zephyr/drivers/spi/spi_mcux_lpspi.c
Dipak Shetty c8e301ad78 drivers: spi: spi_mcux_lpspi.c: remove redundant assignments
Redundant kLPSPI_MasterPcsContinuous transfer config flag
is eliminated since this is set earlier.

Signed-off-by: Dipak Shetty <dipak.shetty@zeiss.com>
2024-04-18 08:06:42 -07:00

980 lines
27 KiB
C

/*
* Copyright 2018, 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_lpspi
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_lpspi.h>
#if CONFIG_NXP_LP_FLEXCOMM
#include <zephyr/drivers/mfd/nxp_lp_flexcomm.h>
#endif
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_SPI_RTIO
#include <zephyr/rtio/rtio.h>
#include <zephyr/spinlock.h>
#endif
LOG_MODULE_REGISTER(spi_mcux_lpspi, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#define CHIP_SELECT_COUNT 4
#define MAX_DATA_WIDTH 4096
/* Required by DEVICE_MMIO_NAMED_* macros */
#define DEV_CFG(_dev) \
((const struct spi_mcux_config *)(_dev)->config)
#define DEV_DATA(_dev) ((struct spi_mcux_data *)(_dev)->data)
struct spi_mcux_config {
DEVICE_MMIO_NAMED_ROM(reg_base);
#ifdef CONFIG_NXP_LP_FLEXCOMM
const struct device *parent_dev;
#endif
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t pcs_sck_delay;
uint32_t sck_pcs_delay;
uint32_t transfer_delay;
const struct pinctrl_dev_config *pincfg;
lpspi_pin_config_t data_pin_config;
};
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#define SPI_MCUX_LPSPI_DMA_ERROR_FLAG 0x01
#define SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG 0x02
#define SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG 0x04
#define SPI_MCUX_LPSPI_DMA_DONE_FLAG \
(SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG | SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG)
struct stream {
const struct device *dma_dev;
uint32_t channel; /* stores the channel for dma */
struct dma_config dma_cfg;
struct dma_block_config dma_blk_cfg;
};
#endif
struct spi_mcux_data {
DEVICE_MMIO_NAMED_RAM(reg_base);
const struct device *dev;
lpspi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
#ifdef CONFIG_SPI_RTIO
struct rtio *r;
struct rtio_iodev iodev;
struct rtio_iodev_sqe *txn_head;
struct rtio_iodev_sqe *txn_curr;
struct spi_dt_spec dt_spec;
struct k_spinlock lock;
#endif
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
volatile uint32_t status_flags;
struct stream dma_rx;
struct stream dma_tx;
/* dummy value used for transferring NOP when tx buf is null */
uint32_t dummy_tx_buffer;
/* dummy value used to read RX data into when rx buf is null */
uint32_t dummy_rx_buffer;
#endif
};
static int spi_mcux_transfer_next_packet(const struct device *dev)
{
/* const struct spi_mcux_config *config = dev->config; */
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
struct spi_context *ctx = &data->ctx;
lpspi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
return 0;
}
transfer.configFlags = kLPSPI_MasterPcsContinuous |
(ctx->config->slave << LPSPI_MASTER_PCS_SHIFT);
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
}
data->transfer_len = transfer.dataSize;
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
&transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start on %s: %d", dev->name, status);
return status == kStatus_LPSPI_Busy ? -EBUSY : -EINVAL;
}
return 0;
}
static void spi_mcux_isr(const struct device *dev)
{
/* const struct spi_mcux_config *config = dev->config; */
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
#if CONFIG_NXP_LP_FLEXCOMM
LPSPI_MasterTransferHandleIRQ(LPSPI_GetInstance(base), &data->handle);
#else
LPSPI_MasterTransferHandleIRQ(base, &data->handle);
#endif
}
#ifdef CONFIG_SPI_RTIO
static void spi_mcux_iodev_complete(const struct device *dev, int status);
#endif
static void spi_mcux_master_transfer_callback(LPSPI_Type *base,
lpspi_master_handle_t *handle, status_t status, void *userData)
{
struct spi_mcux_data *data = userData;
#ifdef CONFIG_SPI_RTIO
if (data->txn_head != NULL) {
spi_mcux_iodev_complete(data->dev, status);
return;
}
#endif
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(data->dev);
}
static int spi_mcux_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
lpspi_master_config_t master_config;
uint32_t clock_freq;
uint32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
LPSPI_MasterGetDefaultConfig(&master_config);
if (spi_cfg->slave > CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave,
CHIP_SELECT_COUNT);
return -EINVAL;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, MAX_DATA_WIDTH);
return -EINVAL;
}
master_config.bitsPerFrame = word_size;
master_config.cpol =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kLPSPI_ClockPolarityActiveLow
: kLPSPI_ClockPolarityActiveHigh;
master_config.cpha =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kLPSPI_ClockPhaseSecondEdge
: kLPSPI_ClockPhaseFirstEdge;
master_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kLPSPI_LsbFirst
: kLPSPI_MsbFirst;
master_config.baudRate = spi_cfg->frequency;
master_config.pcsToSckDelayInNanoSec = config->pcs_sck_delay;
master_config.lastSckToPcsDelayInNanoSec = config->sck_pcs_delay;
master_config.betweenTransferDelayInNanoSec = config->transfer_delay;
master_config.pinCfg = config->data_pin_config;
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
if (data->ctx.config != NULL) {
/* Setting the baud rate in LPSPI_MasterInit requires module to be disabled. Only
* disable if already configured, otherwise the clock is not enabled and the
* CR register cannot be written.
