zephyr/drivers/clock_control/clock_control_nrf.c
Sigvart Hovland 95f82c60e5 clock_control: clock_control_nrf.c: Add size_t to casts from void *
If you compile this code with Clang it will complain about casting a larger
type into a smaller enum.

```C
zephyr/drivers/clock_control/clock_control_nrf.c:120:37:
warning: cast to smaller integer type 'enum clock_control_nrf_type'
from 'clock_control_subsys_t' (aka 'void *') [-Wvoid-pointer-to-enum-cast]
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
```

Adding `size_t` to the cast removes this issue. Another option could be to
add `-Wno-void-pointer-to-enum-cast` flag to the compile flags.

Signed-off-by: Sigvart Hovland <sigvart.hovland@nordicsemi.no>
2023-05-26 14:58:13 -04:00

787 lines
20 KiB
C

/*
* Copyright (c) 2016-2020 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <zephyr/sys/onoff.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include "nrf_clock_calibration.h"
#include <nrfx_clock.h>
#include <zephyr/logging/log.h>
#include <zephyr/shell/shell.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
#define DT_DRV_COMPAT nordic_nrf_clock
#define CTX_ONOFF BIT(6)
#define CTX_API BIT(7)
#define CTX_MASK (CTX_ONOFF | CTX_API)
#define STATUS_MASK 0x7
#define GET_STATUS(flags) (flags & STATUS_MASK)
#define GET_CTX(flags) (flags & CTX_MASK)
/* Used only by HF clock */
#define HF_USER_BT BIT(0)
#define HF_USER_GENERIC BIT(1)
/* Helper logging macros which prepends subsys name to the log. */
#ifdef CONFIG_LOG
#define CLOCK_LOG(lvl, dev, subsys, ...) \
LOG_##lvl("%s: " GET_ARG_N(1, __VA_ARGS__), \
get_sub_config(dev, (enum clock_control_nrf_type)subsys)->name \
COND_CODE_0(NUM_VA_ARGS_LESS_1(__VA_ARGS__),\
(), (, GET_ARGS_LESS_N(1, __VA_ARGS__))))
#else
#define CLOCK_LOG(...)
#endif
#define ERR(dev, subsys, ...) CLOCK_LOG(ERR, dev, subsys, __VA_ARGS__)
#define WRN(dev, subsys, ...) CLOCK_LOG(WRN, dev, subsys, __VA_ARGS__)
#define INF(dev, subsys, ...) CLOCK_LOG(INF, dev, subsys, __VA_ARGS__)
#define DBG(dev, subsys, ...) CLOCK_LOG(DBG, dev, subsys, __VA_ARGS__)
/* Clock subsys structure */
struct nrf_clock_control_sub_data {
clock_control_cb_t cb;
void *user_data;
uint32_t flags;
};
typedef void (*clk_ctrl_func_t)(void);
/* Clock subsys static configuration */
struct nrf_clock_control_sub_config {
clk_ctrl_func_t start; /* Clock start function */
clk_ctrl_func_t stop; /* Clock stop function */
#ifdef CONFIG_LOG
const char *name;
#endif
};
struct nrf_clock_control_data {
struct onoff_manager mgr[CLOCK_CONTROL_NRF_TYPE_COUNT];
struct nrf_clock_control_sub_data subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
struct nrf_clock_control_config {
struct nrf_clock_control_sub_config
subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
static atomic_t hfclk_users;
static uint64_t hf_start_tstamp;
static uint64_t hf_stop_tstamp;
static struct nrf_clock_control_sub_data *get_sub_data(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->data;
return &data->subsys[type];
}
static const struct nrf_clock_control_sub_config *get_sub_config(const struct device *dev,
enum clock_control_nrf_type type)
{
const struct nrf_clock_control_config *config =
dev->config;
return &config->subsys[type];
}
static struct onoff_manager *get_onoff_manager(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->data;
