zephyr/drivers/spi/spi_mcux_dspi.c
Tom Burdick 4180d70439 dma: Fix error_callback enable/disable confusion
Previously the logic was inverted for error_callback_en where 0 was
enablement and 1 was disable. This was likely done so that the default,
sensibly so, was to enable the error callback if possible. A variety of
in tree users had confused the enable/disable value.

Change the name of the flag to error_callback_dis where the default
remains 0 (do not disable the callback!) and correct in tree uses of the
flag where it seemed incorrect.

Signed-off-by: Tom Burdick <thomas.burdick@intel.com>
2024-04-11 17:08:10 -04:00

933 lines
26 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright (c) 2017, 2020-2021, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kinetis_dspi
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_dspi.h>
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_DSPI_MCUX_EDMA
#include <zephyr/drivers/dma.h>
#include <fsl_edma.h>
#endif
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_mcux_dspi);
#include "spi_context.h"
#ifdef CONFIG_DSPI_MCUX_EDMA
struct spi_edma_config {
const struct device *dma_dev;
int32_t state;
uint32_t dma_channel;
void (*irq_call_back)(void);
struct dma_config dma_cfg;
};
#endif
struct spi_mcux_config {
SPI_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t pcs_sck_delay;
uint32_t sck_pcs_delay;
uint32_t transfer_delay;
uint32_t which_ctar;
uint32_t samplePoint;
bool enable_continuous_sck;
bool enable_rxfifo_overwrite;
bool enable_modified_timing_format;
bool is_dma_chn_shared;
const struct pinctrl_dev_config *pincfg;
};
struct spi_mcux_data {
const struct device *dev;
dspi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
#ifdef CONFIG_DSPI_MCUX_EDMA
struct dma_block_config tx_dma_block;
struct dma_block_config tx_dma_block_end;
struct dma_block_config rx_dma_block;
struct spi_edma_config rx_dma_config;
struct spi_edma_config tx_dma_config;
int frame_size;
int tx_transfer_count;
int rx_transfer_count;
uint32_t which_pcs;
struct spi_buf *inner_tx_buffer;
struct spi_buf *inner_rx_buffer;
#endif
};
#ifdef CONFIG_DSPI_MCUX_EDMA
static int get_size_byte_by_frame_size(int len, int frame_size)
{
if (frame_size == 8) {
return (len * 4);
} else { /* frame_size == 16*/
return (len * 2);
}
}
#endif
static int spi_mcux_transfer_next_packet(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
struct spi_context *ctx = &data->ctx;
dspi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
LOG_DBG("spi transceive done");
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
return 0;
}
#ifdef CONFIG_DSPI_MCUX_EDMA
if (!config->is_dma_chn_shared) {
/* start dma directly in not shared mode */
if (ctx->tx_len != 0) {
int ret = 0;
LOG_DBG("Starting DMA Ch%u",
data->tx_dma_config.dma_channel);
ret = dma_start(data->tx_dma_config.dma_dev,
data->tx_dma_config.dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)",
data->tx_dma_config.dma_channel, ret);
return ret;
}
}
if (ctx->rx_len != 0) {
int ret = 0;
LOG_DBG("Starting DMA Ch%u",
data->rx_dma_config.dma_channel);
ret = dma_start(data->rx_dma_config.dma_dev,
data->rx_dma_config.dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)",
data->rx_dma_config.dma_channel, ret);
return ret;
}
}
}
DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable |
(uint32_t)kDSPI_TxDmaEnable);
DSPI_StartTransfer(base);
if (config->is_dma_chn_shared) {
/* in master mode start tx */
dma_start(data->tx_dma_config.dma_dev, data->tx_dma_config.dma_channel);
/* TBD kDSPI_TxFifoFillRequestFlag */
DSPI_EnableInterrupts(base,
