zephyr/drivers/spi/spi_cc13xx_cc26xx.c
Gerard Marull-Paretas 1e0028ae3d drivers: spi: add spi_cs_is_gpio(_dt) helpers
Add spi_cs_is_gpio(_dt) helpers to check whether SPI CS is controlled by
GPIO or not. This both improves code readability and isolates SPI
internals.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2023-04-24 21:29:55 +02:00

334 lines
8.4 KiB
C

/*
* Copyright (c) 2019 Brett Witherspoon
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc13xx_cc26xx_spi
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_cc13xx_cc26xx);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <driverlib/prcm.h>
#include <driverlib/ssi.h>
#include <ti/drivers/Power.h>
#include <ti/drivers/power/PowerCC26X2.h>
#include "spi_context.h"
struct spi_cc13xx_cc26xx_config {
uint32_t base;
const struct pinctrl_dev_config *pcfg;
};
struct spi_cc13xx_cc26xx_data {
struct spi_context ctx;
};
#define CPU_FREQ DT_PROP(DT_PATH(cpus, cpu_0), clock_frequency)
static int spi_cc13xx_cc26xx_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_cc13xx_cc26xx_config *cfg = dev->config;
struct spi_cc13xx_cc26xx_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t prot;
int ret;
if (spi_context_configured(ctx, config)) {
return 0;
}
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Slave mode has not been implemented */
if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported");
return -ENOTSUP;
}
/* Word sizes other than 8 bits has not been implemented */
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -ENOTSUP;
}
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("Transfer LSB first mode is not supported");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Multiple lines are not supported");
return -EINVAL;
}
if (config->operation & SPI_CS_ACTIVE_HIGH && !spi_cs_is_gpio(config)) {
LOG_ERR("Active high CS requires emulation through a GPIO line.");
return -EINVAL;
}
if (config->frequency < 2000000) {
LOG_ERR("Frequencies lower than 2 MHz are not supported");
return -EINVAL;
}
if (2 * config->frequency > CPU_FREQ) {
LOG_ERR("Frequency greater than supported in master mode");
return -EINVAL;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
prot = SSI_FRF_MOTO_MODE_3;
} else {
prot = SSI_FRF_MOTO_MODE_2;
}
} else {
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
prot = SSI_FRF_MOTO_MODE_1;
} else {
prot = SSI_FRF_MOTO_MODE_0;
}
}
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("applying SPI pinctrl state failed");
return ret;
}
ctx->config = config;
/* Disable SSI before making configuration changes */
SSIDisable(cfg->base);
/* Configure SSI */
SSIConfigSetExpClk(cfg->base, CPU_FREQ, prot,
SSI_MODE_MASTER, config->frequency, 8);
if (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) {
sys_set_bit(cfg->base + SSI_O_CR1, 0);
}
/* Re-enable SSI after making configuration changes */
SSIEnable(cfg->base);
return 0;
}
static int spi_cc13xx_cc26xx_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_cc13xx_cc26xx_config *cfg = dev->config;
struct spi_cc13xx_cc26xx_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t txd, rxd;
int err;
spi_context_lock(ctx, false, NULL, NULL, config);
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
err = spi_cc13xx_cc26xx_configure(dev, config);
if (err) {
goto done;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(ctx, true);
do {
if (spi_context_tx_buf_on(ctx)) {
txd = *ctx->tx_buf;
} else {
txd = 0U;
}
SSIDataPut(cfg->base, txd);
spi_context_update_tx(ctx, 1, 1);
SSIDataGet(cfg->base, &rxd);
if (spi_context_rx_buf_on(ctx)) {
*ctx->rx_buf = rxd;
}
spi_context_update_rx(ctx, 1, 1);
} while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx));
