zephyr/drivers/ethernet/eth_sam_gmac.c
Jukka Rissanen 898a0d8ab8 drivers: ethernet: sam_gmac: Remove VLAN code as it is no longer needed
The VLAN packets are prepared in Ethernet L2 so no need to have
special handling in the driver.

Signed-off-by: Jukka Rissanen <jukka.rissanen@nordicsemi.no>
2024-03-28 09:41:38 +00:00

2417 lines
63 KiB
C

/*
* Copyright (c) 2016 Piotr Mienkowski
* Copyright (c) 2018 Antmicro Ltd
* Copyright (c) 2023 Gerson Fernando Budke
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief Atmel SAM MCU family Ethernet MAC (GMAC) driver.
*
* This is a zero-copy networking implementation of an Ethernet driver. To
* prepare for the incoming frames the driver will permanently reserve a defined
* amount of RX data net buffers when the interface is brought up and thus
* reduce the total amount of RX data net buffers available to the application.
*
* Limitations:
* - one shot PHY setup, no support for PHY disconnect/reconnect
* - no statistics collection
*/
#if defined(CONFIG_SOC_FAMILY_ATMEL_SAM)
#define DT_DRV_COMPAT atmel_sam_gmac
#else
#define DT_DRV_COMPAT atmel_sam0_gmac
#endif
#define LOG_MODULE_NAME eth_sam
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/sys/util.h>
#include <errno.h>
#include <stdbool.h>
#include <zephyr/net/phy.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/ethernet.h>
#include <ethernet/eth_stats.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#include <soc.h>
#include "eth_sam_gmac_priv.h"
#include "eth.h"
#ifdef CONFIG_SOC_FAMILY_ATMEL_SAM0
#include "eth_sam0_gmac.h"
#endif
#include <zephyr/drivers/ptp_clock.h>
#include <zephyr/net/gptp.h>
#include <zephyr/irq.h>
#ifdef __DCACHE_PRESENT
static bool dcache_enabled;
static inline void dcache_is_enabled(void)
{
dcache_enabled = (SCB->CCR & SCB_CCR_DC_Msk);
}
static inline void dcache_invalidate(uint32_t addr, uint32_t size)
{
if (!dcache_enabled) {
return;
}
/* Make sure it is aligned to 32B */
uint32_t start_addr = addr & (uint32_t)~(GMAC_DCACHE_ALIGNMENT - 1);
uint32_t size_full = size + addr - start_addr;
SCB_InvalidateDCache_by_Addr((uint32_t *)start_addr, size_full);
}
static inline void dcache_clean(uint32_t addr, uint32_t size)
{
if (!dcache_enabled) {
return;
}
/* Make sure it is aligned to 32B */
uint32_t start_addr = addr & (uint32_t)~(GMAC_DCACHE_ALIGNMENT - 1);
uint32_t size_full = size + addr - start_addr;
SCB_CleanDCache_by_Addr((uint32_t *)start_addr, size_full);
}
#else
#define dcache_is_enabled()
#define dcache_invalidate(addr, size)
#define dcache_clean(addr, size)
#endif
#ifdef CONFIG_SOC_FAMILY_ATMEL_SAM0
#define MCK_FREQ_HZ SOC_ATMEL_SAM0_MCK_FREQ_HZ
#elif CONFIG_SOC_FAMILY_ATMEL_SAM
#define MCK_FREQ_HZ SOC_ATMEL_SAM_MCK_FREQ_HZ
#else
#error Unsupported SoC family
#endif
/*
* Verify Kconfig configuration
*/
/* No need to verify things for unit tests */
#if !defined(CONFIG_NET_TEST)
#if CONFIG_NET_BUF_DATA_SIZE * CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT \
< GMAC_FRAME_SIZE_MAX
#error CONFIG_NET_BUF_DATA_SIZE * CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT is \
not large enough to hold a full frame
#endif
#if CONFIG_NET_BUF_DATA_SIZE * (CONFIG_NET_BUF_RX_COUNT - \
CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT) < GMAC_FRAME_SIZE_MAX
#error (CONFIG_NET_BUF_RX_COUNT - CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT) * \
CONFIG_NET_BUF_DATA_SIZE are not large enough to hold a full frame
#endif
#if CONFIG_NET_BUF_DATA_SIZE & 0x3F
#pragma message "CONFIG_NET_BUF_DATA_SIZE should be a multiple of 64 bytes " \
"due to the granularity of RX DMA"
#endif
#if (CONFIG_ETH_SAM_GMAC_BUF_RX_COUNT + 1) * GMAC_ACTIVE_QUEUE_NUM \
> CONFIG_NET_BUF_RX_COUNT
#error Not enough RX buffers to allocate descriptors for each HW queue
#endif
#endif /* !CONFIG_NET_TEST */
BUILD_ASSERT(DT_INST_ENUM_IDX(0, phy_connection_type) <= 1, "Invalid PHY connection");
/* RX descriptors list */
static struct gmac_desc rx_desc_que0[MAIN_QUEUE_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#if GMAC_PRIORITY_QUEUE_NUM >= 1
static struct gmac_desc rx_desc_que1[PRIORITY_QUEUE1_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 2
static struct gmac_desc rx_desc_que2[PRIORITY_QUEUE2_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 3
static struct gmac_desc rx_desc_que3[PRIORITY_QUEUE3_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 4
static struct gmac_desc rx_desc_que4[PRIORITY_QUEUE4_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 5
static struct gmac_desc rx_desc_que5[PRIORITY_QUEUE5_RX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
/* TX descriptors list */
static struct gmac_desc tx_desc_que0[MAIN_QUEUE_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#if GMAC_PRIORITY_QUEUE_NUM >= 1
static struct gmac_desc tx_desc_que1[PRIORITY_QUEUE1_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 2
static struct gmac_desc tx_desc_que2[PRIORITY_QUEUE2_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 3
static struct gmac_desc tx_desc_que3[PRIORITY_QUEUE3_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 4
static struct gmac_desc tx_desc_que4[PRIORITY_QUEUE4_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 5
static struct gmac_desc tx_desc_que5[PRIORITY_QUEUE5_TX_DESC_COUNT]
__nocache __aligned(GMAC_DESC_ALIGNMENT);
#endif
/* RX buffer accounting list */
static struct net_buf *rx_frag_list_que0[MAIN_QUEUE_RX_DESC_COUNT];
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static struct net_buf *rx_frag_list_que1[PRIORITY_QUEUE1_RX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
static struct net_buf *rx_frag_list_que2[PRIORITY_QUEUE2_RX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
static struct net_buf *rx_frag_list_que3[PRIORITY_QUEUE3_RX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
static struct net_buf *rx_frag_list_que4[PRIORITY_QUEUE4_RX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
static struct net_buf *rx_frag_list_que5[PRIORITY_QUEUE5_RX_DESC_COUNT];
#endif
#if GMAC_MULTIPLE_TX_PACKETS == 1
/* TX buffer accounting list */
static struct net_buf *tx_frag_list_que0[MAIN_QUEUE_TX_DESC_COUNT];
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static struct net_buf *tx_frag_list_que1[PRIORITY_QUEUE1_TX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
static struct net_buf *tx_frag_list_que2[PRIORITY_QUEUE2_TX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
static struct net_buf *tx_frag_list_que3[PRIORITY_QUEUE3_TX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
static struct net_buf *tx_frag_list_que4[PRIORITY_QUEUE4_TX_DESC_COUNT];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
static struct net_buf *tx_frag_list_que5[PRIORITY_QUEUE5_TX_DESC_COUNT];
#endif
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* TX frames accounting list */
static struct net_pkt *tx_frame_list_que0[CONFIG_NET_PKT_TX_COUNT + 1];
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static struct net_pkt *tx_frame_list_que1[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
static struct net_pkt *tx_frame_list_que2[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
static struct net_pkt *tx_frame_list_que3[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
static struct net_pkt *tx_frame_list_que4[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
static struct net_pkt *tx_frame_list_que5[CONFIG_NET_PKT_TX_COUNT + 1];
#endif
#endif
#endif
#define MODULO_INC(val, max) {val = (++val < max) ? val : 0; }
static int rx_descriptors_init(Gmac *gmac, struct gmac_queue *queue);