(uint32_t)kDSPI_RxFifoDrainRequestFlag);
LOG_DBG("trigger tx to start master");
}
return 0;
#endif
transfer.configFlags = kDSPI_MasterCtar0 | kDSPI_MasterPcsContinuous |
(ctx->config->slave << DSPI_MASTER_PCS_SHIFT);
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
}
if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
}
data->transfer_len = transfer.dataSize;
status = DSPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start on %s: %d", dev->name, status);
return status == kDSPI_Busy ? -EBUSY : -EINVAL;
}
return 0;
}
static void spi_mcux_isr(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
#ifdef CONFIG_DSPI_MCUX_EDMA
LOG_DBG("isr is called");
if (0U != (DSPI_GetStatusFlags(base) &
(uint32_t)kDSPI_RxFifoDrainRequestFlag)) {
/* start rx */
dma_start(data->rx_dma_config.dma_dev, data->rx_dma_config.dma_channel);
}
#else
DSPI_MasterTransferHandleIRQ(base, &data->handle);
#endif
}
#ifdef CONFIG_DSPI_MCUX_EDMA
static void mcux_init_inner_buffer_with_cmd(const struct device *dev,
uint16_t dummy)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
dspi_command_data_config_t commandStruct;
uint32_t *pbuf = data->inner_tx_buffer->buf;
uint32_t command;
int i = 0;
commandStruct.whichPcs = data->which_pcs;
commandStruct.isEndOfQueue = false;
commandStruct.clearTransferCount = false;
commandStruct.whichCtar = config->which_ctar;
commandStruct.isPcsContinuous = config->enable_continuous_sck;
command = DSPI_MasterGetFormattedCommand(&(commandStruct));
for (i = 0; i < data->inner_tx_buffer->len / 4; i++) {
*pbuf = command | dummy;
pbuf++;
}
}
/**
* @brief update the tx data to internal buffer with command embedded,
* if no tx data, use dummy value.
* tx data frame size shall not bigger than 16 bits
* the overall transfer data in one batch shall not larger than FIFO size
*/
static int mcux_spi_context_data_update(const struct device *dev)
{
struct spi_mcux_data *data = dev->data;
uint32_t frame_size_bit = data->frame_size;
struct spi_context *ctx = (struct spi_context *)&data->ctx;
uint32_t *pcdata = data->inner_tx_buffer->buf;
if (frame_size_bit > FSL_FEATURE_DSPI_MAX_DATA_WIDTH) {
/* TODO need set to continues PCS to have frame size larger than 16 */
LOG_ERR("frame size is larger than 16");
return -EINVAL;
}
#ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
/* only used when use inner buffer to translate tx format */
if (CONFIG_MCUX_DSPI_BUFFER_SIZE * 4 <
get_size_byte_by_frame_size(ctx->current_tx->len, frame_size_bit)) {
/* inner buffer can not hold all transferred data */
LOG_ERR("inner buffer is too small to hold all data esp %d, act %d",
ctx->current_tx->len * 8 / frame_size_bit,
(CONFIG_MCUX_DSPI_BUFFER_SIZE * 4 / frame_size_bit));
return -EINVAL;
}
if (frame_size_bit == 8) {
int i = 0;
uint8_t *pdata = (uint8_t *)ctx->tx_buf;
if (pdata) {
do {
uint16_t temp_data = 0;
temp_data = *pdata;
pdata++;
*pcdata |= temp_data;
pcdata++;
i++;
} while (i < ctx->current_tx->len &&
i < data->inner_tx_buffer->len);
}
/* indicate it is the last data */
if (i == ctx->current_tx->len) {
--pcdata;
*pcdata |= SPI_PUSHR_EOQ(1) | SPI_PUSHR_CTCNT(1);
LOG_DBG("last pcdata is %x", *pcdata);
}
} else if (frame_size_bit == 16) {
int i = 0;
uint16_t *pdata = (uint16_t *)ctx->tx_buf;
if (pdata) {
do {
*pcdata |= *pdata;
LOG_DBG("pcdata %d is %x", i / 2, *pcdata);
pdata++;
pcdata++;
i += 2;
} while (i < ctx->current_tx->len &&
i < data->inner_tx_buffer->len);
}
if (i == ctx->current_tx->len) {
/* indicate it is the last data */
--pcdata;
*pcdata |= SPI_PUSHR_EOQ(1);
LOG_DBG("last pcdata is %x", *pcdata);
