zephyr/drivers/spi/spi_xec_qmspi_ldma.c
Manimaran A b328e920b6 drivers: spi: Microchip MEC172x SPI fix for Zephyr 3.4 breakage
Zephyr version 3.4 changed the SPI context structure and macros
which broke the logic in the MEC172x SPI driver configuration API.
This was not detected by CI due to no tests for this driver are in
the tree. The driver now behaves like most other SPI drivers requiring
a different configuration structure pointer to be passed if any item
in the configuration changes.

Signed-off-by: Manimaran A <manimaran.a@microchip.com>
2023-09-13 12:01:18 +02:00

1077 lines
29 KiB
C

/*
* Copyright (c) 2021 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_qmspi_ldma
#include <errno.h>
#include <soc.h>
#include <zephyr/device.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
#include <zephyr/dt-bindings/interrupt-controller/mchp-xec-ecia.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
/* #define MCHP_XEC_QMSPI_DEBUG 1 */
/* MEC172x QMSPI controller SPI Mode 3 signalling has an anomaly where
* received data is shifted off the input line(s) improperly. Received
* data bytes will be left shifted by 1. Work-around for SPI Mode 3 is
* to sample input line(s) on same edge as output data is ready.
*/
#define XEC_QMSPI_SPI_MODE_3_ANOMALY 1
/* common clock control device node for all Microchip XEC chips */
#define MCHP_XEC_CLOCK_CONTROL_NODE DT_NODELABEL(pcr)
/* spin loops waiting for HW to clear soft reset bit */
#define XEC_QMSPI_SRST_LOOPS 16
/* microseconds for busy wait and total wait interval */
#define XEC_QMSPI_WAIT_INTERVAL 8
#define XEC_QMSPI_WAIT_COUNT 64
/* QSPI transfer and DMA done */
#define XEC_QSPI_HW_XFR_DMA_DONE (MCHP_QMSPI_STS_DONE | MCHP_QMSPI_STS_DMA_DONE)
/* QSPI hardware error status
* Misprogrammed control or descriptors (software error)
* Overflow TX FIFO
* Underflow RX FIFO
*/
#define XEC_QSPI_HW_ERRORS (MCHP_QMSPI_STS_PROG_ERR | \
MCHP_QMSPI_STS_TXB_ERR | \
MCHP_QMSPI_STS_RXB_ERR)
#define XEC_QSPI_HW_ERRORS_LDMA (MCHP_QMSPI_STS_LDMA_RX_ERR | \
MCHP_QMSPI_STS_LDMA_TX_ERR)
#define XEC_QSPI_HW_ERRORS_ALL (XEC_QSPI_HW_ERRORS | \
XEC_QSPI_HW_ERRORS_LDMA)
#define XEC_QSPI_TIMEOUT_US (100 * 1000) /* 100 ms */
/* Device constant configuration parameters */
struct spi_qmspi_config {
struct qmspi_regs *regs;
const struct device *clk_dev;
struct mchp_xec_pcr_clk_ctrl clksrc;
uint32_t clock_freq;
uint32_t cs1_freq;
uint32_t cs_timing;
uint16_t taps_adj;
uint8_t girq;
uint8_t girq_pos;
uint8_t girq_nvic_aggr;
uint8_t girq_nvic_direct;
uint8_t irq_pri;
uint8_t chip_sel;
uint8_t width; /* 0(half) 1(single), 2(dual), 4(quad) */
uint8_t unused[1];
const struct pinctrl_dev_config *pcfg;
void (*irq_config_func)(void);
};
#define XEC_QMSPI_XFR_FLAG_TX BIT(0)
#define XEC_QMSPI_XFR_FLAG_RX BIT(1)
/* Device run time data */
struct spi_qmspi_data {
struct spi_context ctx;
uint32_t base_freq_hz;
uint32_t spi_freq_hz;
uint32_t qstatus;
uint8_t np; /* number of data pins: 1, 2, or 4 */
#ifdef CONFIG_SPI_ASYNC
spi_callback_t cb;
void *userdata;
size_t xfr_len;
#endif
uint32_t tempbuf[2];
#ifdef MCHP_XEC_QMSPI_DEBUG
uint32_t bufcnt_status;
uint32_t rx_ldma_ctrl0;
uint32_t tx_ldma_ctrl0;
uint32_t qunits;
uint32_t qxfru;
uint32_t xfrlen;
#endif
};
static int xec_qmspi_spin_yield(int *counter, int max_count)
{
*counter = *counter + 1;
if (*counter > max_count) {
return -ETIMEDOUT;
}
k_busy_wait(XEC_QMSPI_WAIT_INTERVAL);
return 0;
}
/*
* reset QMSPI controller with save/restore of timing registers.