static void tx_descriptors_init(Gmac *gmac, struct gmac_queue *queue);
static int nonpriority_queue_init(Gmac *gmac, struct gmac_queue *queue);
#if GMAC_PRIORITY_QUEUE_NUM >= 1
static inline void set_receive_buf_queue_pointer(Gmac *gmac,
struct gmac_queue *queue)
{
/* Set Receive Buffer Queue Pointer Register */
if (queue->que_idx == GMAC_QUE_0) {
gmac->GMAC_RBQB = (uint32_t)queue->rx_desc_list.buf;
} else {
gmac->GMAC_RBQBAPQ[queue->que_idx - 1] =
(uint32_t)queue->rx_desc_list.buf;
}
}
static inline void disable_all_priority_queue_interrupt(Gmac *gmac)
{
uint32_t idx;
for (idx = 0; idx < GMAC_PRIORITY_QUEUE_NUM; idx++) {
gmac->GMAC_IDRPQ[idx] = UINT32_MAX;
(void)gmac->GMAC_ISRPQ[idx];
}
}
static int priority_queue_init(Gmac *gmac, struct gmac_queue *queue)
{
int result;
int queue_index;
__ASSERT_NO_MSG(queue->rx_desc_list.len > 0);
__ASSERT_NO_MSG(queue->tx_desc_list.len > 0);
__ASSERT(!((uint32_t)queue->rx_desc_list.buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((uint32_t)queue->tx_desc_list.buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
/* Extract queue index for easier referencing */
queue_index = queue->que_idx - 1;
/* Setup descriptor lists */
result = rx_descriptors_init(gmac, queue);
if (result < 0) {
return result;
}
tx_descriptors_init(gmac, queue);
#if GMAC_MULTIPLE_TX_PACKETS == 0
k_sem_init(&queue->tx_sem, 0, 1);
#else
k_sem_init(&queue->tx_desc_sem, queue->tx_desc_list.len - 1,
queue->tx_desc_list.len - 1);
#endif
/* Setup RX buffer size for DMA */
gmac->GMAC_RBSRPQ[queue_index] =
GMAC_RBSRPQ_RBS(CONFIG_NET_BUF_DATA_SIZE >> 6);
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQBAPQ[queue_index] = (uint32_t)queue->rx_desc_list.buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQBAPQ[queue_index] = (uint32_t)queue->tx_desc_list.buf;
/* Enable RX/TX completion and error interrupts */
gmac->GMAC_IERPQ[queue_index] = GMAC_INTPQ_EN_FLAGS;
queue->err_rx_frames_dropped = 0U;
queue->err_rx_flushed_count = 0U;
queue->err_tx_flushed_count = 0U;
LOG_INF("Queue %d activated", queue->que_idx);
return 0;
}
static int priority_queue_init_as_idle(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
__ASSERT(!((uint32_t)rx_desc_list->buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((uint32_t)tx_desc_list->buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
__ASSERT((rx_desc_list->len == 1U) && (tx_desc_list->len == 1U),
"Priority queues are currently not supported, descriptor "
"list has to have a single entry");
/* Setup RX descriptor lists */
/* Take ownership from GMAC and set the wrap bit */
rx_desc_list->buf[0].w0 = GMAC_RXW0_WRAP;
rx_desc_list->buf[0].w1 = 0U;
/* Setup TX descriptor lists */
tx_desc_list->buf[0].w0 = 0U;
/* Take ownership from GMAC and set the wrap bit */
tx_desc_list->buf[0].w1 = GMAC_TXW1_USED | GMAC_TXW1_WRAP;
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQBAPQ[queue->que_idx - 1] = (uint32_t)rx_desc_list->buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQBAPQ[queue->que_idx - 1] = (uint32_t)tx_desc_list->buf;
LOG_INF("Queue %d set to idle", queue->que_idx);
return 0;
}
static int queue_init(Gmac *gmac, struct gmac_queue *queue)
{
if (queue->que_idx == GMAC_QUE_0) {
return nonpriority_queue_init(gmac, queue);
} else if (queue->que_idx <= GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return priority_queue_init(gmac, queue);
} else {
return priority_queue_init_as_idle(gmac, queue);
}
}
#else
static inline void set_receive_buf_queue_pointer(Gmac *gmac,
struct gmac_queue *queue)
{
gmac->GMAC_RBQB = (uint32_t)queue->rx_desc_list.buf;
}
static int queue_init(Gmac *gmac, struct gmac_queue *queue)
{
return nonpriority_queue_init(gmac, queue);
}
#define disable_all_priority_queue_interrupt(gmac)
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static int eth_sam_gmac_setup_qav(Gmac *gmac, int queue_id, bool enable);
static inline void eth_sam_gmac_init_qav(Gmac *gmac)
{
uint32_t idx;
for (idx = GMAC_QUE_1; idx <= GMAC_ACTIVE_PRIORITY_QUEUE_NUM; idx++) {
eth_sam_gmac_setup_qav(gmac, idx, true);
}
}
#else
#define eth_sam_gmac_init_qav(gmac)
#endif
#if GMAC_MULTIPLE_TX_PACKETS == 1
/*
* Reset ring buffer
*/
static void ring_buf_reset(struct ring_buf *rb)
{
rb->head = 0U;
rb->tail = 0U;
}
/*
* Get one 32 bit item from the ring buffer
*/
static uint32_t ring_buf_get(struct ring_buf *rb)
{
uint32_t val;
__ASSERT(rb->tail != rb->head,
"retrieving data from empty ring buffer");
val = rb->buf[rb->tail];
MODULO_INC(rb->tail, rb->len);
return val;
}
/*
* Put one 32 bit item into the ring buffer
*/
static void ring_buf_put(struct ring_buf *rb, uint32_t val)
{
rb->buf[rb->head] = val;
MODULO_INC(rb->head, rb->len);
__ASSERT(rb->tail != rb->head,
"ring buffer overflow");
}
#endif
/*
* Free pre-reserved RX buffers
*/
static void free_rx_bufs(struct net_buf **rx_frag_list, uint16_t len)
{
for (int i = 0; i < len; i++) {
if (rx_frag_list[i]) {
net_buf_unref(rx_frag_list[i]);
rx_frag_list[i] = NULL;
}
}
}
/*
* Set MAC Address for frame filtering logic
*/
static void mac_addr_set(Gmac *gmac, uint8_t index,
uint8_t mac_addr[6])
{
__ASSERT(index < 4, "index has to be in the range 0..3");
gmac->GMAC_SA[index].GMAC_SAB = (mac_addr[3] << 24)
| (mac_addr[2] << 16)
| (mac_addr[1] << 8)
| (mac_addr[0]);
gmac->GMAC_SA[index].GMAC_SAT = (mac_addr[5] << 8)
| (mac_addr[4]);
}
/*
* Initialize RX descriptor list
*/
static int rx_descriptors_init(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct net_buf **rx_frag_list = queue->rx_frag_list;
struct net_buf *rx_buf;
uint8_t *rx_buf_addr;
__ASSERT_NO_MSG(rx_frag_list);
rx_desc_list->tail = 0U;
for (int i = 0; i < rx_desc_list->len; i++) {
rx_buf = net_pkt_get_reserve_rx_data(CONFIG_NET_BUF_DATA_SIZE,
K_NO_WAIT);
if (rx_buf == NULL) {
free_rx_bufs(rx_frag_list, rx_desc_list->len);
LOG_ERR("Failed to reserve data net buffers");
return -ENOBUFS;
}
rx_frag_list[i] = rx_buf;
rx_buf_addr = rx_buf->data;
__ASSERT(!((uint32_t)rx_buf_addr & ~GMAC_RXW0_ADDR),
"Misaligned RX buffer address");
__ASSERT(rx_buf->size == CONFIG_NET_BUF_DATA_SIZE,
"Incorrect length of RX data buffer");
/* Give ownership to GMAC and remove the wrap bit */
rx_desc_list->buf[i].w0 = (uint32_t)rx_buf_addr & GMAC_RXW0_ADDR;
rx_desc_list->buf[i].w1 = 0U;
}
/* Set the wrap bit on the last descriptor */
rx_desc_list->buf[rx_desc_list->len - 1U].w0 |= GMAC_RXW0_WRAP;
return 0;
}
/*
* Initialize TX descriptor list
*/
static void tx_descriptors_init(Gmac *gmac, struct gmac_queue *queue)
{
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
tx_desc_list->head = 0U;
tx_desc_list->tail = 0U;
for (int i = 0; i < tx_desc_list->len; i++) {
tx_desc_list->buf[i].w0 = 0U;
tx_desc_list->buf[i].w1 = GMAC_TXW1_USED;
}
/* Set the wrap bit on the last descriptor */
tx_desc_list->buf[tx_desc_list->len - 1U].w1 |= GMAC_TXW1_WRAP;
#if GMAC_MULTIPLE_TX_PACKETS == 1
/* Reset TX frame list */
ring_buf_reset(&queue->tx_frag_list);
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
ring_buf_reset(&queue->tx_frames);
#endif
#endif
}
#if defined(CONFIG_NET_GPTP)
static struct gptp_hdr *check_gptp_msg(struct net_if *iface,
struct net_pkt *pkt,
bool is_tx)
{
uint8_t *msg_start = net_pkt_data(pkt);
struct gptp_hdr *gptp_hdr;
int eth_hlen;
struct net_eth_hdr *hdr;
hdr = (struct net_eth_hdr *)msg_start;
if (ntohs(hdr->type) != NET_ETH_PTYPE_PTP) {
return NULL;
}
eth_hlen = sizeof(struct net_eth_hdr);
/* In TX, the first net_buf contains the Ethernet header
* and the actual gPTP header is in the second net_buf.
* In RX, the Ethernet header + other headers are in the
* first net_buf.