return &data->mgr[type];
}
#define CLOCK_DEVICE DEVICE_DT_GET(DT_NODELABEL(clock))
struct onoff_manager *z_nrf_clock_control_get_onoff(clock_control_subsys_t sys)
{
return get_onoff_manager(CLOCK_DEVICE,
(enum clock_control_nrf_type)(size_t)sys);
}
static enum clock_control_status get_status(const struct device *dev,
clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
return GET_STATUS(get_sub_data(dev, type)->flags);
}
static int set_off_state(uint32_t *flags, uint32_t ctx)
{
int err = 0;
unsigned int key = irq_lock();
uint32_t current_ctx = GET_CTX(*flags);
if ((current_ctx != 0) && (current_ctx != ctx)) {
err = -EPERM;
} else {
*flags = CLOCK_CONTROL_STATUS_OFF;
}
irq_unlock(key);
return err;
}
static int set_starting_state(uint32_t *flags, uint32_t ctx)
{
int err = 0;
unsigned int key = irq_lock();
uint32_t current_ctx = GET_CTX(*flags);
if ((*flags & (STATUS_MASK)) == CLOCK_CONTROL_STATUS_OFF) {
*flags = CLOCK_CONTROL_STATUS_STARTING | ctx;
} else if (current_ctx != ctx) {
err = -EPERM;
} else {
err = -EALREADY;
}
irq_unlock(key);
return err;
}
static void set_on_state(uint32_t *flags)
{
unsigned int key = irq_lock();
*flags = CLOCK_CONTROL_STATUS_ON | GET_CTX(*flags);
irq_unlock(key);
}
static void clkstarted_handle(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_sub_data *sub_data = get_sub_data(dev, type);
clock_control_cb_t callback = sub_data->cb;
void *user_data = sub_data->user_data;
sub_data->cb = NULL;
set_on_state(&sub_data->flags);
DBG(dev, type, "Clock started");
if (callback) {
callback(dev, (clock_control_subsys_t)type, user_data);
}
}
static inline void anomaly_132_workaround(void)
{
#if (CONFIG_NRF52_ANOMALY_132_DELAY_US - 0)
static bool once;
if (!once) {
k_busy_wait(CONFIG_NRF52_ANOMALY_132_DELAY_US);
once = true;
}
#endif
}
static void lfclk_start(void)
{
if (IS_ENABLED(CONFIG_NRF52_ANOMALY_132_WORKAROUND)) {
anomaly_132_workaround();
}
nrfx_clock_lfclk_start();
}
static void lfclk_stop(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_stopped();
}
nrfx_clock_lfclk_stop();
}
static void hfclk_start(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) {
hf_start_tstamp = k_uptime_get();
}
nrfx_clock_hfclk_start();
}
static void hfclk_stop(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) {
hf_stop_tstamp = k_uptime_get();
}
nrfx_clock_hfclk_stop();
}
#if NRF_CLOCK_HAS_HFCLK192M
static void hfclk192m_start(void)
{
nrfx_clock_start(NRF_CLOCK_DOMAIN_HFCLK192M);
}
static void hfclk192m_stop(void)
{
nrfx_clock_stop(NRF_CLOCK_DOMAIN_HFCLK192M);
}
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
static void hfclkaudio_start(void)
{
nrfx_clock_start(NRF_CLOCK_DOMAIN_HFCLKAUDIO);
}
static void hfclkaudio_stop(void)
{
nrfx_clock_stop(NRF_CLOCK_DOMAIN_HFCLKAUDIO);
}
#endif
static uint32_t *get_hf_flags(void)
{
struct nrf_clock_control_data *data = CLOCK_DEVICE->data;
return &data->subsys[CLOCK_CONTROL_NRF_TYPE_HFCLK].flags;
}
static void generic_hfclk_start(void)
{
nrf_clock_hfclk_t type;
bool already_started = false;
unsigned int key = irq_lock();
hfclk_users |= HF_USER_GENERIC;
if (hfclk_users & HF_USER_BT) {
(void)nrfx_clock_is_running(NRF_CLOCK_DOMAIN_HFCLK, &type);
if (type == NRF_CLOCK_HFCLK_HIGH_ACCURACY) {
already_started = true;
/* Set on state in case clock interrupt comes and we
* want to avoid handling that.