* Some QMSPI timing register may be modified by the Boot-ROM OTP
* values.
*/
static void qmspi_reset(struct qmspi_regs *regs)
{
uint32_t taps[3];
uint32_t malt1;
uint32_t cstm;
uint32_t mode;
uint32_t cnt = XEC_QMSPI_SRST_LOOPS;
taps[0] = regs->TM_TAPS;
taps[1] = regs->TM_TAPS_ADJ;
taps[2] = regs->TM_TAPS_CTRL;
malt1 = regs->MODE_ALT1;
cstm = regs->CSTM;
mode = regs->MODE;
regs->MODE = MCHP_QMSPI_M_SRST;
while (regs->MODE & MCHP_QMSPI_M_SRST) {
if (cnt == 0) {
break;
}
cnt--;
}
regs->MODE = 0;
regs->MODE = mode & ~MCHP_QMSPI_M_ACTIVATE;
regs->CSTM = cstm;
regs->MODE_ALT1 = malt1;
regs->TM_TAPS = taps[0];
regs->TM_TAPS_ADJ = taps[1];
regs->TM_TAPS_CTRL = taps[2];
}
static uint32_t qmspi_encoded_fdiv(const struct device *dev, uint32_t freq_hz)
{
struct spi_qmspi_data *qdata = dev->data;
if (freq_hz == 0u) {
return 0u; /* maximum frequency divider */
}
return (qdata->base_freq_hz / freq_hz);
}
/* Program QMSPI frequency divider field in the mode register.
* MEC172x QMSPI input clock source is the Fast Peripheral domain whose
* clock is controlled by the PCR turbo clock. 96 MHz if turbo mode
* enabled else 48 MHz. Query the clock control driver to get clock
* rate of fast peripheral domain. MEC172x QMSPI clock divider has
* been expanded to a 16-bit field encoded as:
* 0 = divide by 0x10000
* 1 to 0xffff = divide by this value.
*/
static int qmspi_set_frequency(struct spi_qmspi_data *qdata, struct qmspi_regs *regs,
uint32_t freq_hz)
{
uint32_t clk = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ;
uint32_t fdiv = 0u; /* maximum divider */
if (qdata->base_freq_hz) {
clk = qdata->base_freq_hz;
}
if (freq_hz) {
fdiv = 1u;
if (freq_hz < clk) {
fdiv = clk / freq_hz;
}
}
regs->MODE = ((regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK)) |
((fdiv << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK));
if (!fdiv) {
fdiv = 0x10000u;
}
qdata->spi_freq_hz = clk / fdiv;
return 0;
}
/*
* SPI signalling mode: CPOL and CPHA
* CPOL = 0 is clock idles low, 1 is clock idle high
* CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
* Receiver samples data on leading edge of clock cyle.
* 1 Transmitter changes data on leading edge of current clock cycle.
* Receiver samples data on the trailing edge of clock cycle.
* SPI Mode nomenclature:
* Mode CPOL CPHA
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
* QMSPI has three controls, CPOL, CPHA for output and CPHA for input.
* SPI frequency < 48MHz
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
* Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
* SPI frequency == 48MHz sample and change data on same edge.
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
*
* There is an anomaly in MEC172x for SPI signalling mode 3. We must
* set CHPA_MISO=0 for SPI Mode 3 at all frequencies.