}
} else {
/* TODO for other size */
LOG_ERR("DMA mode only support 8/16 bits frame size");
return -EINVAL;
}
#endif /* CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA */
return 0;
}
static int update_tx_dma(const struct device *dev)
{
uint32_t tx_size = 0;
uint8_t *tx_buf;
struct spi_mcux_data *data = dev->data;
const struct spi_mcux_config *config = dev->config;
SPI_Type *base = config->base;
uint32_t frame_size = data->frame_size;
bool rx_only = false;
DSPI_DisableDMA(base, (uint32_t)kDSPI_TxDmaEnable);
if (data->ctx.tx_len == 0) {
LOG_DBG("empty data no need to setup DMA");
return 0;
}
if (data->ctx.current_tx && data->ctx.current_tx->len > 0 &&
data->ctx.current_tx->buf != NULL) {
#ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
tx_size = get_size_byte_by_frame_size(data->transfer_len,
frame_size);
tx_buf = data->inner_tx_buffer->buf;
#else
/* expect the buffer is pre-set */
tx_size = get_size_byte_by_frame_size(data->ctx.current_tx->len,
frame_size);
LOG_DBG("tx size is %d", tx_size);
tx_buf = data->ctx.current_tx->buf;
#endif
} else {
tx_buf = data->inner_tx_buffer->buf;
tx_size = get_size_byte_by_frame_size(data->transfer_len,
frame_size);
rx_only = true;
LOG_DBG("rx only 0x%x, size %d", (uint32_t)tx_buf, tx_size);
}
data->tx_dma_block.source_address = (uint32_t)tx_buf;
data->tx_dma_block.dest_address =
DSPI_MasterGetTxRegisterAddress(base);
data->tx_dma_block.next_block = NULL;
if (config->is_dma_chn_shared) {
/* transfer FIFO size data */
data->tx_dma_block.block_size = 4;
} else {
data->tx_dma_block.block_size = tx_size;
}
data->tx_dma_config.dma_cfg.user_data = (void *) dev;
dma_config(data->tx_dma_config.dma_dev, data->tx_dma_config.dma_channel,
(struct dma_config *)&data->tx_dma_config.dma_cfg);
return 0;
}
static int update_rx_dma(const struct device *dev)
{
uint32_t rx_size = 0;
uint8_t *rx_buf;
struct spi_mcux_data *data = dev->data;
const struct spi_mcux_config *config = dev->config;
SPI_Type *base = config->base;
uint32_t frame_size_byte = (data->frame_size >> 3);
bool tx_only = false;
DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
if (data->ctx.rx_len == 0) {
LOG_DBG("empty data no need to setup DMA");
return 0;
}
if (data->ctx.current_rx) {
rx_size = data->transfer_len;
if (data->ctx.rx_buf != NULL) {
rx_buf = data->ctx.rx_buf;
} else {
rx_buf = data->inner_rx_buffer->buf;
}
} else {
/* tx only */
rx_buf = data->inner_rx_buffer->buf;
rx_size = data->transfer_len;
tx_only = true;
LOG_DBG("tx only 0x%x, size %d", (uint32_t)rx_buf, rx_size);
}
if (config->is_dma_chn_shared) {
if (data->ctx.rx_len == 1) {
/* do not link tx on last frame*/
LOG_DBG("do not link tx/rx channel for last one");
data->rx_dma_config.dma_cfg.source_chaining_en = 0;
data->rx_dma_config.dma_cfg.dest_chaining_en = 0;
} else {
LOG_DBG("shared mux mode, link tx/rx channel");
data->rx_dma_config.dma_cfg.source_chaining_en = 1;
data->rx_dma_config.dma_cfg.dest_chaining_en = 1;
data->rx_dma_config.dma_cfg.linked_channel =
data->tx_dma_config.dma_channel;
}
data->rx_dma_block.dest_address = (uint32_t)rx_buf;
data->rx_dma_block.source_address =
DSPI_GetRxRegisterAddress(base);
/* do once in share mode */
data->rx_dma_block.block_size = frame_size_byte;
data->rx_dma_config.dma_cfg.source_burst_length =
frame_size_byte;
data->rx_dma_config.dma_cfg.dest_burst_length = frame_size_byte;
data->rx_dma_config.dma_cfg.source_data_size = frame_size_byte;
data->rx_dma_config.dma_cfg.dest_data_size = frame_size_byte;
} else {
data->rx_dma_block.dest_address = (uint32_t)rx_buf;
data->rx_dma_block.source_address =