*/
LPSPI_Enable(base, false);
while ((base->CR & LPSPI_CR_MEN_MASK) != 0U) {
/* Wait until LPSPI is disabled. Datasheet:
* After writing 0, MEN (Module Enable) remains set until the LPSPI has
* completed the current transfer and is idle.
*/
}
}
LPSPI_MasterInit(base, &master_config, clock_freq);
LPSPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_master_transfer_callback,
data);
LPSPI_SetDummyData(base, 0);
data->ctx.config = spi_cfg;
return 0;
}
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
static int spi_mcux_dma_rxtx_load(const struct device *dev,
size_t *dma_size);
/* This function is executed in the interrupt context */
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
uint32_t channel, int status)
{
/* arg directly holds the spi device */
const struct device *spi_dev = arg;
struct spi_mcux_data *data = (struct spi_mcux_data *)spi_dev->data;
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
} else {
/* identify the origin of this callback */
if (channel == data->dma_tx.channel) {
/* this part of the transfer ends */
data->status_flags |= SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG;
LOG_DBG("DMA TX Block Complete");
} else if (channel == data->dma_rx.channel) {
/* this part of the transfer ends */
data->status_flags |= SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG;
LOG_DBG("DMA RX Block Complete");
} else {
LOG_ERR("DMA callback channel %d is not valid.",
channel);
data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
}
}
#if CONFIG_SPI_ASYNC
if (data->ctx.asynchronous &&
((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) ==
SPI_MCUX_LPSPI_DMA_DONE_FLAG)) {
/* Load dma blocks of equal length */
size_t dma_size = MIN(data->ctx.tx_len, data->ctx.rx_len);
if (dma_size == 0) {
dma_size = MAX(data->ctx.tx_len, data->ctx.rx_len);
}
spi_context_update_tx(&data->ctx, 1, dma_size);
spi_context_update_rx(&data->ctx, 1, dma_size);
if (data->ctx.tx_len == 0 && data->ctx.rx_len == 0) {
spi_context_complete(&data->ctx, spi_dev, 0);
}
return;
}
#endif
spi_context_complete(&data->ctx, spi_dev, 0);
}
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len)
{
/* const struct spi_mcux_config *cfg = dev->config; */
struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
/* remember active TX DMA channel (used in callback) */
struct stream *stream = &data->dma_tx;
blk_cfg = &stream->dma_blk_cfg;
/* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
if (buf == NULL) {
/* Treat the transfer as a peripheral to peripheral one, so that DMA
* reads from this address each time
*/
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
} else {
/* tx direction has memory as source and periph as dest. */
blk_cfg->source_address = (uint32_t)buf;
stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
}
/* Enable scatter/gather */
blk_cfg->source_gather_en = 1;
/* Dest is LPSPI tx fifo */
blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base);
blk_cfg->block_size = len;
/* Transfer 1 byte each DMA loop */
stream->dma_cfg.source_burst_length = 1;
stream->dma_cfg.head_block = &stream->dma_blk_cfg;
/* give the client dev as arg, as the callback comes from the dma */
stream->dma_cfg.user_data = (struct device *)dev;
/* pass our client origin to the dma: data->dma_tx.dma_channel */
return dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
&stream->dma_cfg);
}
static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
size_t len)
{
/*const struct spi_mcux_config *cfg = dev->config; */
struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
/* retrieve active RX DMA channel (used in callback) */
struct stream *stream = &data->dma_rx;
blk_cfg = &stream->dma_blk_cfg;
/* prepare the block for this RX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
if (buf == NULL) {
/* Treat the transfer as a peripheral to peripheral one, so that DMA
* reads from this address each time
*/
blk_cfg->dest_address = (uint32_t)&data->dummy_rx_buffer;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
} else {
/* rx direction has periph as source and mem as dest. */
blk_cfg->dest_address = (uint32_t)buf;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
}
blk_cfg->block_size = len;
/* Enable scatter/gather */
blk_cfg->dest_scatter_en = 1;
/* Source is LPSPI rx fifo */
blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base);
stream->dma_cfg.source_burst_length = 1;
stream->dma_cfg.head_block = blk_cfg;
stream->dma_cfg.user_data = (struct device *)dev;
/* pass our client origin to the dma: data->dma_rx.channel */
return dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
&stream->dma_cfg);
}
static int wait_dma_rx_tx_done(const struct device *dev)
{
struct spi_mcux_data *data = dev->data;
int ret = -1;
while (1) {
ret = spi_context_wait_for_completion(&data->ctx);
if (ret) {
LOG_DBG("Timed out waiting for SPI context to complete");
return ret;
}
if (data->status_flags & SPI_MCUX_LPSPI_DMA_ERROR_FLAG) {
return -EIO;
}
if ((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) ==
SPI_MCUX_LPSPI_DMA_DONE_FLAG) {
LOG_DBG("DMA block completed");
return 0;
}
}
}
static inline int spi_mcux_dma_rxtx_load(const struct device *dev,
size_t *dma_size)
{
struct spi_mcux_data *lpspi_data = dev->data;
int ret = 0;
/* Clear status flags */
lpspi_data->status_flags = 0U;
/* Load dma blocks of equal length */
*dma_size = MIN(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
if (*dma_size == 0) {
*dma_size = MAX(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
}
ret = spi_mcux_dma_tx_load(dev, lpspi_data->ctx.tx_buf,
*dma_size);
if (ret != 0) {
return ret;
}
ret = spi_mcux_dma_rx_load(dev, lpspi_data->ctx.rx_buf,
*dma_size);
if (ret != 0) {
return ret;
}
/* Start DMA */
ret = dma_start(lpspi_data->dma_tx.dma_dev,
lpspi_data->dma_tx.channel);
if (ret != 0) {
return ret;
}
ret = dma_start(lpspi_data->dma_rx.dma_dev,
lpspi_data->dma_rx.channel);
return ret;
}
static int transceive_dma(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
/* const struct spi_mcux_config *config = dev->config; */
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
int ret;
size_t dma_size;
if (!asynchronous) {
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
}
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
if (!asynchronous) {
spi_context_release(&data->ctx, ret);
}
return ret;
}
/* DMA is fast enough watermarks are not required */
LPSPI_SetFifoWatermarks(base, 0U, 0U);
if (!asynchronous) {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
/* Send each spi buf via DMA, updating context as DMA completes */
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
/* Load dma block */
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret != 0) {
goto out;
}
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Wait for DMA to finish */
ret = wait_dma_rx_tx_done(dev);
if (ret != 0) {
goto out;
}
while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) {
/* wait until module is idle */
}
/* Disable DMA */
LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Update SPI contexts with amount of data we just sent */
spi_context_update_tx(&data->ctx, 1, dma_size);
spi_context_update_rx(&data->ctx, 1, dma_size);
}
spi_context_cs_control(&data->ctx, false);
out:
spi_context_release(&data->ctx, ret);
}
#if CONFIG_SPI_ASYNC
else {
data->ctx.asynchronous = asynchronous;
data->ctx.callback = cb;
data->ctx.callback_data = userdata;
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret != 0) {
goto out;
}
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
}
#endif
return ret;
}
#endif
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_mcux_data *data = dev->data;
int ret;
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
ret = spi_mcux_transfer_next_packet(dev);
if (ret) {
goto out;
}
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
const struct spi_mcux_data *data = dev->data;
if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) {
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
struct spi_mcux_data *data = dev->data;
if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
}
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
#else
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(const struct device *dev)
{
int err;
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
DEVICE_MMIO_NAMED_MAP(dev, reg_base, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP);
#if CONFIG_NXP_LP_FLEXCOMM
/* When using LP Flexcomm driver, register the interrupt handler
* so we receive notification from the LP Flexcomm interrupt handler.