*/
set_on_state(get_hf_flags());
}
}
irq_unlock(key);
if (already_started) {
/* Clock already started by z_nrf_clock_bt_ctlr_hf_request */
clkstarted_handle(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_HFCLK);
return;
}
hfclk_start();
}
static void generic_hfclk_stop(void)
{
/* It's not enough to use only atomic_and() here for synchronization,
* as the thread could be preempted right after that function but
* before hfclk_stop() is called and the preempting code could request
* the HFCLK again. Then, the HFCLK would be stopped inappropriately
* and hfclk_user would be left with an incorrect value.
*/
unsigned int key = irq_lock();
hfclk_users &= ~HF_USER_GENERIC;
/* Skip stopping if BT is still requesting the clock. */
if (!(hfclk_users & HF_USER_BT)) {
hfclk_stop();
}
irq_unlock(key);
}
void z_nrf_clock_bt_ctlr_hf_request(void)
{
if (atomic_or(&hfclk_users, HF_USER_BT) & HF_USER_GENERIC) {
/* generic request already activated clock. */
return;
}
hfclk_start();
}
void z_nrf_clock_bt_ctlr_hf_release(void)
{
/* It's not enough to use only atomic_and() here for synchronization,
* see the explanation in generic_hfclk_stop().
*/
unsigned int key = irq_lock();
hfclk_users &= ~HF_USER_BT;
/* Skip stopping if generic is still requesting the clock. */
if (!(hfclk_users & HF_USER_GENERIC)) {
hfclk_stop();
}
irq_unlock(key);
}
static int stop(const struct device *dev, clock_control_subsys_t subsys,
uint32_t ctx)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type);
int err;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
err = set_off_state(&subdata->flags, ctx);
if (err < 0) {
return err;
}
get_sub_config(dev, type)->stop();
return 0;
}
static int api_stop(const struct device *dev, clock_control_subsys_t subsys)
{
return stop(dev, subsys, CTX_API);
}
static int async_start(const struct device *dev, clock_control_subsys_t subsys,
clock_control_cb_t cb, void *user_data, uint32_t ctx)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type);
int err;
err = set_starting_state(&subdata->flags, ctx);
if (err < 0) {
return err;
}
subdata->cb = cb;
subdata->user_data = user_data;
get_sub_config(dev, type)->start();
return 0;
}
static int api_start(const struct device *dev, clock_control_subsys_t subsys,
clock_control_cb_t cb, void *user_data)
{
return async_start(dev, subsys, cb, user_data, CTX_API);
}
static void blocking_start_callback(const struct device *dev,
clock_control_subsys_t subsys,
void *user_data)
{
struct k_sem *sem = user_data;
k_sem_give(sem);
}
static int api_blocking_start(const struct device *dev,
clock_control_subsys_t subsys)
{
struct k_sem sem = Z_SEM_INITIALIZER(sem, 0, 1);
int err;
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
return -ENOTSUP;
}
err = api_start(dev, subsys, blocking_start_callback, &sem);
if (err < 0) {
return err;
}
return k_sem_take(&sem, K_MSEC(500));
}
static clock_control_subsys_t get_subsys(struct onoff_manager *mgr)
{
struct nrf_clock_control_data *data = CLOCK_DEVICE->data;
size_t offset = (size_t)(mgr - data->mgr);
return (clock_control_subsys_t)offset;
}
static void onoff_stop(struct onoff_manager *mgr,
onoff_notify_fn notify)
{
int res;
res = stop(CLOCK_DEVICE, get_subsys(mgr), CTX_ONOFF);
notify(mgr, res);
}
static void onoff_started_callback(const struct device *dev,
clock_control_subsys_t sys,
void *user_data)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)sys;
struct onoff_manager *mgr = get_onoff_manager(dev, type);
onoff_notify_fn notify = user_data;
notify(mgr, 0);
}
static void onoff_start(struct onoff_manager *mgr,
onoff_notify_fn notify)
{
int err;
err = async_start(CLOCK_DEVICE, get_subsys(mgr),
onoff_started_callback, notify, CTX_ONOFF);
if (err < 0) {
notify(mgr, err);
}
}
/** @brief Wait for LF clock availability or stability.