*/
if (is_tx) {
if (pkt->frags->frags == NULL) {
return false;
}
gptp_hdr = (struct gptp_hdr *)pkt->frags->frags->data;
} else {
gptp_hdr = (struct gptp_hdr *)(pkt->frags->data + eth_hlen);
}
return gptp_hdr;
}
static bool need_timestamping(struct gptp_hdr *hdr)
{
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
case GPTP_PATH_DELAY_RESP_MESSAGE:
return true;
default:
return false;
}
}
static void update_pkt_priority(struct gptp_hdr *hdr, struct net_pkt *pkt)
{
if (GPTP_IS_EVENT_MSG(hdr->message_type)) {
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
} else {
net_pkt_set_priority(pkt, NET_PRIORITY_IC);
}
}
static inline struct net_ptp_time get_ptp_event_rx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((uint64_t)(gmac->GMAC_EFRSH & 0xffff) << 32)
| gmac->GMAC_EFRSL;
ts.nanosecond = gmac->GMAC_EFRN;
return ts;
}
static inline struct net_ptp_time get_ptp_peer_event_rx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((uint64_t)(gmac->GMAC_PEFRSH & 0xffff) << 32)
| gmac->GMAC_PEFRSL;
ts.nanosecond = gmac->GMAC_PEFRN;
return ts;
}
static inline struct net_ptp_time get_ptp_event_tx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((uint64_t)(gmac->GMAC_EFTSH & 0xffff) << 32)
| gmac->GMAC_EFTSL;
ts.nanosecond = gmac->GMAC_EFTN;
return ts;
}
static inline struct net_ptp_time get_ptp_peer_event_tx_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((uint64_t)(gmac->GMAC_PEFTSH & 0xffff) << 32)
| gmac->GMAC_PEFTSL;
ts.nanosecond = gmac->GMAC_PEFTN;
return ts;
}
static inline struct net_ptp_time get_current_ts(Gmac *gmac)
{
struct net_ptp_time ts;
ts.second = ((uint64_t)(gmac->GMAC_TSH & 0xffff) << 32) | gmac->GMAC_TSL;
ts.nanosecond = gmac->GMAC_TN;
return ts;
}
static inline void timestamp_tx_pkt(Gmac *gmac, struct gptp_hdr *hdr,
struct net_pkt *pkt)
{
struct net_ptp_time timestamp;
if (hdr) {
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
timestamp = get_ptp_event_tx_ts(gmac);
break;
default:
timestamp = get_ptp_peer_event_tx_ts(gmac);
}
} else {
timestamp = get_current_ts(gmac);
}
net_pkt_set_timestamp(pkt, &timestamp);
}
static inline void timestamp_rx_pkt(Gmac *gmac, struct gptp_hdr *hdr,
struct net_pkt *pkt)
{
struct net_ptp_time timestamp;
if (hdr) {
switch (hdr->message_type) {
case GPTP_SYNC_MESSAGE:
timestamp = get_ptp_event_rx_ts(gmac);
break;
default:
timestamp = get_ptp_peer_event_rx_ts(gmac);
}
} else {
timestamp = get_current_ts(gmac);
}
net_pkt_set_timestamp(pkt, &timestamp);
}
#endif
static inline struct net_if *get_iface(struct eth_sam_dev_data *ctx)
{
return ctx->iface;
}
/*
* Process successfully sent packets
*/
static void tx_completed(Gmac *gmac, struct gmac_queue *queue)
{
#if GMAC_MULTIPLE_TX_PACKETS == 0
k_sem_give(&queue->tx_sem);
#else
struct gmac_desc_list *tx_desc_list = &queue->tx_desc_list;
struct gmac_desc *tx_desc;
struct net_buf *frag;
#if defined(CONFIG_NET_GPTP)
struct net_pkt *pkt;
struct gptp_hdr *hdr;
struct eth_sam_dev_data *dev_data =
CONTAINER_OF(queue, struct eth_sam_dev_data,
queue_list[queue->que_idx]);
#endif
__ASSERT(tx_desc_list->buf[tx_desc_list->tail].w1 & GMAC_TXW1_USED,
"first buffer of a frame is not marked as own by GMAC");
while (tx_desc_list->tail != tx_desc_list->head) {
tx_desc = &tx_desc_list->buf[tx_desc_list->tail];
MODULO_INC(tx_desc_list->tail, tx_desc_list->len);
k_sem_give(&queue->tx_desc_sem);
/* Release net buffer to the buffer pool */
frag = UINT_TO_POINTER(ring_buf_get(&queue->tx_frag_list));
net_pkt_frag_unref(frag);
LOG_DBG("Dropping frag %p", frag);
if (tx_desc->w1 & GMAC_TXW1_LASTBUFFER) {
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* Release net packet to the packet pool */
pkt = UINT_TO_POINTER(ring_buf_get(&queue->tx_frames));
#if defined(CONFIG_NET_GPTP)
hdr = check_gptp_msg(get_iface(dev_data),
pkt, true);
timestamp_tx_pkt(gmac, hdr, pkt);
if (hdr && need_timestamping(hdr)) {
net_if_add_tx_timestamp(pkt);
}
#endif
net_pkt_unref(pkt);
LOG_DBG("Dropping pkt %p", pkt);
#endif
break;
}
}
#endif
}
/*
* Reset TX queue when errors are detected
*/
static void tx_error_handler(Gmac *gmac, struct gmac_queue *queue)
{
#if GMAC_MULTIPLE_TX_PACKETS == 1
struct net_buf *frag;
struct ring_buf *tx_frag_list = &queue->tx_frag_list;
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
struct net_pkt *pkt;
struct ring_buf *tx_frames = &queue->tx_frames;
#endif
#endif
queue->err_tx_flushed_count++;
/* Stop transmission, clean transmit pipeline and control registers */
gmac->GMAC_NCR &= ~GMAC_NCR_TXEN;
#if GMAC_MULTIPLE_TX_PACKETS == 1
/* Free all frag resources in the TX path */
while (tx_frag_list->tail != tx_frag_list->head) {
/* Release net buffer to the buffer pool */
frag = UINT_TO_POINTER(tx_frag_list->buf[tx_frag_list->tail]);
net_pkt_frag_unref(frag);
LOG_DBG("Dropping frag %p", frag);
MODULO_INC(tx_frag_list->tail, tx_frag_list->len);
}
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* Free all pkt resources in the TX path */
while (tx_frames->tail != tx_frames->head) {
/* Release net packet to the packet pool */
pkt = UINT_TO_POINTER(tx_frames->buf[tx_frames->tail]);
net_pkt_unref(pkt);
LOG_DBG("Dropping pkt %p", pkt);
MODULO_INC(tx_frames->tail, tx_frames->len);
}
#endif
/* Reinitialize TX descriptor list */
k_sem_reset(&queue->tx_desc_sem);
for (int i = 0; i < queue->tx_desc_list.len - 1; i++) {
k_sem_give(&queue->tx_desc_sem);
}
#endif
tx_descriptors_init(gmac, queue);
#if GMAC_MULTIPLE_TX_PACKETS == 0
/* Reinitialize TX mutex */
k_sem_give(&queue->tx_sem);
#endif
/* Restart transmission */
gmac->GMAC_NCR |= GMAC_NCR_TXEN;
}
/*
* Clean RX queue, any received data still stored in the buffers is abandoned.
*/
static void rx_error_handler(Gmac *gmac, struct gmac_queue *queue)
{
queue->err_rx_flushed_count++;
/* Stop reception */
gmac->GMAC_NCR &= ~GMAC_NCR_RXEN;
queue->rx_desc_list.tail = 0U;
for (int i = 0; i < queue->rx_desc_list.len; i++) {
queue->rx_desc_list.buf[i].w1 = 0U;
queue->rx_desc_list.buf[i].w0 &= ~GMAC_RXW0_OWNERSHIP;
}
set_receive_buf_queue_pointer(gmac, queue);
/* Restart reception */
gmac->GMAC_NCR |= GMAC_NCR_RXEN;
}
/*
* Set MCK to MDC clock divisor.
*
* According to 802.3 MDC should be less then 2.5 MHz.
*/
static int get_mck_clock_divisor(uint32_t mck)
{
uint32_t mck_divisor;
if (mck <= 20000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_8;
} else if (mck <= 40000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_16;
} else if (mck <= 80000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_32;
} else if (mck <= 120000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_48;
} else if (mck <= 160000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_64;
} else if (mck <= 240000000U) {
mck_divisor = GMAC_NCFGR_CLK_MCK_96;
} else {
LOG_ERR("No valid MDC clock");
mck_divisor = -ENOTSUP;
}
return mck_divisor;
}
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static int eth_sam_gmac_setup_qav(Gmac *gmac, int queue_id, bool enable)
{
/* Verify queue id */
if (queue_id < GMAC_QUE_1 || queue_id > GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return -EINVAL;
}
if (queue_id == GMAC_QUE_2) {
if (enable) {
gmac->GMAC_CBSCR |= GMAC_CBSCR_QAE;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QAE;
}
} else {
if (enable) {
gmac->GMAC_CBSCR |= GMAC_CBSCR_QBE;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QBE;
}
}
return 0;
}
static int eth_sam_gmac_get_qav_status(Gmac *gmac, int queue_id, bool *enabled)
{
/* Verify queue id */
if (queue_id < GMAC_QUE_1 || queue_id > GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return -EINVAL;
}
if (queue_id == GMAC_QUE_2) {
*enabled = gmac->GMAC_CBSCR & GMAC_CBSCR_QAE;
} else {
*enabled = gmac->GMAC_CBSCR & GMAC_CBSCR_QBE;
}
return 0;
}
static int eth_sam_gmac_setup_qav_idle_slope(Gmac *gmac, int queue_id,
unsigned int idle_slope)
{
uint32_t cbscr_val;
/* Verify queue id */
if (queue_id < GMAC_QUE_1 || queue_id > GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return -EINVAL;
}
cbscr_val = gmac->GMAC_CBSISQA;
if (queue_id == GMAC_QUE_2) {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QAE;
gmac->GMAC_CBSISQA = idle_slope;
} else {
gmac->GMAC_CBSCR &= ~GMAC_CBSCR_QBE;
gmac->GMAC_CBSISQB = idle_slope;
}
gmac->GMAC_CBSCR = cbscr_val;
return 0;
}
static uint32_t eth_sam_gmac_get_bandwidth(Gmac *gmac)
{
uint32_t bandwidth;
/* See if we operate in 10Mbps or 100Mbps mode,
* Note: according to the manual, portTransmitRate is 0x07735940 for
* 1Gbps - therefore we cannot use the KB/MB macros - we have to
* multiply it by a round 1000 to get it right.
