[i], can_shell_mode_map[j].name) == 0) {
mode |= can_shell_mode_map[j].mode;
break;
}
}
if (j == ARRAY_SIZE(can_shell_mode_map)) {
/* Symbolic name not found, use raw mode if hex number */
raw = (can_mode_t)strtoul(argv[i], &endptr, 16);
if (*endptr == '\0') {
mode |= raw;
continue;
}
shell_error(sh, "failed to parse mode");
return -EINVAL;
}
}
shell_print(sh, "setting mode 0x%08x", mode);
err = can_set_mode(dev, mode);
if (err != 0) {
shell_error(sh, "failed to set mode 0x%08x (err %d)", mode, err);
return err;
}
return 0;
}
static int cmd_can_send(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
static unsigned int frame_counter;
unsigned int frame_no;
struct can_frame frame;
uint32_t id_mask;
int argidx = 2;
uint32_t val;
char *endptr;
int nbytes;
int err;
int i;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
/* Defaults */
id_mask = CAN_STD_ID_MASK;
frame.flags = 0;
frame.dlc = 0;
/* Parse options */
while (argidx < argc && strncmp(argv[argidx], "-", 1) == 0) {
if (strcmp(argv[argidx], "--") == 0) {
argidx++;
break;
} else if (strcmp(argv[argidx], "-e") == 0) {
frame.flags |= CAN_FRAME_IDE;
id_mask = CAN_EXT_ID_MASK;
argidx++;
} else if (strcmp(argv[argidx], "-r") == 0) {
frame.flags |= CAN_FRAME_RTR;
argidx++;
} else if (strcmp(argv[argidx], "-f") == 0) {
frame.flags |= CAN_FRAME_FDF;
argidx++;
} else if (strcmp(argv[argidx], "-b") == 0) {
frame.flags |= CAN_FRAME_BRS;
argidx++;
} else {
shell_error(sh, "unsupported option %s", argv[argidx]);
shell_help(sh);
return SHELL_CMD_HELP_PRINTED;
}
}
/* Parse CAN ID */
if (argidx >= argc) {
shell_error(sh, "missing CAN ID parameter");
shell_help(sh);
return SHELL_CMD_HELP_PRINTED;
}
val = (uint32_t)strtoul(argv[argidx++], &endptr, 16);
if (*endptr != '\0') {
shell_error(sh, "failed to parse CAN ID");
return -EINVAL;
}
if (val > id_mask) {
shell_error(sh, "CAN ID 0x%0*x out of range",
(frame.flags & CAN_FRAME_IDE) != 0 ? 8 : 3,
val);
return -EINVAL;
}
frame.id = val;
nbytes = argc - argidx;
if (nbytes > ARRAY_SIZE(frame.data)) {
shell_error(sh, "excessive amount of data (%d bytes)", nbytes);
return -EINVAL;
}
frame.dlc = can_bytes_to_dlc(nbytes);
/* Parse data */
for (i = 0; i < nbytes; i++) {
val = (uint32_t)strtoul(argv[argidx++], &endptr, 16);
if (*endptr != '\0') {
shell_error(sh, "failed to parse data %s", argv[argidx++]);
return -EINVAL;
}
if (val > 0xff) {
shell_error(sh, "data 0x%x out of range", val);
return -EINVAL;
}
frame.data[i] = val;
}
err = can_shell_tx_msgq_poll_submit(sh);
if (err != 0) {
return err;
}
frame_no = frame_counter++;
shell_print(sh, "enqueuing CAN frame #%u with %s (%d-bit) CAN ID 0x%0*x, "
"RTR %d, CAN FD %d, BRS %d, DLC %d", frame_no,
(frame.flags & CAN_FRAME_IDE) != 0 ? "extended" : "standard",
(frame.flags & CAN_FRAME_IDE) != 0 ? 29 : 11,
(frame.flags & CAN_FRAME_IDE) != 0 ? 8 : 3, frame.id,
(frame.flags & CAN_FRAME_RTR) != 0 ? 1 : 0,
(frame.flags & CAN_FRAME_FDF) != 0 ? 1 : 0,
(frame.flags & CAN_FRAME_BRS) != 0 ? 1 : 0,
can_dlc_to_bytes(frame.dlc));
err = can_send(dev, &frame, K_NO_WAIT, can_shell_tx_callback, UINT_TO_POINTER(frame_no));
if (err != 0) {
shell_error(sh, "failed to enqueue CAN frame #%u (err %d)", frame_no, err);
return err;
}
return 0;
}
static int cmd_can_filter_add(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
struct can_filter filter;
uint32_t id_mask;
int argidx = 2;
uint32_t val;
char *endptr;
