zephyr/drivers/spi/spi_dw.h
Rafał Kuźnia 8ec1e0cdaf drivers: spi_dw: add HSSI register layout
The Synopsys Designware SPI peripheral exists in two versions with
slightly different register layouts. Added a Kconfig option that makes the
driver compatible with the HSSI register layout.

Signed-off-by: Rafał Kuźnia <rafal.kuznia@nordicsemi.no>
2024-04-29 15:44:22 +02:00

316 lines
9.3 KiB
C

/* spi_dw.h - Designware SPI driver private definitions */
/*
* Copyright (c) 2015 Intel Corporation.
* Copyright (c) 2023 Synopsys, Inc. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_DRIVERS_SPI_SPI_DW_H_
#define ZEPHYR_DRIVERS_SPI_SPI_DW_H_
#include <string.h>
#include <zephyr/device.h>
#include <zephyr/drivers/spi.h>
#include "spi_context.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef void (*spi_dw_config_t)(void);
typedef uint32_t (*spi_dw_read_t)(uint8_t size, mm_reg_t addr, uint32_t off);
typedef void (*spi_dw_write_t)(uint8_t size, uint32_t data, mm_reg_t addr, uint32_t off);
typedef void (*spi_dw_set_bit_t)(uint8_t bit, mm_reg_t addr, uint32_t off);
typedef void (*spi_dw_clear_bit_t)(uint8_t bit, mm_reg_t addr, uint32_t off);
typedef int (*spi_dw_test_bit_t)(uint8_t bit, mm_reg_t addr, uint32_t off);
/* Private structures */
struct spi_dw_config {
DEVICE_MMIO_ROM;
uint32_t clock_frequency;
spi_dw_config_t config_func;
bool serial_target;
uint8_t fifo_depth;
uint8_t max_xfer_size;
#ifdef CONFIG_PINCTRL
const struct pinctrl_dev_config *pcfg;
#endif
spi_dw_read_t read_func;
spi_dw_write_t write_func;
spi_dw_set_bit_t set_bit_func;
spi_dw_clear_bit_t clear_bit_func;
spi_dw_test_bit_t test_bit_func;
};
struct spi_dw_data {
DEVICE_MMIO_RAM;
struct spi_context ctx;
uint8_t dfs; /* dfs in bytes: 1,2 or 4 */
uint8_t fifo_diff; /* cannot be bigger than FIFO depth */
};
/* Register operation functions */
#define DT_INST_NODE_PROP_NOT_OR(inst, prop) \
!DT_INST_PROP(inst, prop) ||
#define DT_ANY_INST_NOT_PROP_STATUS_OKAY(prop) \
(DT_INST_FOREACH_STATUS_OKAY_VARGS(DT_INST_NODE_PROP_NOT_OR, prop) 0)
#define DT_INST_NODE_PROP_AND_OR(inst, prop) \
DT_INST_PROP(inst, prop) ||
#define DT_ANY_INST_PROP_STATUS_OKAY(prop) \
(DT_INST_FOREACH_STATUS_OKAY_VARGS(DT_INST_NODE_PROP_AND_OR, prop) 0)
#if DT_ANY_INST_PROP_STATUS_OKAY(aux_reg)
static uint32_t aux_reg_read(uint8_t size, mm_reg_t addr, uint32_t off)
{
ARG_UNUSED(size);
return sys_in32(addr + off/4);
}
static void aux_reg_write(uint8_t size, uint32_t data, mm_reg_t addr, uint32_t off)
{
ARG_UNUSED(size);
sys_out32(data, addr + off/4);
}
static void aux_reg_set_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
sys_io_set_bit(addr + off/4, bit);
}
static void aux_reg_clear_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
sys_io_clear_bit(addr + off/4, bit);
}
static int aux_reg_test_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
return sys_io_test_bit(addr + off/4, bit);
}
#endif
#if DT_ANY_INST_NOT_PROP_STATUS_OKAY(aux_reg)
static uint32_t reg_read(uint8_t size, mm_reg_t addr, uint32_t off)
{
switch (size) {
case 8:
return sys_read8(addr + off);
case 16:
return sys_read16(addr + off);
case 32:
return sys_read32(addr + off);
default:
return -EINVAL;
}
}
static void reg_write(uint8_t size, uint32_t data, mm_reg_t addr, uint32_t off)