*/
if (gmac->GMAC_NCFGR & GMAC_NCFGR_SPD) {
/* 100Mbps */
bandwidth = (100 * 1000 * 1000) / 8;
} else {
/* 10Mbps */
bandwidth = (10 * 1000 * 1000) / 8;
}
return bandwidth;
}
static int eth_sam_gmac_get_qav_idle_slope(Gmac *gmac, int queue_id,
unsigned int *idle_slope)
{
/* Verify queue id */
if (queue_id < GMAC_QUE_1 || queue_id > GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return -EINVAL;
}
if (queue_id == GMAC_QUE_2) {
*idle_slope = gmac->GMAC_CBSISQA;
} else {
*idle_slope = gmac->GMAC_CBSISQB;
}
/* Convert to bps as expected by upper layer */
*idle_slope *= 8U;
return 0;
}
static int eth_sam_gmac_get_qav_delta_bandwidth(Gmac *gmac, int queue_id,
unsigned int *delta_bandwidth)
{
uint32_t bandwidth;
unsigned int idle_slope;
int ret;
ret = eth_sam_gmac_get_qav_idle_slope(gmac, queue_id, &idle_slope);
if (ret) {
return ret;
}
/* Calculate in Bps */
idle_slope /= 8U;
/* Get bandwidth and convert to bps */
bandwidth = eth_sam_gmac_get_bandwidth(gmac);
/* Calculate percentage - instead of multiplying idle_slope by 100,
* divide bandwidth - these numbers are so large that it should not
* influence the outcome and saves us from employing larger data types.
*/
*delta_bandwidth = idle_slope / (bandwidth / 100U);
return 0;
}
static int eth_sam_gmac_setup_qav_delta_bandwidth(Gmac *gmac, int queue_id,
int queue_share)
{
uint32_t bandwidth;
uint32_t idle_slope;
/* Verify queue id */
if (queue_id < GMAC_QUE_1 || queue_id > GMAC_ACTIVE_PRIORITY_QUEUE_NUM) {
return -EINVAL;
}
bandwidth = eth_sam_gmac_get_bandwidth(gmac);
idle_slope = (bandwidth * queue_share) / 100U;
return eth_sam_gmac_setup_qav_idle_slope(gmac, queue_id, idle_slope);
}
#endif
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
static void gmac_setup_ptp_clock_divisors(Gmac *gmac)
{
int mck_divs[] = {10, 5, 2};
double min_cycles;
double min_period;
int div;
int i;
uint8_t cns, acns, nit;
min_cycles = MCK_FREQ_HZ;
min_period = NSEC_PER_SEC;
for (i = 0; i < ARRAY_SIZE(mck_divs); ++i) {
div = mck_divs[i];
while ((double)(min_cycles / div) == (int)(min_cycles / div) &&
(double)(min_period / div) == (int)(min_period / div)) {
min_cycles /= div;
min_period /= div;
}
}
nit = min_cycles - 1;
cns = 0U;
acns = 0U;
while ((cns + 2) * nit < min_period) {
cns++;
}
acns = min_period - (nit * cns);
gmac->GMAC_TI =
GMAC_TI_CNS(cns) | GMAC_TI_ACNS(acns) | GMAC_TI_NIT(nit);
gmac->GMAC_TISUBN = 0;
}
#endif
static int gmac_init(Gmac *gmac, uint32_t gmac_ncfgr_val)
{
int mck_divisor;
mck_divisor = get_mck_clock_divisor(MCK_FREQ_HZ);
if (mck_divisor < 0) {
return mck_divisor;
}
/* Set Network Control Register to its default value, clear stats. */
gmac->GMAC_NCR = GMAC_NCR_CLRSTAT | GMAC_NCR_MPE;
/* Disable all interrupts */
gmac->GMAC_IDR = UINT32_MAX;
/* Clear all interrupts */
(void)gmac->GMAC_ISR;
disable_all_priority_queue_interrupt(gmac);
/* Setup Hash Registers - enable reception of all multicast frames when
* GMAC_NCFGR_MTIHEN is set.
*/
gmac->GMAC_HRB = UINT32_MAX;
gmac->GMAC_HRT = UINT32_MAX;
/* Setup Network Configuration Register */
gmac->GMAC_NCFGR = gmac_ncfgr_val | mck_divisor;
/* Default (RMII) is defined at atmel,gmac-common.yaml file */
switch (DT_INST_ENUM_IDX(0, phy_connection_type)) {
case 0: /* mii */
gmac->GMAC_UR = 0x1;
break;
case 1: /* rmii */
gmac->GMAC_UR = 0x0;
break;
default:
/* Build assert at top of file should catch this case */
LOG_ERR("The phy connection type is invalid");
return -EINVAL;
}
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* Initialize PTP Clock Registers */
gmac_setup_ptp_clock_divisors(gmac);
gmac->GMAC_TN = 0;
gmac->GMAC_TSH = 0;
gmac->GMAC_TSL = 0;
#endif
/* Enable Qav if priority queues are used, and setup the default delta
* bandwidth according to IEEE802.1Qav (34.3.1)
*/
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM == 1
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 75);
#elif GMAC_ACTIVE_PRIORITY_QUEUE_NUM == 2
/* For multiple priority queues, 802.1Qav suggests using 75% for the
* highest priority queue, and 0% for the lower priority queues.
* This is because the lower priority queues are supposed to be using
* the bandwidth available from the higher priority queues AND its own
* available bandwidth (see 802.1Q 34.3.1 for more details).
* This does not work like that in SAM GMAC - the lower priority queues
* are not using the bandwidth reserved for the higher priority queues
* at all. Thus we still set the default to a total of the recommended
* 75%, but split the bandwidth between them manually.
*/
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 25);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 2, 50);
#elif GMAC_ACTIVE_PRIORITY_QUEUE_NUM == 3
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 25);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 2, 25);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 3, 25);
#elif GMAC_ACTIVE_PRIORITY_QUEUE_NUM == 4
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 21);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 2, 18);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 3, 18);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 4, 18);
#elif GMAC_ACTIVE_PRIORITY_QUEUE_NUM == 5
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 1, 15);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 2, 15);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 3, 15);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 4, 15);
eth_sam_gmac_setup_qav_delta_bandwidth(gmac, 5, 15);
#endif
eth_sam_gmac_init_qav(gmac);
return 0;
}
static void link_configure(Gmac *gmac, bool full_duplex, bool speed_100M)
{
uint32_t val;
val = gmac->GMAC_NCFGR;
val &= ~(GMAC_NCFGR_FD | GMAC_NCFGR_SPD);
val |= (full_duplex) ? GMAC_NCFGR_FD : 0;
val |= (speed_100M) ? GMAC_NCFGR_SPD : 0;
gmac->GMAC_NCFGR = val;
gmac->GMAC_NCR |= (GMAC_NCR_RXEN | GMAC_NCR_TXEN);
}
static int nonpriority_queue_init(Gmac *gmac, struct gmac_queue *queue)
{
int result;
__ASSERT_NO_MSG(queue->rx_desc_list.len > 0);
__ASSERT_NO_MSG(queue->tx_desc_list.len > 0);
__ASSERT(!((uint32_t)queue->rx_desc_list.buf & ~GMAC_RBQB_ADDR_Msk),
"RX descriptors have to be word aligned");
__ASSERT(!((uint32_t)queue->tx_desc_list.buf & ~GMAC_TBQB_ADDR_Msk),
"TX descriptors have to be word aligned");
/* Setup descriptor lists */
result = rx_descriptors_init(gmac, queue);
if (result < 0) {
return result;
}
tx_descriptors_init(gmac, queue);
#if GMAC_MULTIPLE_TX_PACKETS == 0
/* Initialize TX semaphore. This semaphore is used to wait until the TX
* data has been sent.
*/
k_sem_init(&queue->tx_sem, 0, 1);
#else
/* Initialize TX descriptors semaphore. The semaphore is required as the
* size of the TX descriptor list is limited while the number of TX data
* buffers is not.