*/
const uint8_t smode_tbl[4] = {
0x00u, 0x06u, 0x01u,
#ifdef XEC_QMSPI_SPI_MODE_3_ANOMALY
0x03u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=0 */
#else
0x07u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=1 */
#endif
};
const uint8_t smode48_tbl[4] = {
0x04u, 0x02u, 0x05u, 0x03u
};
static void qmspi_set_signalling_mode(struct spi_qmspi_data *qdata,
struct qmspi_regs *regs, uint32_t smode)
{
const uint8_t *ptbl;
uint32_t m;
ptbl = smode_tbl;
if (qdata->spi_freq_hz >= MHZ(48)) {
ptbl = smode48_tbl;
}
m = (uint32_t)ptbl[smode & 0x03];
regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
| (m << MCHP_QMSPI_M_SIG_POS);
}
#ifdef CONFIG_SPI_EXTENDED_MODES
/*
* QMSPI HW support single, dual, and quad.
* Return QMSPI Control/Descriptor register encoded value.
*/
static uint32_t encode_lines(const struct spi_config *config)
{
uint32_t qlines;
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_SINGLE:
qlines = MCHP_QMSPI_C_IFM_1X;
break;
#if DT_INST_PROP(0, lines) > 1
case SPI_LINES_DUAL:
qlines = MCHP_QMSPI_C_IFM_2X;
break;
#endif
#if DT_INST_PROP(0, lines) > 2
case SPI_LINES_QUAD:
qlines = MCHP_QMSPI_C_IFM_4X;
break;
#endif
default:
qlines = 0xffu;
}
return qlines;
}
static uint8_t npins_from_spi_config(const struct spi_config *config)
{
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_DUAL:
return 2u;
case SPI_LINES_QUAD:
return 4u;
default:
return 1u;
}
}
#endif /* CONFIG_SPI_EXTENDED_MODES */
static int spi_feature_support(const struct spi_config *config)
{
if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) {
LOG_ERR("Driver does not support LSB first, slave, or loop back");
return -ENOTSUP;
}
if (config->operation & SPI_CS_ACTIVE_HIGH) {
LOG_ERR("CS active high not supported");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
LOG_ERR("Word size != 8 not supported");
return -ENOTSUP;
}
return 0;
}
/* Configure QMSPI.
* NOTE: QMSPI Shared SPI port has two chip selects.
* Private SPI and internal SPI ports support one chip select.
* Hardware supports dual and quad I/O. Dual and quad are allowed
* if SPI extended mode is enabled at build time. User must
* provide pin configuration via DTS.
*/
static int qmspi_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = cfg->regs;
uint32_t smode;
int ret;
if (!config) {
return -EINVAL;
}
if (spi_context_configured(&qdata->ctx, config)) {
return 0;
}
qmspi_set_frequency(qdata, regs, config->frequency);
/* check new configuration */
ret = spi_feature_support(config);
if (ret) {
return ret;
}
#ifdef CONFIG_SPI_EXTENDED_MODES
smode = encode_lines(config);
if (smode == 0xff) {
LOG_ERR("Requested lines mode not supported");
return -ENOTSUP;
}
qdata->np = npins_from_spi_config(config);
#else
smode = MCHP_QMSPI_C_IFM_1X;
qdata->np = 1u;
#endif
regs->CTRL = smode;
smode = 0;
if ((config->operation & SPI_MODE_CPHA) != 0U) {
smode |= BIT(0);
}
if ((config->operation & SPI_MODE_CPOL) != 0U) {
smode |= BIT(1);
}
qmspi_set_signalling_mode(qdata, regs, smode);
/* chip select */
smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
if (cfg->chip_sel == 0) {
smode |= MCHP_QMSPI_M_CS0;
} else {
smode |= MCHP_QMSPI_M_CS1;
}
regs->MODE = smode;
/* chip select timing and TAPS adjust */
regs->CSTM = cfg->cs_timing;
regs->TM_TAPS_ADJ = cfg->taps_adj;
/* CS1 alternate mode (frequency) */
regs->MODE_ALT1 = 0;
if (cfg->cs1_freq) {
uint32_t fdiv = qmspi_encoded_fdiv(dev, cfg->cs1_freq);
regs->MODE_ALT1 = (fdiv << MCHP_QMSPI_MA1_CS1_CDIV_POS) &
MCHP_QMSPI_MA1_CS1_CDIV_MSK;
regs->MODE_ALT1 |= MCHP_QMSPI_MA1_CS1_CDIV_EN;
}
qdata->ctx.config = config;
regs->MODE |= MCHP_QMSPI_M_ACTIVATE;
return 0;
}
static uint32_t encode_npins(uint8_t npins)
{
if (npins == 4) {
return MCHP_QMSPI_C_IFM_4X;
} else if (npins == 2) {
return MCHP_QMSPI_C_IFM_2X;
} else {
return MCHP_QMSPI_C_IFM_1X;
}
}
/* Common controller transfer initialziation using Local-DMA.