{
switch (size) {
case 8:
sys_write8(data, addr + off); break;
case 16:
sys_write16(data, addr + off); break;
case 32:
sys_write32(data, addr + off); break;
default:
break;
}
}
static void reg_set_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
sys_set_bit(addr + off, bit);
}
static void reg_clear_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
sys_clear_bit(addr + off, bit);
}
static int reg_test_bit(uint8_t bit, mm_reg_t addr, uint32_t off)
{
return sys_test_bit(addr + off, bit);
}
#endif
/* Helper macros */
#define SPI_DW_CLK_DIVIDER(clock_freq, ssi_clk_hz) \
((clock_freq / ssi_clk_hz) & 0xFFFF)
#define DEFINE_MM_REG_READ(__reg, __off, __sz) \
static inline uint32_t read_##__reg(const struct device *dev) \
{ \
const struct spi_dw_config *info = dev->config; \
return info->read_func(__sz, (mm_reg_t)DEVICE_MMIO_GET(dev), __off); \
}
#define DEFINE_MM_REG_WRITE(__reg, __off, __sz) \
static inline void write_##__reg(const struct device *dev, uint32_t data)\
{ \
const struct spi_dw_config *info = dev->config; \
info->write_func(__sz, data, (mm_reg_t)DEVICE_MMIO_GET(dev), __off); \
}
#define DEFINE_SET_BIT_OP(__reg_bit, __reg_off, __bit) \
static inline void set_bit_##__reg_bit(const struct device *dev) \
{ \
const struct spi_dw_config *info = dev->config; \
info->set_bit_func(__bit, (mm_reg_t)DEVICE_MMIO_GET(dev), __reg_off); \
}
#define DEFINE_CLEAR_BIT_OP(__reg_bit, __reg_off, __bit) \
static inline void clear_bit_##__reg_bit(const struct device *dev)\
{ \
const struct spi_dw_config *info = dev->config; \
info->clear_bit_func(__bit, (mm_reg_t)DEVICE_MMIO_GET(dev), __reg_off); \
}
#define DEFINE_TEST_BIT_OP(__reg_bit, __reg_off, __bit) \
static inline int test_bit_##__reg_bit(const struct device *dev)\
{ \
const struct spi_dw_config *info = dev->config; \
return info->test_bit_func(__bit, (mm_reg_t)DEVICE_MMIO_GET(dev), __reg_off); \
}
/* Common registers settings, bits etc... */
/* CTRLR0 settings */
#if !IS_ENABLED(CONFIG_SPI_DW_HSSI)
#define DW_SPI_CTRLR0_SCPH_BIT (6)
#define DW_SPI_CTRLR0_SCPOL_BIT (7)
#define DW_SPI_CTRLR0_TMOD_SHIFT (8)
#define DW_SPI_CTRLR0_SLV_OE_BIT (10)
#define DW_SPI_CTRLR0_SRL_BIT (11)
#else
/* The register layout is different in the HSSI variant */
#define DW_SPI_CTRLR0_SCPH_BIT (8)
#define DW_SPI_CTRLR0_SCPOL_BIT (9)
#define DW_SPI_CTRLR0_TMOD_SHIFT (10)
#define DW_SPI_CTRLR0_SLV_OE_BIT (12)
#define DW_SPI_CTRLR0_SRL_BIT (13)
#endif
#define DW_SPI_CTRLR0_SCPH BIT(DW_SPI_CTRLR0_SCPH_BIT)
#define DW_SPI_CTRLR0_SCPOL BIT(DW_SPI_CTRLR0_SCPOL_BIT)
#define DW_SPI_CTRLR0_SRL BIT(DW_SPI_CTRLR0_SRL_BIT)
#define DW_SPI_CTRLR0_SLV_OE BIT(DW_SPI_CTRLR0_SLV_OE_BIT)
#define DW_SPI_CTRLR0_TMOD_TX_RX (0)
#define DW_SPI_CTRLR0_TMOD_TX (1 << DW_SPI_CTRLR0_TMOD_SHIFT)
#define DW_SPI_CTRLR0_TMOD_RX (2 << DW_SPI_CTRLR0_TMOD_SHIFT)
#define DW_SPI_CTRLR0_TMOD_EEPROM (3 << DW_SPI_CTRLR0_TMOD_SHIFT)
#define DW_SPI_CTRLR0_TMOD_RESET (3 << DW_SPI_CTRLR0_TMOD_SHIFT)
#define DW_SPI_CTRLR0_DFS_16(__bpw) ((__bpw) - 1)
#define DW_SPI_CTRLR0_DFS_32(__bpw) (((__bpw) - 1) << 16)
/* 0x38 represents the bits 8, 16 and 32. Knowing that 24 is bits 8 and 16
* These are the bits were when you divide by 8, you keep the result as it is.