*/
k_sem_init(&queue->tx_desc_sem, queue->tx_desc_list.len - 1,
queue->tx_desc_list.len - 1);
#endif
/* Set Receive Buffer Queue Pointer Register */
gmac->GMAC_RBQB = (uint32_t)queue->rx_desc_list.buf;
/* Set Transmit Buffer Queue Pointer Register */
gmac->GMAC_TBQB = (uint32_t)queue->tx_desc_list.buf;
/* Configure GMAC DMA transfer */
gmac->GMAC_DCFGR =
/* Receive Buffer Size (defined in multiples of 64 bytes) */
GMAC_DCFGR_DRBS(CONFIG_NET_BUF_DATA_SIZE >> 6) |
#if defined(GMAC_DCFGR_RXBMS)
/* Use full receive buffer size on parts where this is selectable */
GMAC_DCFGR_RXBMS(3) |
#endif
/* Attempt to use INCR4 AHB bursts (Default) */
GMAC_DCFGR_FBLDO_INCR4 |
/* DMA Queue Flags */
GMAC_DMA_QUEUE_FLAGS;
/* Setup RX/TX completion and error interrupts */
gmac->GMAC_IER = GMAC_INT_EN_FLAGS;
queue->err_rx_frames_dropped = 0U;
queue->err_rx_flushed_count = 0U;
queue->err_tx_flushed_count = 0U;
LOG_INF("Queue %d activated", queue->que_idx);
return 0;
}
static struct net_pkt *frame_get(struct gmac_queue *queue)
{
struct gmac_desc_list *rx_desc_list = &queue->rx_desc_list;
struct gmac_desc *rx_desc;
struct net_buf **rx_frag_list = queue->rx_frag_list;
struct net_pkt *rx_frame;
bool frame_is_complete;
struct net_buf *frag;
struct net_buf *new_frag;
struct net_buf *last_frag = NULL;
uint8_t *frag_data;
uint32_t frag_len;
uint32_t frame_len = 0U;
uint16_t tail;
uint8_t wrap;
/* Check if there exists a complete frame in RX descriptor list */
tail = rx_desc_list->tail;
rx_desc = &rx_desc_list->buf[tail];
frame_is_complete = false;
while ((rx_desc->w0 & GMAC_RXW0_OWNERSHIP)
&& !frame_is_complete) {
frame_is_complete = (bool)(rx_desc->w1
& GMAC_RXW1_EOF);
MODULO_INC(tail, rx_desc_list->len);
rx_desc = &rx_desc_list->buf[tail];
}
/* Frame which is not complete can be dropped by GMAC. Do not process
* it, even partially.
*/
if (!frame_is_complete) {
return NULL;
}
rx_frame = net_pkt_rx_alloc(K_NO_WAIT);
/* Process a frame */
tail = rx_desc_list->tail;
rx_desc = &rx_desc_list->buf[tail];
frame_is_complete = false;
/* TODO: Don't assume first RX fragment will have SOF (Start of frame)
* bit set. If SOF bit is missing recover gracefully by dropping
* invalid frame.
*/
__ASSERT(rx_desc->w1 & GMAC_RXW1_SOF,
"First RX fragment is missing SOF bit");
/* TODO: We know already tail and head indexes of fragments containing
* complete frame. Loop over those indexes, don't search for them
* again.
*/
while ((rx_desc->w0 & GMAC_RXW0_OWNERSHIP)
&& !frame_is_complete) {
frag = rx_frag_list[tail];
frag_data =
(uint8_t *)(rx_desc->w0 & GMAC_RXW0_ADDR);
__ASSERT(frag->data == frag_data,
"RX descriptor and buffer list desynchronized");
frame_is_complete = (bool)(rx_desc->w1 & GMAC_RXW1_EOF);
if (frame_is_complete) {
frag_len = (rx_desc->w1 & GMAC_RXW1_LEN) - frame_len;
} else {
frag_len = CONFIG_NET_BUF_DATA_SIZE;
}
frame_len += frag_len;
/* Link frame fragments only if RX net buffer is valid */
if (rx_frame != NULL) {
/* Assure cache coherency after DMA write operation */
dcache_invalidate((uint32_t)frag_data, frag->size);
/* Get a new data net buffer from the buffer pool */
new_frag = net_pkt_get_frag(rx_frame, CONFIG_NET_BUF_DATA_SIZE, K_NO_WAIT);
if (new_frag == NULL) {
queue->err_rx_frames_dropped++;
net_pkt_unref(rx_frame);
rx_frame = NULL;
} else {
net_buf_add(frag, frag_len);
if (!last_frag) {
net_pkt_frag_insert(rx_frame, frag);
} else {
net_buf_frag_insert(last_frag, frag);
}
last_frag = frag;
frag = new_frag;
rx_frag_list[tail] = frag;
}
}
/* Update buffer descriptor status word */
rx_desc->w1 = 0U;
/* Guarantee that status word is written before the address
* word to avoid race condition.
*/
barrier_dmem_fence_full();
/* Update buffer descriptor address word */
wrap = (tail == rx_desc_list->len-1U ? GMAC_RXW0_WRAP : 0);
rx_desc->w0 = ((uint32_t)frag->data & GMAC_RXW0_ADDR) | wrap;
MODULO_INC(tail, rx_desc_list->len);
rx_desc = &rx_desc_list->buf[tail];
}
rx_desc_list->tail = tail;
LOG_DBG("Frame complete: rx=%p, tail=%d", rx_frame, tail);
__ASSERT_NO_MSG(frame_is_complete);
return rx_frame;
}
static void eth_rx(struct gmac_queue *queue)
{
struct eth_sam_dev_data *dev_data =
CONTAINER_OF(queue, struct eth_sam_dev_data,
queue_list[queue->que_idx]);
struct net_pkt *rx_frame;
#if defined(CONFIG_NET_GPTP)
const struct device *const dev = net_if_get_device(dev_data->iface);
const struct eth_sam_dev_cfg *const cfg = dev->config;
Gmac *gmac = cfg->regs;
struct gptp_hdr *hdr;
#endif
/* More than one frame could have been received by GMAC, get all
* complete frames stored in the GMAC RX descriptor list.
*/
rx_frame = frame_get(queue);
while (rx_frame) {
LOG_DBG("ETH rx");
#if defined(CONFIG_NET_GPTP)
hdr = check_gptp_msg(get_iface(dev_data), rx_frame, false);
timestamp_rx_pkt(gmac, hdr, rx_frame);
if (hdr) {
update_pkt_priority(hdr, rx_frame);
}
#endif /* CONFIG_NET_GPTP */
if (net_recv_data(get_iface(dev_data), rx_frame) < 0) {
eth_stats_update_errors_rx(get_iface(dev_data));
net_pkt_unref(rx_frame);
}
rx_frame = frame_get(queue);
}
}
#if !defined(CONFIG_ETH_SAM_GMAC_FORCE_QUEUE) && \
((GMAC_ACTIVE_QUEUE_NUM != NET_TC_TX_COUNT) || \
((NET_TC_TX_COUNT != NET_TC_RX_COUNT) && defined(CONFIG_NET_VLAN)))
static int priority2queue(enum net_priority priority)
{
static const uint8_t queue_priority_map[] = {
#if GMAC_ACTIVE_QUEUE_NUM == 1
0, 0, 0, 0, 0, 0, 0, 0
#endif
#if GMAC_ACTIVE_QUEUE_NUM == 2
0, 0, 0, 0, 1, 1, 1, 1
#endif
#if GMAC_ACTIVE_QUEUE_NUM == 3
0, 0, 0, 0, 1, 1, 2, 2
#endif
#if GMAC_ACTIVE_QUEUE_NUM == 4
0, 0, 0, 0, 1, 1, 2, 3
#endif
#if GMAC_ACTIVE_QUEUE_NUM == 5
0, 0, 0, 0, 1, 2, 3, 4
#endif
#if GMAC_ACTIVE_QUEUE_NUM == 6
0, 0, 0, 1, 2, 3, 4, 5
#endif
};
return queue_priority_map[priority];
}
#endif
static int eth_tx(const struct device *dev, struct net_pkt *pkt)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
struct eth_sam_dev_data *const dev_data = dev->data;
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tx_desc;
struct gmac_desc *tx_first_desc;
struct net_buf *frag;
uint8_t *frag_data;
uint16_t frag_len;
uint32_t err_tx_flushed_count_at_entry;
#if GMAC_MULTIPLE_TX_PACKETS == 1
unsigned int key;
#endif
uint8_t pkt_prio;
#if GMAC_MULTIPLE_TX_PACKETS == 0
#if defined(CONFIG_NET_GPTP)
struct gptp_hdr *hdr;
#endif
#endif
__ASSERT(pkt, "buf pointer is NULL");
__ASSERT(pkt->frags, "Frame data missing");
LOG_DBG("ETH tx");
/* Decide which queue should be used */
pkt_prio = net_pkt_priority(pkt);
#if defined(CONFIG_ETH_SAM_GMAC_FORCE_QUEUE)
/* Route eveything to the forced queue */
queue = &dev_data->queue_list[CONFIG_ETH_SAM_GMAC_FORCED_QUEUE];
#elif GMAC_ACTIVE_QUEUE_NUM == CONFIG_NET_TC_TX_COUNT
/* Prefer to chose queue based on its traffic class */
queue = &dev_data->queue_list[net_tx_priority2tc(pkt_prio)];
#else
/* If that's not possible due to config - use builtin mapping */
queue = &dev_data->queue_list[priority2queue(pkt_prio)];
#endif
tx_desc_list = &queue->tx_desc_list;
err_tx_flushed_count_at_entry = queue->err_tx_flushed_count;
frag = pkt->frags;
/* Keep reference to the descriptor */
tx_first_desc = &tx_desc_list->buf[tx_desc_list->head];
while (frag) {
frag_data = frag->data;
frag_len = frag->len;
/* Assure cache coherency before DMA read operation */
dcache_clean((uint32_t)frag_data, frag->size);
#if GMAC_MULTIPLE_TX_PACKETS == 1
k_sem_take(&queue->tx_desc_sem, K_FOREVER);
/* The following section becomes critical and requires IRQ lock
* / unlock protection only due to the possibility of executing
* tx_error_handler() function.
