zephyr/drivers/spi/spi_nrfx_spis.c
Krzysztof Chruściński c975910f84 drivers: spi: nrf: Add new SPIS instances
Add support for upcomming SPIS instances.

Signed-off-by: Krzysztof Chruściński <krzysztof.chruscinski@nordicsemi.no>
2024-03-06 10:48:01 +01:00

408 lines
12 KiB
C

/*
* Copyright (c) 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/gpio.h>
#include <soc.h>
#include <nrfx_spis.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_nrfx_spis, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
struct spi_nrfx_data {
struct spi_context ctx;
const struct device *dev;
struct k_sem wake_sem;
struct gpio_callback wake_cb_data;
};
struct spi_nrfx_config {
nrfx_spis_t spis;
nrfx_spis_config_t config;
void (*irq_connect)(void);
uint16_t max_buf_len;
const struct pinctrl_dev_config *pcfg;
struct gpio_dt_spec wake_gpio;
};
static inline nrf_spis_mode_t get_nrf_spis_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIS_MODE_3;
} else {
return NRF_SPIS_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIS_MODE_1;
} else {
return NRF_SPIS_MODE_0;
}
}
}
static inline nrf_spis_bit_order_t get_nrf_spis_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPIS_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPIS_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_nrfx_data *dev_data = dev->data;
struct spi_context *ctx = &dev_data->ctx;
if (spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) {
LOG_ERR("Master mode is not supported on %s", dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -EINVAL;
}
if (spi_cs_is_gpio(spi_cfg)) {
LOG_ERR("CS control via GPIO is not supported");
return -EINVAL;
}
ctx->config = spi_cfg;
nrf_spis_configure(dev_config->spis.p_reg,
get_nrf_spis_mode(spi_cfg->operation),
get_nrf_spis_bit_order(spi_cfg->operation));
return 0;
}
static int prepare_for_transfer(const struct device *dev,
const uint8_t *tx_buf, size_t tx_buf_len,
uint8_t *rx_buf, size_t rx_buf_len)
{
const struct spi_nrfx_config *dev_config = dev->config;
nrfx_err_t result;
if (tx_buf_len > dev_config->max_buf_len ||
rx_buf_len > dev_config->max_buf_len) {
LOG_ERR("Invalid buffer sizes: Tx %d/Rx %d",
tx_buf_len, rx_buf_len);
return -EINVAL;
}
result = nrfx_spis_buffers_set(&dev_config->spis,
tx_buf, tx_buf_len,
rx_buf, rx_buf_len);
if (result != NRFX_SUCCESS) {
return -EIO;
}
return 0;
}
static void wake_callback(const struct device *dev, struct gpio_callback *cb,
uint32_t pins)
{
struct spi_nrfx_data *dev_data =
CONTAINER_OF(cb, struct spi_nrfx_data, wake_cb_data);
const struct spi_nrfx_config *dev_config = dev_data->dev->config;
(void)gpio_pin_interrupt_configure_dt(&dev_config->wake_gpio,
GPIO_INT_DISABLE);
k_sem_give(&dev_data->wake_sem);
}
static void wait_for_wake(struct spi_nrfx_data *dev_data,
const struct spi_nrfx_config *dev_config)
{
/* If the WAKE line is low, wait until it goes high - this is a signal
* from the master that it wants to perform a transfer.
*/
if (gpio_pin_get_raw(dev_config->wake_gpio.port,
dev_config->wake_gpio.pin) == 0) {
(void)gpio_pin_interrupt_configure_dt(&dev_config->wake_gpio,
GPIO_INT_LEVEL_HIGH);
(void)k_sem_take(&dev_data->wake_sem, K_FOREVER);
}
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
const struct spi_buf *tx_buf = tx_bufs ? tx_bufs->buffers : NULL;
const struct spi_buf *rx_buf = rx_bufs ? rx_bufs->buffers : NULL;
int error;
spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg);
error = configure(dev, spi_cfg);
if (error != 0) {
/* Invalid configuration. */
} else if ((tx_bufs && tx_bufs->count > 1) ||
(rx_bufs && rx_bufs->count > 1)) {
LOG_ERR("Scattered buffers are not supported");
error = -ENOTSUP;
} else if (tx_buf && tx_buf->len && !nrfx_is_in_ram(tx_buf->buf)) {
LOG_ERR("Only buffers located in RAM are supported");
error = -ENOTSUP;
} else {
if (dev_config->wake_gpio.port) {
wait_for_wake(dev_data, dev_config);
nrf_spis_enable(dev_config->spis.p_reg);
}
error = prepare_for_transfer(dev,
tx_buf ? tx_buf->buf : NULL,
tx_buf ? tx_buf->len : 0,
rx_buf ? rx_buf->buf : NULL,
rx_buf ? rx_buf->len : 0);
if (error == 0) {
if (dev_config->wake_gpio.port) {
/* Set the WAKE line low (tie it to ground)
* to signal readiness to handle the transfer.
*/
gpio_pin_set_raw(dev_config->wake_gpio.port,
dev_config->wake_gpio.pin,
0);
/* Set the WAKE line back high (i.e. disconnect
* output for its pin since it's configured in