* Full-duplex: controller configured to transmit and receive simultaneouly.
* Half-duplex(dual/quad): User may only specify TX or RX buffer sets.
* Passing both buffers sets is reported as an error.
*/
static inline int qmspi_xfr_cm_init(const struct device *dev,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = devcfg->regs;
regs->IEN = 0;
regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
regs->LDMA_RX_DESCR_BM = 0;
regs->LDMA_TX_DESCR_BM = 0;
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_TX_EN | MCHP_QMSPI_M_LDMA_RX_EN);
regs->STS = 0xffffffffu;
regs->CTRL = encode_npins(qdata->np);
qdata->qstatus = 0;
#ifdef CONFIG_SPI_EXTENDED_MODES
if (qdata->np != 1) {
if (tx_bufs && rx_bufs) {
LOG_ERR("Cannot specify both TX and RX buffers in half-duplex(dual/quad)");
return -EPROTONOSUPPORT;
}
}
#endif
return 0;
}
/* QMSPI Local-DMA transfer configuration:
* Support full and half(dual/quad) duplex transfers.
* Requires caller to have checked that only one direction was setup
* in the SPI context: TX or RX not both. (refer to qmspi_xfr_cm_init)
* Supports spi_buf's where data pointer is NULL and length non-zero.
* These buffers are used as TX tri-state I/O clock only generation or
* RX data discard for certain SPI command protocols using dual/quad I/O.
* 1. Get largest contiguous data size from SPI context.
* 2. If the SPI TX context has a non-zero length configure Local-DMA TX
* channel 1 for contigous data size. If TX context has valid buffer
* configure channel to use context buffer with address increment.
* If the TX buffer pointer is NULL interpret byte length as the number
* of clocks to generate with output line(s) tri-stated. NOTE: The controller
* must be configured with TX disabled to not drive output line(s) during
* clock generation. Also, no data should be written to TX FIFO. The unit
* size can be set to bits. The number of units to transfer must be computed
* based upon the number of output pins in the IOM field: full-duplex is one
* bit per clock, dual is 2 bits per clock, and quad is 4 bits per clock.
* For example, if I/O lines is 4 (quad) meaning 4 bits per clock and the
* user wants 7 clocks then the number of bit units is 4 * 7 = 28.
* 3. If instead, the SPI RX context has a non-zero length configure Local-DMA
* RX channel 1 for the contigous data size. If RX context has a valid
* buffer configure channel to use buffer with address increment else
* configure channel for driver data temporary buffer without address
* increment.
* 4. Update QMSPI Control register.