*/
key = irq_lock();
/* Check if tx_error_handler() function was executed */
if (queue->err_tx_flushed_count !=
err_tx_flushed_count_at_entry) {
irq_unlock(key);
return -EIO;
}
#endif
tx_desc = &tx_desc_list->buf[tx_desc_list->head];
/* Update buffer descriptor address word */
tx_desc->w0 = (uint32_t)frag_data;
/* Update buffer descriptor status word (clear used bit except
* for the first frag).
*/
tx_desc->w1 = (frag_len & GMAC_TXW1_LEN)
| (!frag->frags ? GMAC_TXW1_LASTBUFFER : 0)
| (tx_desc_list->head == tx_desc_list->len - 1U
? GMAC_TXW1_WRAP : 0)
| (tx_desc == tx_first_desc ? GMAC_TXW1_USED : 0);
/* Update descriptor position */
MODULO_INC(tx_desc_list->head, tx_desc_list->len);
#if GMAC_MULTIPLE_TX_PACKETS == 1
__ASSERT(tx_desc_list->head != tx_desc_list->tail,
"tx_desc_list overflow");
/* Account for a sent frag */
ring_buf_put(&queue->tx_frag_list, POINTER_TO_UINT(frag));
/* frag is internally queued, so it requires to hold a reference */
net_pkt_frag_ref(frag);
irq_unlock(key);
#endif
/* Continue with the rest of fragments (only data) */
frag = frag->frags;
}
#if GMAC_MULTIPLE_TX_PACKETS == 1
key = irq_lock();
/* Check if tx_error_handler() function was executed */
if (queue->err_tx_flushed_count != err_tx_flushed_count_at_entry) {
irq_unlock(key);
return -EIO;
}
#endif
/* Ensure the descriptor following the last one is marked as used */
tx_desc_list->buf[tx_desc_list->head].w1 = GMAC_TXW1_USED;
/* Guarantee that all the fragments have been written before removing
* the used bit to avoid race condition.
*/
barrier_dmem_fence_full();
/* Remove the used bit of the first fragment to allow the controller
* to process it and the following fragments.
*/
tx_first_desc->w1 &= ~GMAC_TXW1_USED;
#if GMAC_MULTIPLE_TX_PACKETS == 1
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
/* Account for a sent frame */
ring_buf_put(&queue->tx_frames, POINTER_TO_UINT(pkt));
/* pkt is internally queued, so it requires to hold a reference */
net_pkt_ref(pkt);
#endif
irq_unlock(key);
#endif
/* Guarantee that the first fragment got its bit removed before starting
* sending packets to avoid packets getting stuck.
*/
barrier_dmem_fence_full();
/* Start transmission */
gmac->GMAC_NCR |= GMAC_NCR_TSTART;
#if GMAC_MULTIPLE_TX_PACKETS == 0
/* Wait until the packet is sent */
k_sem_take(&queue->tx_sem, K_FOREVER);
/* Check if transmit successful or not */
if (queue->err_tx_flushed_count != err_tx_flushed_count_at_entry) {
return -EIO;
}
#if defined(CONFIG_NET_GPTP)
#if defined(CONFIG_NET_GPTP)
hdr = check_gptp_msg(get_iface(dev_data), pkt, true);
timestamp_tx_pkt(gmac, hdr, pkt);
if (hdr && need_timestamping(hdr)) {
net_if_add_tx_timestamp(pkt);
}
#endif
#endif
#endif
return 0;
}
static void queue0_isr(const struct device *dev)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
struct eth_sam_dev_data *const dev_data = dev->data;
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *rx_desc_list;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tail_desc;
uint32_t isr;
/* Interrupt Status Register is cleared on read */
isr = gmac->GMAC_ISR;
LOG_DBG("GMAC_ISR=0x%08x", isr);
queue = &dev_data->queue_list[0];
rx_desc_list = &queue->rx_desc_list;
tx_desc_list = &queue->tx_desc_list;
/* RX packet */
if (isr & GMAC_INT_RX_ERR_BITS) {
rx_error_handler(gmac, queue);
} else if (isr & GMAC_ISR_RCOMP) {
tail_desc = &rx_desc_list->buf[rx_desc_list->tail];
LOG_DBG("rx.w1=0x%08x, tail=%d",
tail_desc->w1,
rx_desc_list->tail);
eth_rx(queue);
}
/* TX packet */
if (isr & GMAC_INT_TX_ERR_BITS) {
tx_error_handler(gmac, queue);
} else if (isr & GMAC_ISR_TCOMP) {
#if GMAC_MULTIPLE_TX_PACKETS == 1
tail_desc = &tx_desc_list->buf[tx_desc_list->tail];
LOG_DBG("tx.w1=0x%08x, tail=%d",
tail_desc->w1,
tx_desc_list->tail);
#endif
tx_completed(gmac, queue);
}
if (isr & GMAC_IER_HRESP) {
LOG_DBG("IER HRESP");
}
}
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static inline void priority_queue_isr(const struct device *dev,
unsigned int queue_idx)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
struct eth_sam_dev_data *const dev_data = dev->data;
Gmac *gmac = cfg->regs;
struct gmac_queue *queue;
struct gmac_desc_list *rx_desc_list;
struct gmac_desc_list *tx_desc_list;
struct gmac_desc *tail_desc;
uint32_t isrpq;
isrpq = gmac->GMAC_ISRPQ[queue_idx - 1];
LOG_DBG("GMAC_ISRPQ%d=0x%08x", queue_idx - 1, isrpq);
queue = &dev_data->queue_list[queue_idx];
rx_desc_list = &queue->rx_desc_list;
tx_desc_list = &queue->tx_desc_list;
/* RX packet */
if (isrpq & GMAC_INTPQ_RX_ERR_BITS) {
rx_error_handler(gmac, queue);
} else if (isrpq & GMAC_ISRPQ_RCOMP) {
tail_desc = &rx_desc_list->buf[rx_desc_list->tail];
LOG_DBG("rx.w1=0x%08x, tail=%d",
tail_desc->w1,
rx_desc_list->tail);
eth_rx(queue);
}
/* TX packet */
if (isrpq & GMAC_INTPQ_TX_ERR_BITS) {
tx_error_handler(gmac, queue);
} else if (isrpq & GMAC_ISRPQ_TCOMP) {
#if GMAC_MULTIPLE_TX_PACKETS == 1
tail_desc = &tx_desc_list->buf[tx_desc_list->tail];
LOG_DBG("tx.w1=0x%08x, tail=%d",
tail_desc->w1,
tx_desc_list->tail);
#endif
tx_completed(gmac, queue);
}
if (isrpq & GMAC_IERPQ_HRESP) {
LOG_DBG("IERPQ%d HRESP", queue_idx - 1);
}
}
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static void queue1_isr(const struct device *dev)
{
priority_queue_isr(dev, 1);
}
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
static void queue2_isr(const struct device *dev)
{
priority_queue_isr(dev, 2);
}
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
static void queue3_isr(const struct device *dev)
{
priority_queue_isr(dev, 3);
}
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
static void queue4_isr(const struct device *dev)
{
priority_queue_isr(dev, 4);
}
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
static void queue5_isr(const struct device *dev)
{
priority_queue_isr(dev, 5);
}
#endif
static int eth_initialize(const struct device *dev)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
int retval;
cfg->config_func();
#ifdef CONFIG_SOC_FAMILY_ATMEL_SAM
/* Enable GMAC module's clock */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
#else
/* Enable MCLK clock on GMAC */
MCLK->AHBMASK.reg |= MCLK_AHBMASK_GMAC;
*MCLK_GMAC |= MCLK_GMAC_MASK;
#endif
/* Connect pins to the peripheral */
retval = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
return retval;
}
#if DT_INST_NODE_HAS_PROP(0, mac_eeprom)
static void get_mac_addr_from_i2c_eeprom(uint8_t mac_addr[6])
{
uint32_t iaddr = CONFIG_ETH_SAM_GMAC_MAC_I2C_INT_ADDRESS;
int ret;
const struct i2c_dt_spec i2c = I2C_DT_SPEC_GET(DT_INST_PHANDLE(0, mac_eeprom));
if (!device_is_ready(i2c.bus)) {
LOG_ERR("Bus device is not ready");
return;
}
ret = i2c_write_read_dt(&i2c,
&iaddr, CONFIG_ETH_SAM_GMAC_MAC_I2C_INT_ADDRESS_SIZE,
mac_addr, 6);
if (ret != 0) {
LOG_ERR("I2C: failed to read MAC addr");
return;
}
}
#endif
static void generate_mac(uint8_t mac_addr[6])
{
#if DT_INST_NODE_HAS_PROP(0, mac_eeprom)
get_mac_addr_from_i2c_eeprom(mac_addr);
#elif DT_INST_PROP(0, zephyr_random_mac_address)
gen_random_mac(mac_addr, ATMEL_OUI_B0, ATMEL_OUI_B1, ATMEL_OUI_B2);
#endif
}
static void phy_link_state_changed(const struct device *pdev,
struct phy_link_state *state,
void *user_data)
{
const struct device *dev = (const struct device *) user_data;
struct eth_sam_dev_data *const dev_data = dev->data;
const struct eth_sam_dev_cfg *const cfg = dev->config;
bool is_up;
is_up = state->is_up;
if (is_up && !dev_data->link_up) {
LOG_INF("Link up");
/* Announce link up status */
dev_data->link_up = true;
net_eth_carrier_on(dev_data->iface);
/* Set up link */