DSPI_GetRxRegisterAddress(base);
data->rx_dma_block.block_size = rx_size;
data->rx_dma_config.dma_cfg.source_burst_length =
frame_size_byte;
data->rx_dma_config.dma_cfg.dest_burst_length = frame_size_byte;
data->rx_dma_config.dma_cfg.source_data_size = frame_size_byte;
data->rx_dma_config.dma_cfg.dest_data_size = frame_size_byte;
}
data->rx_dma_config.dma_cfg.user_data = (void *) dev;
dma_config(data->rx_dma_config.dma_dev, data->rx_dma_config.dma_channel,
(struct dma_config *)&data->rx_dma_config.dma_cfg);
return 0;
}
static int configure_dma(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
if (config->is_dma_chn_shared) {
LOG_DBG("shard DMA request");
}
update_tx_dma(dev);
update_rx_dma(dev);
return 0;
}
static void dma_callback(const struct device *dma_dev, void *callback_arg,
uint32_t channel, int error_code)
{
const struct device *dev = (const struct device *)callback_arg;
const struct spi_mcux_config *config = dev->config;
SPI_Type *base = config->base;
struct spi_mcux_data *data = dev->data;
LOG_DBG("=dma call back @channel %d=", channel);
if (error_code < 0) {
LOG_ERR("error happened no callback process %d", error_code);
return;
}
if (channel == data->tx_dma_config.dma_channel) {
LOG_DBG("ctx.tx_len is %d", data->ctx.tx_len);
LOG_DBG("tx count %d", data->ctx.tx_count);
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
LOG_DBG("tx count %d", data->ctx.tx_count);
LOG_DBG("tx buf/len %p/%zu", data->ctx.tx_buf,
data->ctx.tx_len);
data->tx_transfer_count++;
/* tx done */
} else {
LOG_DBG("ctx.rx_len is %d", data->ctx.rx_len);
LOG_DBG("rx count %d", data->ctx.rx_count);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
LOG_DBG("rx count %d", data->ctx.rx_count);
/* setup the inner tx buffer */
LOG_DBG("rx buf/len %p/%zu", data->ctx.rx_buf,
data->ctx.rx_len);
data->rx_transfer_count++;
}
if (data->tx_transfer_count == data->rx_transfer_count) {
LOG_DBG("start next packet");
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base,
(uint32_t)kDSPI_AllStatusFlag);
mcux_init_inner_buffer_with_cmd(dev, 0);
mcux_spi_context_data_update(dev);
if (config->is_dma_chn_shared) {
data->transfer_len = data->frame_size >> 3;
} else {
if (data->ctx.tx_len == 0) {
data->transfer_len = data->ctx.rx_len;
} else if (data->ctx.rx_len == 0) {
data->transfer_len = data->ctx.tx_len;
} else {
data->transfer_len =
data->ctx.tx_len > data->ctx.rx_len ?
data->ctx.rx_len :
data->ctx.tx_len;
}
}
update_tx_dma(dev);
update_rx_dma(dev);
spi_mcux_transfer_next_packet(dev);
} else if (data->ctx.rx_len == 0 && data->ctx.tx_len == 0) {
LOG_DBG("end of transfer");
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base,
(uint32_t)kDSPI_AllStatusFlag);
data->transfer_len = 0;
spi_mcux_transfer_next_packet(dev);
}
LOG_DBG("TX/RX DMA callback done");
}
#else
static void spi_mcux_master_transfer_callback(SPI_Type *base,
dspi_master_handle_t *handle, status_t status, void *userData)
{
struct spi_mcux_data *data = userData;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(data->dev);
}
#endif /* CONFIG_DSPI_MCUX_EDMA */
static int spi_mcux_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
dspi_master_config_t master_config;
uint32_t clock_freq;
uint32_t word_size;
dspi_master_ctar_config_t *ctar_config = &master_config.ctarConfig;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
DSPI_MasterGetDefaultConfig(&master_config);
master_config.whichPcs = 1U << spi_cfg->slave;
master_config.whichCtar = config->which_ctar;
master_config.pcsActiveHighOrLow =
(spi_cfg->operation & SPI_CS_ACTIVE_HIGH) ?