*/
static uint32_t qmspi_ldma_encode_unit_size(uint32_t maddr, size_t len)
{
uint8_t temp = (maddr | (uint32_t)len) & 0x3u;
if (temp == 0) {
return MCHP_QMSPI_LDC_ASZ_4;
} else if (temp == 2) {
return MCHP_QMSPI_LDC_ASZ_2;
} else {
return MCHP_QMSPI_LDC_ASZ_1;
}
}
static uint32_t qmspi_unit_size(size_t xfrlen)
{
if ((xfrlen & 0xfu) == 0u) {
return 16u;
} else if ((xfrlen & 0x3u) == 0u) {
return 4u;
} else {
return 1u;
}
}
static uint32_t qmspi_encode_unit_size(uint32_t units_in_bytes)
{
if (units_in_bytes == 16u) {
return MCHP_QMSPI_C_XFR_UNITS_16;
} else if (units_in_bytes == 4u) {
return MCHP_QMSPI_C_XFR_UNITS_4;
} else {
return MCHP_QMSPI_C_XFR_UNITS_1;
}
}
static size_t q_ldma_cfg(const struct device *dev)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
struct qmspi_regs *regs = devcfg->regs;
size_t ctx_xfr_len = spi_context_max_continuous_chunk(ctx);
uint32_t ctrl, ldctrl, mstart, qunits, qxfru, xfrlen;
regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
regs->LDRX[0].CTRL = 0;
regs->LDRX[0].MSTART = 0;
regs->LDRX[0].LEN = 0;
regs->LDTX[0].CTRL = 0;
regs->LDTX[0].MSTART = 0;
regs->LDTX[0].LEN = 0;
if (ctx_xfr_len == 0) {
return 0;
}
qunits = qmspi_unit_size(ctx_xfr_len);
ctrl = qmspi_encode_unit_size(qunits);
qxfru = ctx_xfr_len / qunits;
if (qxfru > 0x7fffu) {
qxfru = 0x7fffu;
}
ctrl |= (qxfru << MCHP_QMSPI_C_XFR_NUNITS_POS);
xfrlen = qxfru * qunits;
#ifdef MCHP_XEC_QMSPI_DEBUG
qdata->qunits = qunits;
qdata->qxfru = qxfru;
qdata->xfrlen = xfrlen;
#endif
if (spi_context_tx_buf_on(ctx)) {
mstart = (uint32_t)ctx->tx_buf;
ctrl |= MCHP_QMSPI_C_TX_DATA | MCHP_QMSPI_C_TX_LDMA_CH0;
ldctrl = qmspi_ldma_encode_unit_size(mstart, xfrlen);
ldctrl |= MCHP_QMSPI_LDC_INCR_EN | MCHP_QMSPI_LDC_EN;
regs->MODE |= MCHP_QMSPI_M_LDMA_TX_EN;
regs->LDTX[0].LEN = xfrlen;
regs->LDTX[0].MSTART = mstart;
regs->LDTX[0].CTRL = ldctrl;
}
if (spi_context_rx_buf_on(ctx)) {
mstart = (uint32_t)ctx->rx_buf;
ctrl |= MCHP_QMSPI_C_RX_LDMA_CH0 | MCHP_QMSPI_C_RX_EN;
ldctrl = MCHP_QMSPI_LDC_EN | MCHP_QMSPI_LDC_INCR_EN;
ldctrl |= qmspi_ldma_encode_unit_size(mstart, xfrlen);
regs->MODE |= MCHP_QMSPI_M_LDMA_RX_EN;
regs->LDRX[0].LEN = xfrlen;
regs->LDRX[0].MSTART = mstart;
regs->LDRX[0].CTRL = ldctrl;
}
regs->CTRL = (regs->CTRL & 0x3u) | ctrl;
return xfrlen;
}
/* Start and wait for QMSPI synchronous transfer(s) to complete.
* Initialize QMSPI controller for Local-DMA operation.
* Iterate over SPI context with non-zero TX or RX data lengths.
* 1. Configure QMSPI Control register and Local-DMA channel(s)
* 2. Clear QMSPI status
* 3. Start QMSPI transfer
* 4. Poll QMSPI status for transfer done and DMA done with timeout.
* 5. Hardware anomaly work-around: Poll with timeout QMSPI Local-DMA
* TX and RX channels until hardware clears both channel enables.
* This indicates hardware is really done with transfer to/from memory.
* 6. Update SPI context with amount of data transmitted and received.
* If SPI configuration hold chip select on flag is not set then instruct
* QMSPI to de-assert chip select.