link_configure(cfg->regs,
PHY_LINK_IS_FULL_DUPLEX(state->speed),
PHY_LINK_IS_SPEED_100M(state->speed));
} else if (!is_up && dev_data->link_up) {
LOG_INF("Link down");
/* Announce link down status */
dev_data->link_up = false;
net_eth_carrier_off(dev_data->iface);
}
}
static void eth0_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct eth_sam_dev_data *const dev_data = dev->data;
const struct eth_sam_dev_cfg *const cfg = dev->config;
static bool init_done;
uint32_t gmac_ncfgr_val;
int result;
int i;
if (dev_data->iface == NULL) {
dev_data->iface = iface;
}
ethernet_init(iface);
/* The rest of initialization should only be done once */
if (init_done) {
return;
}
/* Check the status of data caches */
dcache_is_enabled();
/* Initialize GMAC driver */
gmac_ncfgr_val =
GMAC_NCFGR_MTIHEN /* Multicast Hash Enable */
| GMAC_NCFGR_LFERD /* Length Field Error Frame Discard */
| GMAC_NCFGR_RFCS /* Remove Frame Check Sequence */
| GMAC_NCFGR_RXCOEN /* Receive Checksum Offload Enable */
| GMAC_MAX_FRAME_SIZE;
result = gmac_init(cfg->regs, gmac_ncfgr_val);
if (result < 0) {
LOG_ERR("Unable to initialize ETH driver");
return;
}
generate_mac(dev_data->mac_addr);
LOG_INF("MAC: %02x:%02x:%02x:%02x:%02x:%02x",
dev_data->mac_addr[0], dev_data->mac_addr[1],
dev_data->mac_addr[2], dev_data->mac_addr[3],
dev_data->mac_addr[4], dev_data->mac_addr[5]);
/* Set MAC Address for frame filtering logic */
mac_addr_set(cfg->regs, 0, dev_data->mac_addr);
/* Register Ethernet MAC Address with the upper layer */
net_if_set_link_addr(iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
/* Initialize GMAC queues */
for (i = GMAC_QUE_0; i < GMAC_QUEUE_NUM; i++) {
result = queue_init(cfg->regs, &dev_data->queue_list[i]);
if (result < 0) {
LOG_ERR("Unable to initialize ETH queue%d", i);
return;
}
}
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
#if defined(CONFIG_ETH_SAM_GMAC_FORCE_QUEUE)
for (i = 0; i < CONFIG_NET_TC_RX_COUNT; ++i) {
cfg->regs->GMAC_ST1RPQ[i] =
GMAC_ST1RPQ_DSTCM(i) |
GMAC_ST1RPQ_QNB(CONFIG_ETH_SAM_GMAC_FORCED_QUEUE);
}
#elif GMAC_ACTIVE_QUEUE_NUM == NET_TC_RX_COUNT
/* If TC configuration is compatible with HW configuration, setup the
* screening registers based on the DS/TC values.
* Map them 1:1 - TC 0 -> Queue 0, TC 1 -> Queue 1 etc.
*/
for (i = 0; i < CONFIG_NET_TC_RX_COUNT; ++i) {
cfg->regs->GMAC_ST1RPQ[i] =
GMAC_ST1RPQ_DSTCM(i) | GMAC_ST1RPQ_QNB(i);
}
#elif defined(CONFIG_NET_VLAN)
/* If VLAN is enabled, route packets according to VLAN priority */
int j;
i = 0;
for (j = NET_PRIORITY_NC; j >= 0; --j) {
if (priority2queue(j) == 0) {
/* No point to set rules for the regular queue */
continue;
}
if (i >= ARRAY_SIZE(cfg->regs->GMAC_ST2RPQ)) {
/* No more screening registers available */
break;
}
cfg->regs->GMAC_ST2RPQ[i++] =
GMAC_ST2RPQ_QNB(priority2queue(j))
| GMAC_ST2RPQ_VLANP(j)
| GMAC_ST2RPQ_VLANE;
}
#endif
#endif
if (device_is_ready(cfg->phy_dev)) {
phy_link_callback_set(cfg->phy_dev, &phy_link_state_changed,
(void *)dev);
} else {
LOG_ERR("PHY device not ready");
}
/* Do not start the interface until PHY link is up */
if (!(dev_data->link_up)) {
net_if_carrier_off(iface);
}
init_done = true;
}
static enum ethernet_hw_caps eth_sam_gmac_get_capabilities(const struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_LINK_10BASE_T |
#if defined(CONFIG_NET_VLAN)
ETHERNET_HW_VLAN |
#endif
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
ETHERNET_PTP |
#endif
ETHERNET_PRIORITY_QUEUES |
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
ETHERNET_QAV |
#endif
ETHERNET_LINK_100BASE_T;
}
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static int eth_sam_gmac_set_qav_param(const struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
Gmac *gmac = cfg->regs;
enum ethernet_qav_param_type qav_param_type;
unsigned int delta_bandwidth;
unsigned int idle_slope;
int queue_id;
bool enable;
/* Priority queue IDs start from 1 for SAM GMAC */
queue_id = config->qav_param.queue_id + 1;
qav_param_type = config->qav_param.type;
switch (qav_param_type) {
case ETHERNET_QAV_PARAM_TYPE_STATUS:
enable = config->qav_param.enabled;
return eth_sam_gmac_setup_qav(gmac, queue_id, enable);
case ETHERNET_QAV_PARAM_TYPE_DELTA_BANDWIDTH:
delta_bandwidth = config->qav_param.delta_bandwidth;
return eth_sam_gmac_setup_qav_delta_bandwidth(gmac, queue_id,
delta_bandwidth);
case ETHERNET_QAV_PARAM_TYPE_IDLE_SLOPE:
idle_slope = config->qav_param.idle_slope;
/* The standard uses bps, SAM GMAC uses Bps - convert now */
idle_slope /= 8U;
return eth_sam_gmac_setup_qav_idle_slope(gmac, queue_id,
idle_slope);
default:
break;
}
return -ENOTSUP;
}
#endif
static int eth_sam_gmac_set_config(const struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
int result = 0;
switch (type) {
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
case ETHERNET_CONFIG_TYPE_QAV_PARAM:
return eth_sam_gmac_set_qav_param(dev, type, config);
#endif
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
{
struct eth_sam_dev_data *const dev_data = dev->data;
const struct eth_sam_dev_cfg *const cfg = dev->config;
memcpy(dev_data->mac_addr,
config->mac_address.addr,
sizeof(dev_data->mac_addr));
/* Set MAC Address for frame filtering logic */
mac_addr_set(cfg->regs, 0, dev_data->mac_addr);
LOG_INF("%s MAC set to %02x:%02x:%02x:%02x:%02x:%02x",
dev->name,
dev_data->mac_addr[0], dev_data->mac_addr[1],
dev_data->mac_addr[2], dev_data->mac_addr[3],
dev_data->mac_addr[4], dev_data->mac_addr[5]);
/* Register Ethernet MAC Address with the upper layer */
net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
break;
}
default:
result = -ENOTSUP;
break;
}
return result;
}
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
static int eth_sam_gmac_get_qav_param(const struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *config)
{
const struct eth_sam_dev_cfg *const cfg = dev->config;
Gmac *gmac = cfg->regs;
enum ethernet_qav_param_type qav_param_type;
int queue_id;
bool *enabled;
unsigned int *idle_slope;
unsigned int *delta_bandwidth;
/* Priority queue IDs start from 1 for SAM GMAC */
queue_id = config->qav_param.queue_id + 1;
qav_param_type = config->qav_param.type;
switch (qav_param_type) {
case ETHERNET_QAV_PARAM_TYPE_STATUS:
enabled = &config->qav_param.enabled;
return eth_sam_gmac_get_qav_status(gmac, queue_id, enabled);
case ETHERNET_QAV_PARAM_TYPE_IDLE_SLOPE:
idle_slope = &config->qav_param.idle_slope;
return eth_sam_gmac_get_qav_idle_slope(gmac, queue_id,
idle_slope);
case ETHERNET_QAV_PARAM_TYPE_OPER_IDLE_SLOPE:
idle_slope = &config->qav_param.oper_idle_slope;
return eth_sam_gmac_get_qav_idle_slope(gmac, queue_id,
idle_slope);
case ETHERNET_QAV_PARAM_TYPE_DELTA_BANDWIDTH:
delta_bandwidth = &config->qav_param.delta_bandwidth;
return eth_sam_gmac_get_qav_delta_bandwidth(gmac, queue_id,
delta_bandwidth);
case ETHERNET_QAV_PARAM_TYPE_TRAFFIC_CLASS:
#if GMAC_ACTIVE_QUEUE_NUM == NET_TC_TX_COUNT
config->qav_param.traffic_class = queue_id;
return 0;
#else
/* Invalid configuration - no direct TC to queue mapping */
return -ENOTSUP;
#endif
default:
break;
}
return -ENOTSUP;
}
#endif
static int eth_sam_gmac_get_config(const struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *config)
{
switch (type) {
case ETHERNET_CONFIG_TYPE_PRIORITY_QUEUES_NUM:
config->priority_queues_num = GMAC_ACTIVE_PRIORITY_QUEUE_NUM;
return 0;
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
case ETHERNET_CONFIG_TYPE_QAV_PARAM:
return eth_sam_gmac_get_qav_param(dev, type, config);
#endif
default:
break;
}
return -ENOTSUP;
}
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