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
/* Defaults */
id_mask = CAN_STD_ID_MASK;
filter.flags = 0U;
/* Parse options */
while (argidx < argc && strncmp(argv[argidx], "-", 1) == 0) {
if (strcmp(argv[argidx], "--") == 0) {
argidx++;
break;
} else if (strcmp(argv[argidx], "-e") == 0) {
filter.flags |= CAN_FILTER_IDE;
id_mask = CAN_EXT_ID_MASK;
argidx++;
} else {
shell_error(sh, "unsupported argument %s", argv[argidx]);
shell_help(sh);
return SHELL_CMD_HELP_PRINTED;
}
}
/* Parse CAN ID */
if (argidx >= argc) {
shell_error(sh, "missing CAN ID parameter");
shell_help(sh);
return SHELL_CMD_HELP_PRINTED;
}
val = (uint32_t)strtoul(argv[argidx++], &endptr, 16);
if (*endptr != '\0') {
shell_error(sh, "failed to parse CAN ID");
return -EINVAL;
}
if (val > id_mask) {
shell_error(sh, "CAN ID 0x%0*x out of range",
(filter.flags & CAN_FILTER_IDE) != 0 ? 8 : 3,
val);
return -EINVAL;
}
filter.id = val;
if (argidx < argc) {
/* Parse CAN ID mask */
val = (uint32_t)strtoul(argv[argidx++], &endptr, 16);
if (*endptr != '\0') {
shell_error(sh, "failed to parse CAN ID mask");
return -EINVAL;
}
if (val > id_mask) {
shell_error(sh, "CAN ID mask 0x%0*x out of range",
(filter.flags & CAN_FILTER_IDE) != 0 ? 8 : 3,
val);
return -EINVAL;
}
} else {
val = id_mask;
}
filter.mask = val;
err = can_shell_rx_msgq_poll_submit(sh);
if (err != 0) {
return err;
}
shell_print(sh, "adding filter with %s (%d-bit) CAN ID 0x%0*x, CAN ID mask 0x%0*x",
(filter.flags & CAN_FILTER_IDE) != 0 ? "extended" : "standard",
(filter.flags & CAN_FILTER_IDE) != 0 ? 29 : 11,
(filter.flags & CAN_FILTER_IDE) != 0 ? 8 : 3, filter.id,
(filter.flags & CAN_FILTER_IDE) != 0 ? 8 : 3, filter.mask);
err = can_add_rx_filter_msgq(dev, &can_shell_rx_msgq, &filter);
if (err < 0) {
shell_error(sh, "failed to add filter (err %d)", err);
return err;
}
shell_print(sh, "filter ID: %d", err);
return 0;
}
static int cmd_can_filter_remove(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
int filter_id;
char *endptr;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
/* Parse filter ID */
filter_id = (int)strtol(argv[2], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse filter ID");
return -EINVAL;
}
shell_print(sh, "removing filter with ID %d", filter_id);
can_remove_rx_filter(dev, filter_id);
return 0;
}
static int cmd_can_recover(const struct shell *sh, size_t argc, char **argv)
{
const struct device *dev = device_get_binding(argv[1]);
k_timeout_t timeout = K_FOREVER;
int millisec;
char *endptr;
int err;
if (!device_is_ready(dev)) {
shell_error(sh, "device %s not ready", argv[1]);
return -ENODEV;
}
if (argc >= 3) {
/* Parse timeout */
millisec = (int)strtol(argv[2], &endptr, 10);
if (*endptr != '\0') {
shell_error(sh, "failed to parse timeout");
return -EINVAL;
}
timeout = K_MSEC(millisec);
shell_print(sh, "recovering, timeout %d ms", millisec);
} else {
shell_print(sh, "recovering, no timeout");
}
err = can_recover(dev, timeout);
if (err != 0) {
shell_error(sh, "failed to recover CAN controller from bus-off (err %d)", err);
return err;
}
return 0;
}
static void cmd_can_device_name(size_t idx, struct shell_static_entry *entry)
{
const struct device *dev = shell_device_lookup(idx, NULL);
entry->syntax = (dev != NULL) ? dev->name : NULL;
entry->handler = NULL;
entry->help = NULL;
entry->subcmd = NULL;
}
SHELL_DYNAMIC_CMD_CREATE(dsub_can_device_name, cmd_can_device_name);