* For all the other ones, 4 to 7, 9 to 15, etc... you need a +1,
* since on such division it takes only the result above 0
*/
#define SPI_WS_TO_DFS(__bpw) (((__bpw) & ~0x38) ? \
(((__bpw) / 8) + 1) : \
((__bpw) / 8))
/* SSIENR bits */
#define DW_SPI_SSIENR_SSIEN_BIT (0)
/* CLK_ENA bits */
#define DW_SPI_CLK_ENA_BIT (0)
/* SR bits and values */
#define DW_SPI_SR_BUSY_BIT (0)
#define DW_SPI_SR_TFNF_BIT (1)
#define DW_SPI_SR_RFNE_BIT (3)
/* IMR bits (ISR valid as well) */
#define DW_SPI_IMR_TXEIM_BIT (0)
#define DW_SPI_IMR_TXOIM_BIT (1)
#define DW_SPI_IMR_RXUIM_BIT (2)
#define DW_SPI_IMR_RXOIM_BIT (3)
#define DW_SPI_IMR_RXFIM_BIT (4)
#define DW_SPI_IMR_MSTIM_BIT (5)
/* IMR values */
#define DW_SPI_IMR_TXEIM BIT(DW_SPI_IMR_TXEIM_BIT)
#define DW_SPI_IMR_TXOIM BIT(DW_SPI_IMR_TXOIM_BIT)
#define DW_SPI_IMR_RXUIM BIT(DW_SPI_IMR_RXUIM_BIT)
#define DW_SPI_IMR_RXOIM BIT(DW_SPI_IMR_RXOIM_BIT)
#define DW_SPI_IMR_RXFIM BIT(DW_SPI_IMR_RXFIM_BIT)
#define DW_SPI_IMR_MSTIM BIT(DW_SPI_IMR_MSTIM_BIT)
/* ISR values (same as IMR) */
#define DW_SPI_ISR_TXEIS DW_SPI_IMR_TXEIM
#define DW_SPI_ISR_TXOIS DW_SPI_IMR_TXOIM
#define DW_SPI_ISR_RXUIS DW_SPI_IMR_RXUIM
#define DW_SPI_ISR_RXOIS DW_SPI_IMR_RXOIM
#define DW_SPI_ISR_RXFIS DW_SPI_IMR_RXFIM
#define DW_SPI_ISR_MSTIS DW_SPI_IMR_MSTIM
/* Error interrupt */
#define DW_SPI_ISR_ERRORS_MASK (DW_SPI_ISR_TXOIS | \
DW_SPI_ISR_RXUIS | \
DW_SPI_ISR_RXOIS | \
DW_SPI_ISR_MSTIS)
/* ICR Bit */
#define DW_SPI_SR_ICR_BIT (0)
/* Interrupt mask (IMR) */
#define DW_SPI_IMR_MASK (0x0)
#define DW_SPI_IMR_UNMASK (DW_SPI_IMR_TXEIM | \
DW_SPI_IMR_TXOIM | \
DW_SPI_IMR_RXUIM | \
DW_SPI_IMR_RXOIM | \
DW_SPI_IMR_RXFIM)
#define DW_SPI_IMR_MASK_TX (~(DW_SPI_IMR_TXEIM | \
DW_SPI_IMR_TXOIM))
#define DW_SPI_IMR_MASK_RX (~(DW_SPI_IMR_RXUIM | \
DW_SPI_IMR_RXOIM | \
DW_SPI_IMR_RXFIM))
/*
* Including the right register definition file
* SoC SPECIFIC!
*
* The file included next uses the DEFINE_MM_REG macros above to
* declare functions. In this situation we'll leave the containing
* extern "C" active in C++ compilations.
*/
#include "spi_dw_regs.h"
#define z_extra_clock_on(...)
#define z_extra_clock_off(...)
/* Based on those macros above, here are common helpers for some registers */
DEFINE_MM_REG_READ(txflr, DW_SPI_REG_TXFLR, 32)
DEFINE_MM_REG_READ(rxflr, DW_SPI_REG_RXFLR, 32)
#ifdef CONFIG_SPI_DW_ACCESS_WORD_ONLY
DEFINE_MM_REG_WRITE(baudr, DW_SPI_REG_BAUDR, 32)
DEFINE_MM_REG_WRITE(imr, DW_SPI_REG_IMR, 32)
DEFINE_MM_REG_READ(imr, DW_SPI_REG_IMR, 32)
DEFINE_MM_REG_READ(isr, DW_SPI_REG_ISR, 32)
#else
DEFINE_MM_REG_WRITE(baudr, DW_SPI_REG_BAUDR, 16)
DEFINE_MM_REG_WRITE(imr, DW_SPI_REG_IMR, 8)
DEFINE_MM_REG_READ(imr, DW_SPI_REG_IMR, 8)
DEFINE_MM_REG_READ(isr, DW_SPI_REG_ISR, 8)
#endif
DEFINE_SET_BIT_OP(ssienr, DW_SPI_REG_SSIENR, DW_SPI_SSIENR_SSIEN_BIT)
DEFINE_CLEAR_BIT_OP(ssienr, DW_SPI_REG_SSIENR, DW_SPI_SSIENR_SSIEN_BIT)
DEFINE_TEST_BIT_OP(ssienr, DW_SPI_REG_SSIENR, DW_SPI_SSIENR_SSIEN_BIT)
DEFINE_TEST_BIT_OP(sr_busy, DW_SPI_REG_SR, DW_SPI_SR_BUSY_BIT)
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_DRIVERS_SPI_SPI_DW_H_ */