static const struct device *eth_sam_gmac_get_ptp_clock(const struct device *dev)
{
struct eth_sam_dev_data *const dev_data = dev->data;
return dev_data->ptp_clock;
}
#endif
static const struct ethernet_api eth_api = {
.iface_api.init = eth0_iface_init,
.get_capabilities = eth_sam_gmac_get_capabilities,
.set_config = eth_sam_gmac_set_config,
.get_config = eth_sam_gmac_get_config,
.send = eth_tx,
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.get_ptp_clock = eth_sam_gmac_get_ptp_clock,
#endif
};
static void eth0_irq_config(void)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, gmac, irq),
DT_INST_IRQ_BY_NAME(0, gmac, priority),
queue0_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, gmac, irq));
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, q1, irq),
DT_INST_IRQ_BY_NAME(0, q1, priority),
queue1_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, q1, irq));
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, q2, irq),
DT_INST_IRQ_BY_NAME(0, q1, priority),
queue2_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, q2, irq));
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, q3, irq),
DT_INST_IRQ_BY_NAME(0, q3, priority),
queue3_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, q3, irq));
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, q4, irq),
DT_INST_IRQ_BY_NAME(0, q4, priority),
queue4_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, q4, irq));
#endif
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, q5, irq),
DT_INST_IRQ_BY_NAME(0, q5, priority),
queue5_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQ_BY_NAME(0, q5, irq));
#endif
}
PINCTRL_DT_INST_DEFINE(0);
static const struct eth_sam_dev_cfg eth0_config = {
.regs = (Gmac *)DT_INST_REG_ADDR(0),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
#ifdef CONFIG_SOC_FAMILY_ATMEL_SAM
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(0),
#endif
.config_func = eth0_irq_config,
.phy_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, phy_handle))
};
static struct eth_sam_dev_data eth0_data = {
#if NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(0))
.mac_addr = DT_INST_PROP(0, local_mac_address),
#endif
.queue_list = {
{
.que_idx = GMAC_QUE_0,
.rx_desc_list = {
.buf = rx_desc_que0,
.len = ARRAY_SIZE(rx_desc_que0),
},
.tx_desc_list = {
.buf = tx_desc_que0,
.len = ARRAY_SIZE(tx_desc_que0),
},
.rx_frag_list = rx_frag_list_que0,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que0,
.len = ARRAY_SIZE(tx_frag_list_que0),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que0,
.len = ARRAY_SIZE(tx_frame_list_que0),
},
#endif
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 1
}, {
.que_idx = GMAC_QUE_1,
.rx_desc_list = {
.buf = rx_desc_que1,
.len = ARRAY_SIZE(rx_desc_que1),
},
.tx_desc_list = {
.buf = tx_desc_que1,
.len = ARRAY_SIZE(tx_desc_que1),
},
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 1
.rx_frag_list = rx_frag_list_que1,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que1,
.len = ARRAY_SIZE(tx_frag_list_que1),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que1,
.len = ARRAY_SIZE(tx_frame_list_que1),
}
#endif
#endif
#endif
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 2
}, {
.que_idx = GMAC_QUE_2,
.rx_desc_list = {
.buf = rx_desc_que2,
.len = ARRAY_SIZE(rx_desc_que2),
},
.tx_desc_list = {
.buf = tx_desc_que2,
.len = ARRAY_SIZE(tx_desc_que2),
},
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 2
.rx_frag_list = rx_frag_list_que2,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que2,
.len = ARRAY_SIZE(tx_frag_list_que2),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que2,
.len = ARRAY_SIZE(tx_frame_list_que2),
}
#endif
#endif
#endif
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 3
}, {
.que_idx = GMAC_QUE_3,
.rx_desc_list = {
.buf = rx_desc_que3,
.len = ARRAY_SIZE(rx_desc_que3),
},
.tx_desc_list = {
.buf = tx_desc_que3,
.len = ARRAY_SIZE(tx_desc_que3),
},
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 3
.rx_frag_list = rx_frag_list_que3,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que3,
.len = ARRAY_SIZE(tx_frag_list_que3),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que3,
.len = ARRAY_SIZE(tx_frame_list_que3),
}
#endif
#endif
#endif
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 4
}, {
.que_idx = GMAC_QUE_4,
.rx_desc_list = {
.buf = rx_desc_que4,
.len = ARRAY_SIZE(rx_desc_que4),
},
.tx_desc_list = {
.buf = tx_desc_que4,
.len = ARRAY_SIZE(tx_desc_que4),
},
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 4
.rx_frag_list = rx_frag_list_que4,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que4,
.len = ARRAY_SIZE(tx_frag_list_que4),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que4,
.len = ARRAY_SIZE(tx_frame_list_que4),
}
#endif
#endif
#endif
#endif
#if GMAC_PRIORITY_QUEUE_NUM >= 5
}, {
.que_idx = GMAC_QUE_5,
.rx_desc_list = {
.buf = rx_desc_que5,
.len = ARRAY_SIZE(rx_desc_que5),
},
.tx_desc_list = {
.buf = tx_desc_que5,
.len = ARRAY_SIZE(tx_desc_que5),
},
#if GMAC_ACTIVE_PRIORITY_QUEUE_NUM >= 5
.rx_frag_list = rx_frag_list_que5,
#if GMAC_MULTIPLE_TX_PACKETS == 1
.tx_frag_list = {
.buf = (uint32_t *)tx_frag_list_que5,
.len = ARRAY_SIZE(tx_frag_list_que5),
},
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
.tx_frames = {
.buf = (uint32_t *)tx_frame_list_que5,
.len = ARRAY_SIZE(tx_frame_list_que5),
}
#endif
#endif
#endif
#endif
}
},
};
ETH_NET_DEVICE_DT_INST_DEFINE(0,
eth_initialize, NULL, &eth0_data,
&eth0_config, CONFIG_ETH_INIT_PRIORITY, &eth_api,
GMAC_MTU);
#if defined(CONFIG_PTP_CLOCK_SAM_GMAC)
struct ptp_context {
const struct device *eth_dev;
};
static struct ptp_context ptp_gmac_0_context;
static int ptp_clock_sam_gmac_set(const struct device *dev,
struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_sam_dev_cfg *const cfg = ptp_context->eth_dev->config;
Gmac *gmac = cfg->regs;
gmac->GMAC_TSH = tm->_sec.high & 0xffff;
gmac->GMAC_TSL = tm->_sec.low & 0xffffffff;
gmac->GMAC_TN = tm->nanosecond & 0xffffffff;
return 0;
}
static int ptp_clock_sam_gmac_get(const struct device *dev,
struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_sam_dev_cfg *const cfg = ptp_context->eth_dev->config;
Gmac *gmac = cfg->regs;
tm->second = ((uint64_t)(gmac->GMAC_TSH & 0xffff) << 32) | gmac->GMAC_TSL;
tm->nanosecond = gmac->GMAC_TN;
return 0;
}
static int ptp_clock_sam_gmac_adjust(const struct device *dev, int increment)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_sam_dev_cfg *const cfg = ptp_context->eth_dev->config;
Gmac *gmac = cfg->regs;
if ((increment <= -(int)NSEC_PER_SEC) || (increment >= (int)NSEC_PER_SEC)) {
return -EINVAL;
}
if (increment < 0) {
gmac->GMAC_TA = GMAC_TA_ADJ | GMAC_TA_ITDT(-increment);
} else {
gmac->GMAC_TA = GMAC_TA_ITDT(increment);
}
return 0;
}
static int ptp_clock_sam_gmac_rate_adjust(const struct device *dev,
double ratio)
{
return -ENOTSUP;
}
static const struct ptp_clock_driver_api ptp_api = {
.set = ptp_clock_sam_gmac_set,
.get = ptp_clock_sam_gmac_get,
.adjust = ptp_clock_sam_gmac_adjust,
.rate_adjust = ptp_clock_sam_gmac_rate_adjust,
};
static int ptp_gmac_init(const struct device *port)
{
const struct device *const eth_dev = DEVICE_DT_INST_GET(0);
struct eth_sam_dev_data *dev_data = eth_dev->data;
struct ptp_context *ptp_context = port->data;
dev_data->ptp_clock = port;
ptp_context->eth_dev = eth_dev;
return 0;
}
DEVICE_DEFINE(gmac_ptp_clock_0, PTP_CLOCK_NAME, ptp_gmac_init,
NULL, &ptp_gmac_0_context, NULL, POST_KERNEL,
CONFIG_PTP_CLOCK_INIT_PRIORITY, &ptp_api);
#endif /* CONFIG_PTP_CLOCK_SAM_GMAC */