* open drain mode) so that it can be controlled
* by the other side again.
*/
gpio_pin_set_raw(dev_config->wake_gpio.port,
dev_config->wake_gpio.pin,
1);
}
error = spi_context_wait_for_completion(&dev_data->ctx);
}
if (dev_config->wake_gpio.port) {
nrf_spis_disable(dev_config->spis.p_reg);
}
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = dev->data;
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
static const struct spi_driver_api spi_nrfx_driver_api = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
.release = spi_nrfx_release,
};
static void event_handler(const nrfx_spis_evt_t *p_event, void *p_context)
{
struct spi_nrfx_data *dev_data = p_context;
if (p_event->evt_type == NRFX_SPIS_XFER_DONE) {
spi_context_complete(&dev_data->ctx, dev_data->dev,
p_event->rx_amount);
}
}
static int spi_nrfx_init(const struct device *dev)
{
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_nrfx_data *dev_data = dev->data;
nrfx_err_t result;
int err;
err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
/* This sets only default values of mode and bit order. The ones to be
* actually used are set in configure() when a transfer is prepared.
*/
result = nrfx_spis_init(&dev_config->spis, &dev_config->config,
event_handler, dev_data);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
if (dev_config->wake_gpio.port) {
if (!gpio_is_ready_dt(&dev_config->wake_gpio)) {
return -ENODEV;
}
/* In open drain mode, the output is disconnected when set to
* the high state, so the following will effectively configure
* the pin as an input only.
*/
err = gpio_pin_configure_dt(&dev_config->wake_gpio,
GPIO_INPUT |
GPIO_OUTPUT_HIGH |
GPIO_OPEN_DRAIN);
if (err < 0) {
return err;
}
gpio_init_callback(&dev_data->wake_cb_data, wake_callback,
BIT(dev_config->wake_gpio.pin));
err = gpio_add_callback(dev_config->wake_gpio.port,
&dev_data->wake_cb_data);
if (err < 0) {
return err;
}
/* When the WAKE line is used, the SPIS peripheral is enabled
* only after the master signals that it wants to perform a
* transfer and it is disabled right after the transfer is done.
* Waiting for the WAKE line to go high, what can be done using
* the GPIO PORT event, instead of just waiting for the transfer
* with the SPIS peripheral enabled, significantly reduces idle
* power consumption.
*/
nrf_spis_disable(dev_config->spis.p_reg);
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
/*
* Current factors requiring use of DT_NODELABEL:
*
* - HAL design (requirement of drv_inst_idx in nrfx_spis_t)
* - Name-based HAL IRQ handlers, e.g. nrfx_spis_0_irq_handler
*/
#define SPIS(idx) DT_NODELABEL(spi##idx)
#define SPIS_PROP(idx, prop) DT_PROP(SPIS(idx), prop)
#define SPI_NRFX_SPIS_DEFINE(idx) \
static void irq_connect##idx(void) \
{ \
IRQ_CONNECT(DT_IRQN(SPIS(idx)), DT_IRQ(SPIS(idx), priority), \
nrfx_isr, nrfx_spis_##idx##_irq_handler, 0); \
} \
static struct spi_nrfx_data spi_##idx##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
.dev = DEVICE_DT_GET(SPIS(idx)), \
.wake_sem = Z_SEM_INITIALIZER( \
spi_##idx##_data.wake_sem, 0, 1), \
}; \
PINCTRL_DT_DEFINE(SPIS(idx)); \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spis = { \
.p_reg = (NRF_SPIS_Type *)DT_REG_ADDR(SPIS(idx)), \
.drv_inst_idx = NRFX_SPIS##idx##_INST_IDX, \
}, \
.config = { \
.skip_gpio_cfg = true, \
.skip_psel_cfg = true, \
.mode = NRF_SPIS_MODE_0, \
.bit_order = NRF_SPIS_BIT_ORDER_MSB_FIRST, \
.orc = SPIS_PROP(idx, overrun_character), \
.def = SPIS_PROP(idx, def_char), \
}, \
.irq_connect = irq_connect##idx, \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIS(idx)), \
.max_buf_len = BIT_MASK(SPIS_PROP(idx, easydma_maxcnt_bits)), \
.wake_gpio = GPIO_DT_SPEC_GET_OR(SPIS(idx), wake_gpios, {0}), \
}; \
BUILD_ASSERT(!DT_NODE_HAS_PROP(SPIS(idx), wake_gpios) || \
!(DT_GPIO_FLAGS(SPIS(idx), wake_gpios) & GPIO_ACTIVE_LOW),\
"WAKE line must be configured as active high"); \
DEVICE_DT_DEFINE(SPIS(idx), \
spi_nrfx_init, \
NULL, \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_nrfx_driver_api)
/* Macro creates device instance if it is enabled in devicetree. */
#define SPIS_DEVICE(periph, prefix, id, _) \
IF_ENABLED(CONFIG_HAS_HW_NRF_SPIS##prefix##id, (SPI_NRFX_SPIS_DEFINE(prefix##id);))
/* Macro iterates over nrfx_spis instances enabled in the nrfx_config.h. */
NRFX_FOREACH_ENABLED(SPIS, SPIS_DEVICE, (), (), _)