zephyr/drivers/dma/dma_nxp_edma.c
Laurentiu Mihalcea 41289dac06 drivers: dma: dma_nxp_edma: add function for channel filtering
The point of this commit is to allow users to request specific
channels. The following code snippet shows how this may now be
achieved:

	int requested_channel = 5;
	int ret = dma_request_channel(dev, &requested_channel);

Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
2024-02-09 16:20:34 +00:00

688 lines
19 KiB
C

/*
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "dma_nxp_edma.h"
/* TODO list:
* 1) Support for requesting a specific channel.
* 2) Support for checking if DMA transfer is pending when attempting config. (?)
* 3) Support for error interrupt.
* 4) Support for error if buffer overflow/underrun.
* 5) Ideally, HALFMAJOR should be set on a per-channel basis not through a
* config. If not possible, this should be done through a DTS property. Also,
* maybe do the same for INTMAJOR IRQ.
*/
static void edma_isr(const void *parameter)
{
const struct edma_config *cfg;
struct edma_data *data;
struct edma_channel *chan;
int ret;
uint32_t update_size;
chan = (struct edma_channel *)parameter;
cfg = chan->dev->config;
data = chan->dev->data;
if (!EDMA_ChannelRegRead(data->hal_cfg, chan->id, EDMA_TCD_CH_INT)) {
/* skip, interrupt was probably triggered by another channel */
return;
}
/* clear interrupt */
EDMA_ChannelRegUpdate(data->hal_cfg, chan->id,
EDMA_TCD_CH_INT, EDMA_TCD_CH_INT_MASK, 0);
if (chan->cyclic_buffer) {
update_size = chan->bsize;
if (IS_ENABLED(CONFIG_DMA_NXP_EDMA_ENABLE_HALFMAJOR_IRQ)) {
update_size = chan->bsize / 2;
} else {
update_size = chan->bsize;
}
/* TODO: add support for error handling here */
ret = EDMA_CHAN_PRODUCE_CONSUME_A(chan, update_size);
if (ret < 0) {
LOG_ERR("chan %d buffer overflow/underrun", chan->id);
}
}
/* TODO: are there any sanity checks we have to perform before invoking
* the registered callback?
*/
if (chan->cb) {
chan->cb(chan->dev, chan->arg, chan->id, DMA_STATUS_COMPLETE);
}
}
static struct edma_channel *lookup_channel(const struct device *dev,
uint32_t chan_id)
{
struct edma_data *data;
const struct edma_config *cfg;
int i;
data = dev->data;
cfg = dev->config;
/* optimization: if dma-channels property is present then
* the channel data associated with the passed channel ID
* can be found at index chan_id in the array of channels.
*/
if (cfg->contiguous_channels) {
/* check for index out of bounds */
if (chan_id >= data->ctx.dma_channels) {
return NULL;
}
return &data->channels[chan_id];
}
/* channels are passed through the valid-channels property.
* As such, since some channels may be missing we need to
* look through the entire channels array for an ID match.
*/
for (i = 0; i < data->ctx.dma_channels; i++) {
if (data->channels[i].id == chan_id) {
return &data->channels[i];
}
}
return NULL;
}
static int edma_config(const struct device *dev, uint32_t chan_id,
struct dma_config *dma_cfg)
{
struct edma_data *data;
const struct edma_config *cfg;
struct edma_channel *chan;
uint32_t transfer_type;
int ret;
data = dev->data;
cfg = dev->config;
if (!dma_cfg->head_block) {
LOG_ERR("head block shouldn't be NULL");
return -EINVAL;
}
/* validate source data size (SSIZE) */
if (!EDMA_TransferWidthIsValid(data->hal_cfg, dma_cfg->source_data_size)) {
LOG_ERR("invalid source data size: %d",
dma_cfg->source_data_size);
return -EINVAL;
}
/* validate destination data size (DSIZE) */
if (!EDMA_TransferWidthIsValid(data->hal_cfg, dma_cfg->dest_data_size)) {
LOG_ERR("invalid destination data size: %d",
dma_cfg->dest_data_size);
return -EINVAL;
}
/* validate configured alignment */
if (!EDMA_TransferWidthIsValid(data->hal_cfg, CONFIG_DMA_NXP_EDMA_ALIGN)) {
LOG_ERR("configured alignment %d is invalid",
CONFIG_DMA_NXP_EDMA_ALIGN);
return -EINVAL;
}
/* Scatter-Gather configurations currently not supported */
if (dma_cfg->block_count != 1) {
LOG_ERR("number of blocks %d not supported", dma_cfg->block_count);
return -ENOTSUP;
}
/* source address shouldn't be NULL */
if (!dma_cfg->head_block->source_address) {
LOG_ERR("source address cannot be NULL");
return -EINVAL;
}
/* destination address shouldn't be NULL */
if (!dma_cfg->head_block->dest_address) {
LOG_ERR("destination address cannot be NULL");
return -EINVAL;
}
/* check source address's (SADDR) alignment with respect to the data size (SSIZE)
*
* Failing to meet this condition will lead to the assertion of the SAE
* bit (see CHn_ES register).