spi_context_cs_control(ctx, false);
done:
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
spi_context_release(ctx, err);
return err;
}
static int spi_cc13xx_cc26xx_release(const struct device *dev,
const struct spi_config *config)
{
const struct spi_cc13xx_cc26xx_config *cfg = dev->config;
struct spi_cc13xx_cc26xx_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
if (!spi_context_configured(ctx, config)) {
return -EINVAL;
}
if (SSIBusy(cfg->base)) {
return -EBUSY;
}
spi_context_unlock_unconditionally(ctx);
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int spi_cc13xx_cc26xx_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct spi_cc13xx_cc26xx_config *config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
if (config->base == DT_INST_REG_ADDR(0)) {
Power_setDependency(PowerCC26XX_PERIPH_SSI0);
} else {
Power_setDependency(PowerCC26XX_PERIPH_SSI1);
}
break;
case PM_DEVICE_ACTION_SUSPEND:
SSIDisable(config->base);
/*
* Release power dependency
*/
if (config->base == DT_INST_REG_ADDR(0)) {
Power_releaseDependency(PowerCC26XX_PERIPH_SSI0);
} else {
Power_releaseDependency(PowerCC26XX_PERIPH_SSI1);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static const struct spi_driver_api spi_cc13xx_cc26xx_driver_api = {
.transceive = spi_cc13xx_cc26xx_transceive,
.release = spi_cc13xx_cc26xx_release,
};
#ifdef CONFIG_PM
#define SPI_CC13XX_CC26XX_POWER_SPI(n) \
do { \
/* Set Power dependencies & constraints */ \
if (DT_INST_REG_ADDR(n) == 0x40000000) { \
Power_setDependency(PowerCC26XX_PERIPH_SSI0); \
} else { \
Power_setDependency(PowerCC26XX_PERIPH_SSI1); \
} \
} while (false)
#else
#define SPI_CC13XX_CC26XX_POWER_SPI(n) \
do { \
uint32_t domain, periph; \
\
/* Enable UART power domain */ \
if (DT_INST_REG_ADDR(n) == 0x40000000) { \
domain = PRCM_DOMAIN_SERIAL; \
periph = PRCM_PERIPH_SSI0; \
} else { \
domain = PRCM_DOMAIN_PERIPH; \
periph = PRCM_PERIPH_SSI1; \
} \
/* Enable SSI##n power domain */ \
PRCMPowerDomainOn(domain); \
\
/* Enable SSI##n peripherals */ \
PRCMPeripheralRunEnable(periph); \
PRCMPeripheralSleepEnable(periph); \
PRCMPeripheralDeepSleepEnable(periph); \
\
/* Load PRCM settings */ \
PRCMLoadSet(); \
while (!PRCMLoadGet()) { \
continue; \
} \
\
/* SSI should not be accessed until power domain is on. */\
while (PRCMPowerDomainsAllOn(domain) != \
PRCM_DOMAIN_POWER_ON) { \
continue; \
} \
} while (false)
#endif
#define SPI_CC13XX_CC26XX_DEVICE_INIT(n) \
PM_DEVICE_DT_INST_DEFINE(n, spi_cc13xx_cc26xx_pm_action); \
\
DEVICE_DT_INST_DEFINE(n, \
spi_cc13xx_cc26xx_init_##n, \
PM_DEVICE_DT_INST_GET(n), \
&spi_cc13xx_cc26xx_data_##n, &spi_cc13xx_cc26xx_config_##n, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_cc13xx_cc26xx_driver_api)
#define SPI_CC13XX_CC26XX_INIT_FUNC(n) \
static int spi_cc13xx_cc26xx_init_##n(const struct device *dev) \
{ \
struct spi_cc13xx_cc26xx_data *data = dev->data; \
int err; \
SPI_CC13XX_CC26XX_POWER_SPI(n); \
\
err = spi_context_cs_configure_all(&data->ctx); \
if (err < 0) { \
return err; \
} \
\
spi_context_unlock_unconditionally(&data->ctx); \
\
return 0; \
}
#define SPI_CC13XX_CC26XX_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
SPI_CC13XX_CC26XX_INIT_FUNC(n) \
\
static const struct spi_cc13xx_cc26xx_config \
spi_cc13xx_cc26xx_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n) \
}; \
\
static struct spi_cc13xx_cc26xx_data \
spi_cc13xx_cc26xx_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_cc13xx_cc26xx_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_cc13xx_cc26xx_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
}; \
\
SPI_CC13XX_CC26XX_DEVICE_INIT(n);
DT_INST_FOREACH_STATUS_OKAY(SPI_CC13XX_CC26XX_INIT)