* Set SPI context as complete
*/
static int qmspi_xfr_sync(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
struct qmspi_regs *regs = devcfg->regs;
size_t xfr_len;
int ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
if (ret) {
return ret;
}
while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
xfr_len = q_ldma_cfg(dev);
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
#ifdef MCHP_XEC_QMSPI_DEBUG
uint32_t temp = regs->STS;
while (!(temp & MCHP_QMSPI_STS_DONE)) {
temp = regs->STS;
}
qdata->qstatus = temp;
qdata->bufcnt_status = regs->BCNT_STS;
qdata->rx_ldma_ctrl0 = regs->LDRX[0].CTRL;
qdata->tx_ldma_ctrl0 = regs->LDTX[0].CTRL;
#else
uint32_t wcnt = 0;
qdata->qstatus = regs->STS;
while (!(qdata->qstatus & MCHP_QMSPI_STS_DONE)) {
k_busy_wait(1u);
if (++wcnt > XEC_QSPI_TIMEOUT_US) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
return -ETIMEDOUT;
}
qdata->qstatus = regs->STS;
}
#endif
spi_context_update_tx(ctx, 1, xfr_len);
spi_context_update_rx(ctx, 1, xfr_len);
}
if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
}
spi_context_complete(ctx, dev, 0);
return 0;
}
#ifdef CONFIG_SPI_ASYNC
/* Configure QMSPI such that QMSPI transfer FSM and LDMA FSM are synchronized.
* Transfer length must be programmed into control/descriptor register(s) and
* LDMA register(s). LDMA override length bit must NOT be set.
*/
static int qmspi_xfr_start_async(const struct device *dev, const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = devcfg->regs;
int ret;
ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
if (ret) {
return ret;
}
qdata->xfr_len = q_ldma_cfg(dev);
if (!qdata->xfr_len) {
return 0; /* nothing to do */
}
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
| MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
return 0;
}
/* Wrapper to start asynchronous (interrupts enabled) SPI transction */
static int qmspi_xfr_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_qmspi_data *qdata = dev->data;
int err = 0;
qdata->qstatus = 0;
qdata->xfr_len = 0;
err = qmspi_xfr_start_async(dev, tx_bufs, rx_bufs);
return err;
}
#endif /* CONFIG_SPI_ASYNC */
/* Start (a)synchronous transaction using QMSPI Local-DMA */
static int qmspi_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *user_data)
{
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
int err = 0;
if (!config) {
return -EINVAL;
}
if (!tx_bufs && !rx_bufs) {
return 0;
}
spi_context_lock(&qdata->ctx, asynchronous, cb, user_data, config);
err = qmspi_configure(dev, config);
if (err != 0) {
spi_context_release(ctx, err);
return err;
}
spi_context_cs_control(ctx, true);
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
#ifdef CONFIG_SPI_ASYNC
if (asynchronous) {
qdata->cb = cb;
qdata->userdata = user_data;
err = qmspi_xfr_async(dev, config, tx_bufs, rx_bufs);
} else {
err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
}
#else
err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
#endif
if (err) { /* de-assert CS# and give semaphore */
spi_context_unlock_unconditionally(ctx);
return err;
}
if (asynchronous) {
return err;
}
err = spi_context_wait_for_completion(ctx);
if (!(config->operation & SPI_HOLD_ON_CS)) {
spi_context_cs_control(ctx, false);
}
spi_context_release(ctx, err);
return err;
}
static int qmspi_transceive_sync(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return qmspi_transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int qmspi_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return qmspi_transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int qmspi_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_qmspi_data *data = dev->data;
const struct spi_qmspi_config *cfg = dev->config;
struct qmspi_regs *regs = cfg->regs;
int ret = 0;
int counter = 0;
if (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
/* Force CS# to de-assert on next unit boundary */
regs->EXE = MCHP_QMSPI_EXE_STOP;
while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
ret = xec_qmspi_spin_yield(&counter, XEC_QMSPI_WAIT_COUNT);
if (ret != 0) {
break;
}
}
}
spi_context_unlock_unconditionally(&data->ctx);
return ret;
}
/* QMSPI interrupt handler called by Zephyr ISR
* All transfers use QMSPI Local-DMA specified by the Control register.