*
* TODO: this will also restrict scenarios such as the following:
* SADDR is 8B aligned and SSIZE is 16B. I've tested this
* scenario and seems to raise no hardware errors (I'm assuming
* because this doesn't break the 8B boundary of the 64-bit system
* I tested it on). Is there a need to allow such a scenario?
*/
if (dma_cfg->head_block->source_address % dma_cfg->source_data_size) {
LOG_ERR("source address 0x%x alignment doesn't match data size %d",
dma_cfg->head_block->source_address,
dma_cfg->source_data_size);
return -EINVAL;
}
/* check destination address's (DADDR) alignment with respect to the data size (DSIZE)
* Failing to meet this condition will lead to the assertion of the DAE
* bit (see CHn_ES register).
*/
if (dma_cfg->head_block->dest_address % dma_cfg->dest_data_size) {
LOG_ERR("destination address 0x%x alignment doesn't match data size %d",
dma_cfg->head_block->dest_address,
dma_cfg->dest_data_size);
return -EINVAL;
}
/* source burst length should match destination burst length.
* This is because the burst length is the equivalent of NBYTES which
* is used for both the destination and the source.
*/
if (dma_cfg->source_burst_length !=
dma_cfg->dest_burst_length) {
LOG_ERR("source burst length %d doesn't match destination burst length %d",
dma_cfg->source_burst_length,
dma_cfg->dest_burst_length);
return -EINVAL;
}
/* total number of bytes should be a multiple of NBYTES.
*
* This is needed because the EDMA engine performs transfers based
* on CITER (integer value) and NBYTES, thus it has no knowledge of
* the total transfer size. If the total transfer size is not a
* multiple of NBYTES then we'll end up with copying a wrong number
* of bytes (CITER = TOTAL_SIZE / BITER). This, of course, raises
* no error in the hardware but it's still wrong.
*/
if (dma_cfg->head_block->block_size % dma_cfg->source_burst_length) {
LOG_ERR("block size %d should be a multiple of NBYTES %d",
dma_cfg->head_block->block_size,
dma_cfg->source_burst_length);
return -EINVAL;
}
/* check if NBYTES is a multiple of MAX(SSIZE, DSIZE).
*
* This stems from the fact that NBYTES needs to be a multiple
* of SSIZE AND DSIZE. If NBYTES is a multiple of MAX(SSIZE, DSIZE)
* then it will for sure satisfy the aforementioned condition (since
* SSIZE and DSIZE are powers of 2).
*
* Failing to meet this condition will lead to the assertion of the
* NCE bit (see CHn_ES register).
*/
if (dma_cfg->source_burst_length %
MAX(dma_cfg->source_data_size, dma_cfg->dest_data_size)) {
LOG_ERR("NBYTES %d should be a multiple of MAX(SSIZE(%d), DSIZE(%d))",
dma_cfg->source_burst_length,
dma_cfg->source_data_size,
dma_cfg->dest_data_size);
return -EINVAL;
}
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
/* save the block size for later usage in edma_reload */
chan->bsize = dma_cfg->head_block->block_size;
if (dma_cfg->cyclic) {
chan->cyclic_buffer = true;
chan->stat.read_position = 0;
chan->stat.write_position = 0;
/* ASSUMPTION: for CONSUMER-type channels, the buffer from
* which the engine consumes should be full, while in the
* case of PRODUCER-type channels it should be empty.