*
* If LF clock source is SYNTH or RC then there is no distinction between
* availability and stability. In case of XTAL source clock, system is initially
* starting RC and then seamlessly switches to XTAL. Running RC means clock
* availability and running target source means stability, That is because
* significant difference in startup time (<1ms vs >200ms).
*
* In order to get event/interrupt when RC is ready (allowing CPU sleeping) two
* stage startup sequence is used. Initially, LF source is set to RC and when
* LFSTARTED event is handled it is reconfigured to the target source clock.
* This approach is implemented in nrfx_clock driver and utilized here.
*
* @param mode Start mode.
*/
static void lfclk_spinwait(enum nrf_lfclk_start_mode mode)
{
static const nrf_clock_domain_t d = NRF_CLOCK_DOMAIN_LFCLK;
static const nrf_clock_lfclk_t target_type =
/* For sources XTAL, EXT_LOW_SWING, and EXT_FULL_SWING,
* NRF_CLOCK_LFCLK_XTAL is returned as the type of running clock.
*/
(IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_XTAL) ||
IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_EXT_LOW_SWING) ||
IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_EXT_FULL_SWING))
? NRF_CLOCK_LFCLK_XTAL
: CLOCK_CONTROL_NRF_K32SRC;
nrf_clock_lfclk_t type;
if ((mode == CLOCK_CONTROL_NRF_LF_START_AVAILABLE) &&
(target_type == NRF_CLOCK_LFCLK_XTAL) &&
(nrf_clock_lf_srccopy_get(NRF_CLOCK) == CLOCK_CONTROL_NRF_K32SRC)) {
/* If target clock source is using XTAL then due to two-stage
* clock startup sequence, RC might already be running.
* It can be determined by checking current LFCLK source. If it
* is set to the target clock source then it means that RC was
* started.
*/
return;
}
bool isr_mode = k_is_in_isr() || k_is_pre_kernel();
int key = isr_mode ? irq_lock() : 0;
if (!isr_mode) {
nrf_clock_int_disable(NRF_CLOCK, NRF_CLOCK_INT_LF_STARTED_MASK);
}
while (!(nrfx_clock_is_running(d, (void *)&type)
&& ((type == target_type)
|| (mode == CLOCK_CONTROL_NRF_LF_START_AVAILABLE)))) {
/* Synth source start is almost instant and LFCLKSTARTED may
* happen before calling idle. That would lead to deadlock.
*/
if (!IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_SYNTH)) {
if (isr_mode || !IS_ENABLED(CONFIG_MULTITHREADING)) {
k_cpu_atomic_idle(key);
} else {
k_msleep(1);
}
}
/* Clock interrupt is locked, LFCLKSTARTED is handled here. */
if ((target_type == NRF_CLOCK_LFCLK_XTAL)
&& (nrf_clock_lf_src_get(NRF_CLOCK) == NRF_CLOCK_LFCLK_RC)
&& nrf_clock_event_check(NRF_CLOCK,
NRF_CLOCK_EVENT_LFCLKSTARTED)) {
nrf_clock_event_clear(NRF_CLOCK,
NRF_CLOCK_EVENT_LFCLKSTARTED);
nrf_clock_lf_src_set(NRF_CLOCK,
CLOCK_CONTROL_NRF_K32SRC);
/* Clear pending interrupt, otherwise new clock event
* would not wake up from idle.