kDSPI_PcsActiveHigh :
kDSPI_PcsActiveLow;
master_config.samplePoint = config->samplePoint;
master_config.enableContinuousSCK = config->enable_continuous_sck;
master_config.enableRxFifoOverWrite = config->enable_rxfifo_overwrite;
master_config.enableModifiedTimingFormat =
config->enable_modified_timing_format;
if (spi_cfg->slave > FSL_FEATURE_DSPI_CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave, FSL_FEATURE_DSPI_CHIP_SELECT_COUNT);
return -EINVAL;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > FSL_FEATURE_DSPI_MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, FSL_FEATURE_DSPI_MAX_DATA_WIDTH);
return -EINVAL;
}
ctar_config->bitsPerFrame = word_size;
ctar_config->cpol =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kDSPI_ClockPolarityActiveLow
: kDSPI_ClockPolarityActiveHigh;
ctar_config->cpha =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kDSPI_ClockPhaseSecondEdge
: kDSPI_ClockPhaseFirstEdge;
ctar_config->direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kDSPI_LsbFirst
: kDSPI_MsbFirst;
ctar_config->baudRate = spi_cfg->frequency;
ctar_config->pcsToSckDelayInNanoSec = config->pcs_sck_delay;
ctar_config->lastSckToPcsDelayInNanoSec = config->sck_pcs_delay;
ctar_config->betweenTransferDelayInNanoSec = config->transfer_delay;
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LOG_DBG("clock_freq is %d", clock_freq);
DSPI_MasterInit(base, &master_config, clock_freq);
#ifdef CONFIG_DSPI_MCUX_EDMA
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
/* record frame_size setting for DMA */
data->frame_size = word_size;
/* keep the pcs settings */
data->which_pcs = 1U << spi_cfg->slave;
#ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
mcux_init_inner_buffer_with_cmd(dev, 0);
#endif
#else
DSPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_master_transfer_callback,
data);
DSPI_SetDummyData(base, 0);
#endif
data->ctx.config = spi_cfg;
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_mcux_data *data = dev->data;
int ret;
#ifdef CONFIG_DSPI_MCUX_EDMA
const struct spi_mcux_config *config = dev->config;
SPI_Type *base = config->base;
#endif
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
#ifdef CONFIG_DSPI_MCUX_EDMA
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
/* setup the tx buffer with end */
mcux_init_inner_buffer_with_cmd(dev, 0);
mcux_spi_context_data_update(dev);
if (config->is_dma_chn_shared) {
data->transfer_len = data->frame_size >> 3;
} else {
data->transfer_len = data->ctx.tx_len > data->ctx.rx_len ?