static void cmd_can_mode(size_t idx, struct shell_static_entry *entry);
SHELL_DYNAMIC_CMD_CREATE(dsub_can_mode, cmd_can_mode);
static void cmd_can_mode(size_t idx, struct shell_static_entry *entry)
{
if (idx < ARRAY_SIZE(can_shell_mode_map)) {
entry->syntax = can_shell_mode_map[idx].name;
} else {
entry->syntax = NULL;
}
entry->handler = NULL;
entry->help = NULL;
entry->subcmd = &dsub_can_mode;
}
static void cmd_can_device_name_mode(size_t idx, struct shell_static_entry *entry)
{
const struct device *dev = shell_device_lookup(idx, NULL);
entry->syntax = (dev != NULL) ? dev->name : NULL;
entry->handler = NULL;
entry->help = NULL;
entry->subcmd = &dsub_can_mode;
}
SHELL_DYNAMIC_CMD_CREATE(dsub_can_device_name_mode, cmd_can_device_name_mode);
SHELL_STATIC_SUBCMD_SET_CREATE(sub_can_filter_cmds,
SHELL_CMD_ARG(add, &dsub_can_device_name,
"Add rx filter\n"
"Usage: can filter add <device> [-e] <CAN ID> [CAN ID mask]\n"
"-e use extended (29-bit) CAN ID/CAN ID mask\n",
cmd_can_filter_add, 3, 2),
SHELL_CMD_ARG(remove, &dsub_can_device_name,
"Remove rx filter\n"
"Usage: can filter remove <device> <filter_id>",
cmd_can_filter_remove, 3, 0),
SHELL_SUBCMD_SET_END
);
SHELL_STATIC_SUBCMD_SET_CREATE(sub_can_cmds,
SHELL_CMD_ARG(start, &dsub_can_device_name,
"Start CAN controller\n"
"Usage: can start <device>",
cmd_can_start, 2, 0),
SHELL_CMD_ARG(stop, &dsub_can_device_name,
"Stop CAN controller\n"
"Usage: can stop <device>",
cmd_can_stop, 2, 0),
SHELL_CMD_ARG(show, &dsub_can_device_name,
"Show CAN controller information\n"
"Usage: can show <device>",
cmd_can_show, 2, 0),
SHELL_CMD_ARG(bitrate, &dsub_can_device_name,
"Set CAN controller bitrate (sample point and SJW optional)\n"
"Usage: can bitrate <device> <bitrate> [sample point] [sjw]",
cmd_can_bitrate_set, 3, 2),
SHELL_COND_CMD_ARG(CONFIG_CAN_FD_MODE,
dbitrate, &dsub_can_device_name,
"Set CAN controller data phase bitrate (sample point and SJW optional)\n"
"Usage: can dbitrate <device> <data phase bitrate> [sample point] [sjw]",
cmd_can_dbitrate_set, 3, 2),
SHELL_CMD_ARG(timing, &dsub_can_device_name,
"Set CAN controller timing\n"
"Usage: can timing <device> <sjw> <prop_seg> <phase_seg1> <phase_seg2> <prescaler>",
cmd_can_timing_set, 7, 0),
SHELL_COND_CMD_ARG(CONFIG_CAN_FD_MODE,
dtiming, &dsub_can_device_name,
"Set CAN controller data phase timing\n"
"Usage: can dtiming <device> <sjw> <prop_seg> <phase_seg1> <phase_seg2> <prescaler>",
cmd_can_dtiming_set, 7, 0),
SHELL_CMD_ARG(mode, &dsub_can_device_name_mode,
"Set CAN controller mode\n"
"Usage: can mode <device> <mode> [mode] [mode] [...]",
cmd_can_mode_set, 3, SHELL_OPT_ARG_CHECK_SKIP),
SHELL_CMD_ARG(send, &dsub_can_device_name,
"Enqueue a CAN frame for sending\n"
"Usage: can send <device> [-e] [-r] [-f] [-b] <CAN ID> [data] [...]\n"
"-e use extended (29-bit) CAN ID\n"
"-r send Remote Transmission Request (RTR) frame\n"
"-f use CAN FD frame format\n"
"-b use CAN FD Bit Rate Switching (BRS)",
cmd_can_send, 3, SHELL_OPT_ARG_CHECK_SKIP),
SHELL_CMD(filter, &sub_can_filter_cmds,
"CAN rx filter commands\n"
"Usage: can filter <add|remove> <device> ...",
NULL),
SHELL_COND_CMD_ARG(CONFIG_CAN_MANUAL_RECOVERY_MODE,
recover, &dsub_can_device_name,
"Manually recover CAN controller from bus-off state\n"
"Usage: can recover <device> [timeout ms]",
cmd_can_recover, 2, 1),
SHELL_SUBCMD_SET_END
);
SHELL_CMD_REGISTER(can, &sub_can_cmds, "CAN controller commands", NULL);