*/
nxp_lp_flexcomm_setirqhandler(config->parent_dev, dev,
LP_FLEXCOMM_PERIPH_LPSPI, spi_mcux_isr);
#else
/* Interrupt is managed by this driver */
config->irq_config_func(dev);
#endif
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
data->dev = dev;
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
if (data->dma_tx.dma_dev && data->dma_rx.dma_dev) {
if (!device_is_ready(data->dma_tx.dma_dev)) {
LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
return -ENODEV;
}
if (!device_is_ready(data->dma_rx.dma_dev)) {
LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
return -ENODEV;
}
}
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
#ifdef CONFIG_SPI_RTIO
data->dt_spec.bus = dev;
data->iodev.api = &spi_iodev_api;
data->iodev.data = &data->dt_spec;
rtio_mpsc_init(&data->iodev.iodev_sq);
#endif
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_SPI_RTIO
static inline k_spinlock_key_t spi_spin_lock(const struct device *dev)
{
struct spi_mcux_data *data = dev->data;
return k_spin_lock(&data->lock);
}
static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key)
{
struct spi_mcux_data *data = dev->data;
k_spin_unlock(&data->lock, key);
}
static void spi_mcux_iodev_next(const struct device *dev, bool completion);
static void spi_mcux_iodev_start(const struct device *dev)
{
/* const struct spi_mcux_config *config = dev->config; */
struct spi_mcux_data *data = dev->data;
struct rtio_sqe *sqe = &data->txn_curr->sqe;
struct spi_dt_spec *spi_dt_spec = sqe->iodev->data;
struct spi_config *spi_cfg = &spi_dt_spec->config;
struct rtio_iodev_sqe *txn_head = data->txn_head;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
lpspi_transfer_t transfer;
status_t status;
transfer.configFlags = kLPSPI_MasterPcsContinuous |
(spi_cfg->slave << LPSPI_MASTER_PCS_SHIFT);
switch (sqe->op) {
case RTIO_OP_RX:
transfer.txData = NULL;
transfer.rxData = sqe->buf;
transfer.dataSize = sqe->buf_len;
break;
case RTIO_OP_TX:
transfer.rxData = NULL;
transfer.txData = sqe->buf;
transfer.dataSize = sqe->buf_len;
break;
case RTIO_OP_TINY_TX:
transfer.rxData = NULL;
transfer.txData = sqe->tiny_buf;
transfer.dataSize = sqe->tiny_buf_len;
break;
case RTIO_OP_TXRX:
transfer.txData = sqe->tx_buf;
transfer.rxData = sqe->rx_buf;
transfer.dataSize = sqe->txrx_buf_len;
break;
default:
LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe);
spi_mcux_iodev_next(dev, true);
rtio_iodev_sqe_err(txn_head, -EINVAL);
spi_mcux_iodev_complete(dev, 0);
return;
}
data->transfer_len = transfer.dataSize;
k_spinlock_key_t key = spi_spin_lock(dev);
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
&transfer);
spi_spin_unlock(dev, key);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
rtio_iodev_sqe_err(txn_head, -EIO);
}
}
static void spi_mcux_iodev_next(const struct device *dev, bool completion)
{
struct spi_mcux_data *data = dev->data;
k_spinlock_key_t key = spi_spin_lock(dev);
if (!completion && data->txn_curr != NULL) {
spi_spin_unlock(dev, key);
return;
}
struct rtio_mpsc_node *next = rtio_mpsc_pop(&data->iodev.iodev_sq);
if (next != NULL) {
struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q);
data->txn_head = next_sqe;
data->txn_curr = next_sqe;
} else {
data->txn_head = NULL;
data->txn_curr = NULL;
}
spi_spin_unlock(dev, key);
if (data->txn_curr != NULL) {
struct spi_dt_spec *spi_dt_spec = data->txn_curr->sqe.iodev->data;
struct spi_config *spi_cfg = &spi_dt_spec->config;
spi_mcux_configure(dev, spi_cfg);
spi_context_cs_control(&data->ctx, true);
spi_mcux_iodev_start(dev);
}
}
static void spi_mcux_iodev_submit(const struct device *dev,
struct rtio_iodev_sqe *iodev_sqe)
{