*/
switch (dma_cfg->channel_direction) {
case MEMORY_TO_PERIPHERAL:
chan->type = CHAN_TYPE_CONSUMER;
chan->stat.free = 0;
chan->stat.pending_length = chan->bsize;
break;
case PERIPHERAL_TO_MEMORY:
chan->type = CHAN_TYPE_PRODUCER;
chan->stat.pending_length = 0;
chan->stat.free = chan->bsize;
break;
default:
LOG_ERR("unsupported transfer dir %d for cyclic mode",
dma_cfg->channel_direction);
return -ENOTSUP;
}
} else {
chan->cyclic_buffer = false;
}
/* change channel's state to CONFIGURED */
ret = channel_change_state(chan, CHAN_STATE_CONFIGURED);
if (ret < 0) {
LOG_ERR("failed to change channel %d state to CONFIGURED", chan_id);
return ret;
}
ret = get_transfer_type(dma_cfg->channel_direction, &transfer_type);
if (ret < 0) {
return ret;
}
chan->cb = dma_cfg->dma_callback;
chan->arg = dma_cfg->user_data;
/* warning: this sets SOFF and DOFF to SSIZE and DSIZE which are POSITIVE. */
ret = EDMA_ConfigureTransfer(data->hal_cfg, chan_id,
dma_cfg->head_block->source_address,
dma_cfg->head_block->dest_address,
dma_cfg->source_data_size,
dma_cfg->dest_data_size,
dma_cfg->source_burst_length,
dma_cfg->head_block->block_size,
transfer_type);
if (ret < 0) {
LOG_ERR("failed to configure transfer");
return to_std_error(ret);
}
/* TODO: channel MUX should be forced to 0 based on the previous state */
if (EDMA_HAS_MUX(data->hal_cfg)) {
ret = EDMA_SetChannelMux(data->hal_cfg, chan_id, dma_cfg->dma_slot);
if (ret < 0) {
LOG_ERR("failed to set channel MUX");
return to_std_error(ret);
}
}
/* set SLAST and DLAST */
ret = set_slast_dlast(dma_cfg, transfer_type, data, chan_id);
if (ret < 0) {
return ret;
}
/* allow interrupting the CPU when a major cycle is completed.
*
* interesting note: only 1 major loop is performed per slave peripheral
* DMA request. For instance, if block_size = 768 and burst_size = 192
* we're going to get 4 transfers of 192 bytes. Each of these transfers
* translates to a DMA request made by the slave peripheral.
*/
EDMA_ChannelRegUpdate(data->hal_cfg, chan_id,
EDMA_TCD_CSR, EDMA_TCD_CSR_INTMAJOR_MASK, 0);
if (IS_ENABLED(CONFIG_DMA_NXP_EDMA_ENABLE_HALFMAJOR_IRQ)) {
/* if enabled through the above configuration, also
* allow the CPU to be interrupted when CITER = BITER / 2.
*/
EDMA_ChannelRegUpdate(data->hal_cfg, chan_id, EDMA_TCD_CSR,
EDMA_TCD_CSR_INTHALF_MASK, 0);
}
/* enable channel interrupt */
irq_enable(chan->irq);
/* dump register status - for debugging purposes */
edma_dump_channel_registers(data, chan_id);
return 0;
}
static int edma_get_status(const struct device *dev, uint32_t chan_id,
struct dma_status *stat)
{
struct edma_data *data;
struct edma_channel *chan;
uint32_t citer, biter, done;
unsigned int key;
data = dev->data;
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
if (chan->cyclic_buffer) {
key = irq_lock();
stat->free = chan->stat.free;
stat->pending_length = chan->stat.pending_length;
irq_unlock(key);
} else {
/* note: no locking required here. The DMA interrupts
* have no effect over CITER and BITER.