*/
NVIC_ClearPendingIRQ(DT_INST_IRQN(0));
nrf_clock_task_trigger(NRF_CLOCK,
NRF_CLOCK_TASK_LFCLKSTART);
}
}
if (isr_mode) {
irq_unlock(key);
} else {
nrf_clock_int_enable(NRF_CLOCK, NRF_CLOCK_INT_LF_STARTED_MASK);
}
}
void z_nrf_clock_control_lf_on(enum nrf_lfclk_start_mode start_mode)
{
static atomic_t on;
static struct onoff_client cli;
if (atomic_set(&on, 1) == 0) {
int err;
struct onoff_manager *mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_LFCLK);
sys_notify_init_spinwait(&cli.notify);
err = onoff_request(mgr, &cli);
__ASSERT_NO_MSG(err >= 0);
}
/* In case of simulated board leave immediately. */
if (IS_ENABLED(CONFIG_SOC_SERIES_BSIM_NRFXX)) {
return;
}
switch (start_mode) {
case CLOCK_CONTROL_NRF_LF_START_AVAILABLE:
case CLOCK_CONTROL_NRF_LF_START_STABLE:
lfclk_spinwait(start_mode);
break;
case CLOCK_CONTROL_NRF_LF_START_NOWAIT:
break;
default:
__ASSERT_NO_MSG(false);
}
}
static void clock_event_handler(nrfx_clock_evt_type_t event)
{
const struct device *dev = CLOCK_DEVICE;
switch (event) {
case NRFX_CLOCK_EVT_HFCLK_STARTED:
{
struct nrf_clock_control_sub_data *data =
get_sub_data(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
/* Check needed due to anomaly 201:
* HFCLKSTARTED may be generated twice.
*/
if (GET_STATUS(data->flags) == CLOCK_CONTROL_STATUS_STARTING) {
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
}
break;
}
#if NRF_CLOCK_HAS_HFCLK192M
case NRFX_CLOCK_EVT_HFCLK192M_STARTED:
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK192M);
break;
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRFX_CLOCK_EVT_HFCLKAUDIO_STARTED:
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLKAUDIO);
break;
#endif
case NRFX_CLOCK_EVT_LFCLK_STARTED:
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_started();
}
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_LFCLK);
break;
case NRFX_CLOCK_EVT_CAL_DONE:
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_done_handler();
} else {
/* Should not happen when calibration is disabled. */
__ASSERT_NO_MSG(false);
}
break;
default:
__ASSERT_NO_MSG(0);
break;
}
}
static void hfclkaudio_init(void)
{
#if DT_NODE_HAS_PROP(DT_NODELABEL(clock), hfclkaudio_frequency)
const uint32_t frequency =
DT_PROP(DT_NODELABEL(clock), hfclkaudio_frequency);
/* As specified in the nRF5340 PS:
*
* FREQ_VALUE = 2^16 * ((12 * f_out / 32M) - 4)
*/
const uint32_t freq_value =
(uint32_t)((384ULL * frequency) / 15625) - 262144;
#if NRF_CLOCK_HAS_HFCLKAUDIO
nrf_clock_hfclkaudio_config_set(NRF_CLOCK, freq_value);
#else
#error "hfclkaudio-frequency specified but HFCLKAUDIO clock is not present."