struct spi_mcux_data *data = dev->data;
rtio_mpsc_push(&data->iodev.iodev_sq, &iodev_sqe->q);
spi_mcux_iodev_next(dev, false);
}
static void spi_mcux_iodev_complete(const struct device *dev, int status)
{
struct spi_mcux_data *data = dev->data;
if (data->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) {
data->txn_curr = rtio_txn_next(data->txn_curr);
spi_mcux_iodev_start(dev);
} else {
struct rtio_iodev_sqe *txn_head = data->txn_head;
spi_context_cs_control(&data->ctx, false);
spi_mcux_iodev_next(dev, true);
rtio_iodev_sqe_ok(txn_head, status);
}
}
#endif
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_mcux_iodev_submit,
#endif
.release = spi_mcux_release,
};
#define SPI_MCUX_RTIO_DEFINE(n) RTIO_DEFINE(spi_mcux_rtio_##n, CONFIG_SPI_MCUX_RTIO_SQ_SIZE, \
CONFIG_SPI_MCUX_RTIO_SQ_SIZE)
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#define SPI_DMA_CHANNELS(n) \
IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, tx), \
( \
.dma_tx = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(n, tx, mux), \
.dma_cfg = { \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_callback = spi_mcux_dma_callback, \
.source_data_size = 1, \
.dest_data_size = 1, \
.block_count = 1, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, tx, source) \
} \
}, \
)) \
IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, rx), \
( \
.dma_rx = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(n, rx, mux), \
.dma_cfg = { \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_callback = spi_mcux_dma_callback, \
.source_data_size = 1, \
.dest_data_size = 1, \
.block_count = 1, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, rx, source) \
} \
}, \
))
#else
#define SPI_DMA_CHANNELS(n)
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
#define SPI_MCUX_LPSPI_MODULE_IRQ_CONNECT(n) \
do { \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
spi_mcux_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} while (false)
#define SPI_MCUX_LPSPI_MODULE_IRQ(n) \
IF_ENABLED(DT_INST_IRQ_HAS_IDX(n, 0), \
(SPI_MCUX_LPSPI_MODULE_IRQ_CONNECT(n)))
#ifdef CONFIG_NXP_LP_FLEXCOMM
#define PARENT_DEV(n) \
.parent_dev = DEVICE_DT_GET(DT_INST_PARENT(n)),
#else
#define PARENT_DEV(n)
#endif /* CONFIG_NXP_LP_FLEXCOMM */
#define SPI_MCUX_LPSPI_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
COND_CODE_1(CONFIG_SPI_RTIO, (SPI_MCUX_RTIO_DEFINE(n)), ()); \
\
static void spi_mcux_config_func_##n(const struct device *dev); \
\
static const struct spi_mcux_config spi_mcux_config_##n = { \
DEVICE_MMIO_NAMED_ROM_INIT(reg_base, DT_DRV_INST(n)), \
PARENT_DEV(n) \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.irq_config_func = spi_mcux_config_func_##n, \
.pcs_sck_delay = UTIL_AND( \
DT_INST_NODE_HAS_PROP(n, pcs_sck_delay), \
DT_INST_PROP(n, pcs_sck_delay)), \
.sck_pcs_delay = UTIL_AND( \
DT_INST_NODE_HAS_PROP(n, sck_pcs_delay), \
DT_INST_PROP(n, sck_pcs_delay)), \
.transfer_delay = UTIL_AND( \
DT_INST_NODE_HAS_PROP(n, transfer_delay), \
DT_INST_PROP(n, transfer_delay)), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.data_pin_config = DT_INST_ENUM_IDX(n, data_pin_config),\
}; \
\
static struct spi_mcux_data spi_mcux_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
SPI_DMA_CHANNELS(n) \
IF_ENABLED(CONFIG_SPI_RTIO, \
(.r = &spi_mcux_rtio_##n,)) \
\
}; \
\
DEVICE_DT_INST_DEFINE(n, &spi_mcux_init, NULL, \
&spi_mcux_data_##n, \
&spi_mcux_config_##n, POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_mcux_driver_api); \
\
static void spi_mcux_config_func_##n(const struct device *dev) \
{ \
SPI_MCUX_LPSPI_MODULE_IRQ(n); \
}
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_LPSPI_INIT)