*/
citer = EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CITER);
biter = EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_BITER);
done = EDMA_ChannelRegRead(data->hal_cfg, chan_id, EDMA_TCD_CH_CSR) &
EDMA_TCD_CH_CSR_DONE_MASK;
if (done) {
stat->free = chan->bsize;
stat->pending_length = 0;
} else {
stat->free = (biter - citer) * (chan->bsize / biter);
stat->pending_length = chan->bsize - stat->free;
}
}
LOG_DBG("free: %d, pending: %d", stat->free, stat->pending_length);
return 0;
}
static int edma_suspend(const struct device *dev, uint32_t chan_id)
{
struct edma_data *data;
const struct edma_config *cfg;
struct edma_channel *chan;
int ret;
data = dev->data;
cfg = dev->config;
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
edma_dump_channel_registers(data, chan_id);
/* change channel's state to SUSPENDED */
ret = channel_change_state(chan, CHAN_STATE_SUSPENDED);
if (ret < 0) {
LOG_ERR("failed to change channel %d state to SUSPENDED", chan_id);
return ret;
}
LOG_DBG("suspending channel %u", chan_id);
/* disable HW requests */
EDMA_ChannelRegUpdate(data->hal_cfg, chan_id,
EDMA_TCD_CH_CSR, 0, EDMA_TCD_CH_CSR_ERQ_MASK);
return 0;
}
static int edma_stop(const struct device *dev, uint32_t chan_id)
{
struct edma_data *data;
const struct edma_config *cfg;
struct edma_channel *chan;
enum channel_state prev_state;
int ret;
data = dev->data;
cfg = dev->config;
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
prev_state = chan->state;
/* change channel's state to STOPPED */
ret = channel_change_state(chan, CHAN_STATE_STOPPED);
if (ret < 0) {
LOG_ERR("failed to change channel %d state to STOPPED", chan_id);
return ret;
}
LOG_DBG("stopping channel %u", chan_id);
if (prev_state == CHAN_STATE_SUSPENDED) {
/* if the channel has been suspended then there's
* no point in disabling the HW requests again. Just
* jump to the channel release operation.
*/
goto out_release_channel;
}
/* disable HW requests */
EDMA_ChannelRegUpdate(data->hal_cfg, chan_id, EDMA_TCD_CH_CSR, 0,
EDMA_TCD_CH_CSR_ERQ_MASK);
out_release_channel:
/* clear the channel MUX so that it can used by a different peripheral.
*
* note: because the channel is released during dma_stop() that means
* dma_start() can no longer be immediately called. This is because
* one needs to re-configure the channel MUX which can only be done
* through dma_config(). As such, if one intends to reuse the current
* configuration then please call dma_suspend() instead of dma_stop().
*/
if (EDMA_HAS_MUX(data->hal_cfg)) {
ret = EDMA_SetChannelMux(data->hal_cfg, chan_id, 0);
if (ret < 0) {
LOG_ERR("failed to set channel MUX");
return to_std_error(ret);
}
}
edma_dump_channel_registers(data, chan_id);
return 0;
}
static int edma_start(const struct device *dev, uint32_t chan_id)
{
struct edma_data *data;
const struct edma_config *cfg;
struct edma_channel *chan;
int ret;
data = dev->data;
cfg = dev->config;
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
/* change channel's state to STARTED */
ret = channel_change_state(chan, CHAN_STATE_STARTED);
if (ret < 0) {
LOG_ERR("failed to change channel %d state to STARTED", chan_id);
return ret;
}
LOG_DBG("starting channel %u", chan_id);
/* enable HW requests */
EDMA_ChannelRegUpdate(data->hal_cfg, chan_id,
EDMA_TCD_CH_CSR, EDMA_TCD_CH_CSR_ERQ_MASK, 0);
return 0;
}
static int edma_reload(const struct device *dev, uint32_t chan_id, uint32_t src,
uint32_t dst, size_t size)
{
struct edma_data *data;
struct edma_channel *chan;
int ret;
unsigned int key;
data = dev->data;
/* fetch channel data */
chan = lookup_channel(dev, chan_id);
if (!chan) {
LOG_ERR("channel ID %u is not valid", chan_id);
return -EINVAL;
}
/* channel needs to be started to allow reloading */
if (chan->state != CHAN_STATE_STARTED) {
LOG_ERR("reload is only supported on started channels");
return -EINVAL;
}
if (chan->cyclic_buffer) {
key = irq_lock();
ret = EDMA_CHAN_PRODUCE_CONSUME_B(chan, size);
irq_unlock(key);
if (ret < 0) {
LOG_ERR("chan %d buffer overflow/underrun", chan_id);
return ret;
}
}
return 0;
}
static int edma_get_attribute(const struct device *dev, uint32_t type, uint32_t *val)
{
switch (type) {
case DMA_ATTR_BUFFER_SIZE_ALIGNMENT:
case DMA_ATTR_BUFFER_ADDRESS_ALIGNMENT:
*val = CONFIG_DMA_NXP_EDMA_ALIGN;
break;
case DMA_ATTR_MAX_BLOCK_COUNT:
/* this is restricted to 1 because SG configurations are not supported */
*val = 1;
break;
default:
LOG_ERR("invalid attribute type: %d", type);
return -EINVAL;
}
return 0;
}
static bool edma_channel_filter(const struct device *dev, int chan_id, void *param)
{
int *requested_channel;
if (!param) {
return false;
}
requested_channel = param;
if (*requested_channel == chan_id && lookup_channel(dev, chan_id)) {
return true;
}
return false;
}
static const struct dma_driver_api edma_api = {
.reload = edma_reload,
.config = edma_config,
.start = edma_start,
.stop = edma_stop,
.suspend = edma_suspend,
.resume = edma_start,
.get_status = edma_get_status,
.get_attribute = edma_get_attribute,
.chan_filter = edma_channel_filter,
};
static int edma_init(const struct device *dev)
{
const struct edma_config *cfg;
struct edma_data *data;
mm_reg_t regmap;
data = dev->data;
cfg = dev->config;
/* map instance MMIO */
device_map(&regmap, cfg->regmap_phys, cfg->regmap_size, K_MEM_CACHE_NONE);
/* overwrite physical address set in the HAL configuration.