data->ctx.rx_len :
data->ctx.tx_len;
}
data->tx_transfer_count = 0;
data->rx_transfer_count = 0;
configure_dma(dev);
#endif
ret = spi_mcux_transfer_next_packet(dev);
if (ret) {
goto out;
}
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(const struct device *dev)
{
int err;
struct spi_mcux_data *data = dev->data;
const struct spi_mcux_config *config = dev->config;
#ifdef CONFIG_DSPI_MCUX_EDMA
enum dma_channel_filter spi_filter = DMA_CHANNEL_NORMAL;
const struct device *dma_dev;
dma_dev = data->rx_dma_config.dma_dev;
data->rx_dma_config.dma_channel =
dma_request_channel(dma_dev, (void *)&spi_filter);
dma_dev = data->tx_dma_config.dma_dev;
data->tx_dma_config.dma_channel =
dma_request_channel(dma_dev, (void *)&spi_filter);
#else
config->irq_config_func(dev);
#endif
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err != 0) {
return err;
}
data->dev = dev;
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
.release = spi_mcux_release,
};
/* if a then b otherwise return 1 */
#define _UTIL_AND2(a, b) COND_CODE_1(UTIL_BOOL(a), (b), (1))
#ifdef CONFIG_DSPI_MCUX_EDMA
#define TX_BUFFER(id) \
static uint32_t \
edma_tx_buffer_##id[CONFIG_MCUX_DSPI_BUFFER_SIZE >> 2]; \
static struct spi_buf spi_edma_tx_buffer_##id = { \
.buf = edma_tx_buffer_##id, \
.len = CONFIG_MCUX_DSPI_BUFFER_SIZE, \
}
#define RX_BUFFER(id) \
static uint32_t \
edma_rx_buffer_##id[CONFIG_MCUX_DSPI_BUFFER_SIZE >> 2]; \
static struct spi_buf spi_edma_rx_buffer_##id = { \
.buf = edma_rx_buffer_##id, \
.len = CONFIG_MCUX_DSPI_BUFFER_SIZE, \
}
#define TX_DMA_CONFIG(id) \
.inner_tx_buffer = &spi_edma_tx_buffer_##id, \
.tx_dma_config = { \
.dma_dev = \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
.dma_cfg = { \
.source_burst_length = 4, \
.dest_burst_length = 4, \
.source_data_size = 4, \
.dest_data_size = 4, \
.dma_callback = dma_callback, \
.complete_callback_en = 1, \
.error_callback_dis = 0, \
.block_count = 1, \
.head_block = &spi_mcux_data_##id.tx_dma_block, \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
id, tx, source), \
}, \
},
#define RX_DMA_CONFIG(id) \
.inner_rx_buffer = &spi_edma_rx_buffer_##id, \
.rx_dma_config = { \
.dma_dev = \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
.dma_cfg = { \
.source_burst_length = 2, \
.dest_burst_length = 2, \
.source_data_size = 2, \
.dest_data_size = 2, \
.dma_callback = dma_callback, \
.complete_callback_en = 1, \
.error_callback_dis = 0, \
.block_count = \
_UTIL_AND2(DT_INST_NODE_HAS_PROP( \
id, nxp_rx_tx_chn_share), 2), \
.head_block = &spi_mcux_data_##id.rx_dma_block, \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
id, rx, source), \
}, \
},
#else
#define TX_BUFFER(id)
#define RX_BUFFER(id)
#define TX_DMA_CONFIG(id)
#define RX_DMA_CONFIG(id)
#endif
#define SPI_MCUX_DSPI_DEVICE(id) \
PINCTRL_DT_INST_DEFINE(id); \
static void spi_mcux_config_func_##id(const struct device *dev);\
TX_BUFFER(id); \
RX_BUFFER(id); \
static struct spi_mcux_data spi_mcux_data_##id = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \
TX_DMA_CONFIG(id) RX_DMA_CONFIG(id) \
}; \
static const struct spi_mcux_config spi_mcux_config_##id = { \
.base = (SPI_Type *)DT_INST_REG_ADDR(id), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name), \
.irq_config_func = spi_mcux_config_func_##id, \
.pcs_sck_delay = \
DT_INST_PROP_OR(id, pcs_sck_delay, 0), \
.sck_pcs_delay = \
DT_INST_PROP_OR(id, sck_pcs_delay, 0), \
.transfer_delay = \
DT_INST_PROP_OR(id, transfer_delay, 0), \
.which_ctar = \
DT_INST_PROP_OR(id, ctar, 0), \
.samplePoint = \
DT_INST_PROP_OR(id, sample_point, 0), \
.enable_continuous_sck = \
DT_INST_PROP(id, continuous_sck), \
.enable_rxfifo_overwrite = \
DT_INST_PROP(id, rx_fifo_overwrite), \
.enable_modified_timing_format = \
DT_INST_PROP(id, modified_timing_format), \
.is_dma_chn_shared = \
DT_INST_PROP(id, nxp_rx_tx_chn_share), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
}; \
DEVICE_DT_INST_DEFINE(id, \
&spi_mcux_init, \
NULL, \
&spi_mcux_data_##id, \
&spi_mcux_config_##id, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_mcux_driver_api); \
static void spi_mcux_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
spi_mcux_isr, DEVICE_DT_INST_GET(id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
}
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_DSPI_DEVICE)