#endif /* NRF_CLOCK_HAS_HFCLKAUDIO */
#endif
}
static int clk_init(const struct device *dev)
{
nrfx_err_t nrfx_err;
int err;
static const struct onoff_transitions transitions = {
.start = onoff_start,
.stop = onoff_stop
};
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
nrfx_isr, nrfx_power_clock_irq_handler, 0);
nrfx_err = nrfx_clock_init(clock_event_handler);
if (nrfx_err != NRFX_SUCCESS) {
return -EIO;
}
hfclkaudio_init();
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
struct nrf_clock_control_data *data = dev->data;
z_nrf_clock_calibration_init(data->mgr);
}
nrfx_clock_enable();
for (enum clock_control_nrf_type i = 0;
i < CLOCK_CONTROL_NRF_TYPE_COUNT; i++) {
struct nrf_clock_control_sub_data *subdata =
get_sub_data(dev, i);
err = onoff_manager_init(get_onoff_manager(dev, i),
&transitions);
if (err < 0) {
return err;
}
subdata->flags = CLOCK_CONTROL_STATUS_OFF;
}
return 0;
}
static const struct clock_control_driver_api clock_control_api = {
.on = api_blocking_start,
.off = api_stop,
.async_on = api_start,
.get_status = get_status,
};
static struct nrf_clock_control_data data;
static const struct nrf_clock_control_config config = {
.subsys = {
[CLOCK_CONTROL_NRF_TYPE_HFCLK] = {
.start = generic_hfclk_start,
.stop = generic_hfclk_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk",))
},
[CLOCK_CONTROL_NRF_TYPE_LFCLK] = {
.start = lfclk_start,
.stop = lfclk_stop,
IF_ENABLED(CONFIG_LOG, (.name = "lfclk",))
},
#if NRF_CLOCK_HAS_HFCLK192M
[CLOCK_CONTROL_NRF_TYPE_HFCLK192M] = {
.start = hfclk192m_start,
.stop = hfclk192m_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk192m",))
},
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
[CLOCK_CONTROL_NRF_TYPE_HFCLKAUDIO] = {
.start = hfclkaudio_start,
.stop = hfclkaudio_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclkaudio",))
},
#endif
}
};
DEVICE_DT_DEFINE(DT_NODELABEL(clock), clk_init, NULL,
&data, &config,
PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&clock_control_api);
#if defined(CONFIG_SHELL)
static int cmd_status(const struct shell *sh, size_t argc, char **argv)
{
nrf_clock_hfclk_t hfclk_src;
bool hf_status;
bool lf_status = nrfx_clock_is_running(NRF_CLOCK_DOMAIN_LFCLK, NULL);
struct onoff_manager *hf_mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_HFCLK);
struct onoff_manager *lf_mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_LFCLK);
uint32_t abs_start, abs_stop;
unsigned int key = irq_lock();
uint64_t now = k_uptime_get();
(void)nrfx_clock_is_running(NRF_CLOCK_DOMAIN_HFCLK, (void *)&hfclk_src);
hf_status = (hfclk_src == NRF_CLOCK_HFCLK_HIGH_ACCURACY);
abs_start = hf_start_tstamp;
abs_stop = hf_stop_tstamp;
irq_unlock(key);
shell_print(sh, "HF clock:");
shell_print(sh, "\t- %srunning (users: %u)",
hf_status ? "" : "not ", hf_mgr->refs);
shell_print(sh, "\t- last start: %u ms (%u ms ago)",
(uint32_t)abs_start, (uint32_t)(now - abs_start));
shell_print(sh, "\t- last stop: %u ms (%u ms ago)",
(uint32_t)abs_stop, (uint32_t)(now - abs_stop));
shell_print(sh, "LF clock:");
shell_print(sh, "\t- %srunning (users: %u)",
lf_status ? "" : "not ", lf_mgr->refs);
return 0;
}
SHELL_STATIC_SUBCMD_SET_CREATE(subcmds,
SHELL_CMD_ARG(status, NULL, "Status", cmd_status, 1, 0),
SHELL_SUBCMD_SET_END
);
SHELL_COND_CMD_REGISTER(CONFIG_CLOCK_CONTROL_NRF_SHELL,
nrf_clock_control, &subcmds,
"Clock control commands",
cmd_status);
#endif /* defined(CONFIG_SHELL) */