* We can down-cast the virtual address to a 32-bit address because
* we know we're working with 32-bit addresses only.
*/
data->hal_cfg->regmap = (uint32_t)POINTER_TO_UINT(regmap);
cfg->irq_config();
/* dma_request_channel() uses this variable to keep track of the
* available channels. As such, it needs to be initialized with NULL
* which signifies that all channels are initially available.
*/
data->channel_flags = ATOMIC_INIT(0);
data->ctx.atomic = &data->channel_flags;
data->ctx.dma_channels = data->hal_cfg->channels;
return 0;
}
/* a few comments about the BUILD_ASSERT statements:
* 1) dma-channels and valid-channels should be mutually exclusive.
* This means that you specify the one or the other. There's no real
* need to have both of them.
* 2) Number of channels should match the number of interrupts for
* said channels (TODO: what about error interrupts?)
* 3) The channel-mux property shouldn't be specified unless
* the eDMA is MUX-capable (signaled via the EDMA_HAS_CHAN_MUX
* configuration).
*/
#define EDMA_INIT(inst) \
\
BUILD_ASSERT(!DT_NODE_HAS_PROP(DT_INST(inst, DT_DRV_COMPAT), dma_channels) || \
!DT_NODE_HAS_PROP(DT_INST(inst, DT_DRV_COMPAT), valid_channels), \
"dma_channels and valid_channels are mutually exclusive"); \
\
BUILD_ASSERT(DT_INST_PROP_OR(inst, dma_channels, 0) == \
DT_NUM_IRQS(DT_INST(inst, DT_DRV_COMPAT)) || \
DT_INST_PROP_LEN_OR(inst, valid_channels, 0) == \
DT_NUM_IRQS(DT_INST(inst, DT_DRV_COMPAT)), \
"number of interrupts needs to match number of channels"); \
\
BUILD_ASSERT(DT_PROP_OR(DT_INST(inst, DT_DRV_COMPAT), hal_cfg_index, 0) < \
ARRAY_SIZE(s_edmaConfigs), \
"HAL configuration index out of bounds"); \
\
static struct edma_channel channels_##inst[] = EDMA_CHANNEL_ARRAY_GET(inst); \
\
static void interrupt_config_function_##inst(void) \
{ \
EDMA_CONNECT_INTERRUPTS(inst); \
} \
\
static struct edma_config edma_config_##inst = { \
.regmap_phys = DT_INST_REG_ADDR(inst), \
.regmap_size = DT_INST_REG_SIZE(inst), \
.irq_config = interrupt_config_function_##inst, \
.contiguous_channels = EDMA_CHANS_ARE_CONTIGUOUS(inst), \
}; \
\
static struct edma_data edma_data_##inst = { \
.channels = channels_##inst, \
.ctx.magic = DMA_MAGIC, \
.hal_cfg = &EDMA_HAL_CFG_GET(inst), \
}; \
\
DEVICE_DT_INST_DEFINE(inst, &edma_init, NULL, \
&edma_data_##inst, &edma_config_##inst, \
PRE_KERNEL_1, CONFIG_DMA_INIT_PRIORITY, \
&edma_api); \
DT_INST_FOREACH_STATUS_OKAY(EDMA_INIT);