* QMSPI descriptor mode not used.
* Full-duplex always uses LDMA TX channel 0 and RX channel 0
* Half-duplex(dual/quad) use one of TX channel 0 or RX channel 0
*/
void qmspi_xec_isr(const struct device *dev)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *data = dev->data;
struct qmspi_regs *regs = cfg->regs;
uint32_t qstatus = regs->STS;
#ifdef CONFIG_SPI_ASYNC
struct spi_context *ctx = &data->ctx;
int xstatus = 0;
#endif
regs->IEN = 0;
data->qstatus = qstatus;
regs->STS = MCHP_QMSPI_STS_RW1C_MASK;
mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
#ifdef CONFIG_SPI_ASYNC
if (qstatus & XEC_QSPI_HW_ERRORS_ALL) {
xstatus = -EIO;
data->qstatus |= BIT(7);
regs->EXE = MCHP_QMSPI_EXE_STOP;
spi_context_cs_control(ctx, false);
spi_context_complete(ctx, dev, xstatus);
if (data->cb) {
data->cb(dev, xstatus, data->userdata);
}
return;
}
/* Clear Local-DMA enables in Mode and Control registers */
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
regs->CTRL &= MCHP_QMSPI_C_IFM_MASK;
spi_context_update_tx(ctx, 1, data->xfr_len);
spi_context_update_rx(ctx, 1, data->xfr_len);
data->xfr_len = q_ldma_cfg(dev);
if (data->xfr_len) {
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
| MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
return;
}
if (!(ctx->owner->operation & SPI_HOLD_ON_CS)) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
spi_context_cs_control(&data->ctx, false);
}
spi_context_complete(&data->ctx, dev, xstatus);
if (data->cb) {
data->cb(dev, xstatus, data->userdata);
}
#endif /* CONFIG_SPI_ASYNC */
}
#ifdef CONFIG_PM_DEVICE
/* If the application wants the QMSPI pins to be disabled in suspend it must
* define pinctr-1 values for each pin in the app/project DT overlay.
*/
static int qmspi_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct spi_qmspi_config *devcfg = dev->config;
int ret;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
break;
case PM_DEVICE_ACTION_SUSPEND:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
if (ret == -ENOENT) { /* pinctrl-1 does not exist */
ret = 0;
}
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
/*
* Called for each QMSPI controller instance
* Initialize QMSPI controller.
* Disable sleep control.
* Disable and clear interrupt status.
* Initialize SPI context.
* QMSPI will be fully configured and enabled when the transceive API
* is called.
*/
static int qmspi_xec_init(const struct device *dev)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = cfg->regs;
clock_control_subsys_t clkss = (clock_control_subsys_t)MCHP_XEC_PCR_CLK_PERIPH_FAST;
int ret = 0;
qdata->base_freq_hz = 0u;
qdata->qstatus = 0;
qdata->np = cfg->width;
#ifdef CONFIG_SPI_ASYNC
qdata->xfr_len = 0;
#endif
if (!cfg->clk_dev) {
LOG_ERR("XEC QMSPI-LDMA clock device not configured");
return -EINVAL;
}
ret = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&cfg->clksrc);
if (ret < 0) {
LOG_ERR("XEC QMSPI-LDMA enable clock source error %d", ret);
return ret;
}
ret = clock_control_get_rate(cfg->clk_dev, clkss, &qdata->base_freq_hz);
if (ret) {
LOG_ERR("XEC QMSPI-LDMA clock get rate error %d", ret);
return ret;
}
/* controller in known state before enabling pins */
qmspi_reset(regs);
mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
LOG_ERR("XEC QMSPI-LDMA pinctrl setup failed (%d)", ret);
return ret;
}
/* default SPI Mode 0 signalling */
const struct spi_config spi_cfg = {
.frequency = cfg->clock_freq,
.operation = SPI_LINES_SINGLE | SPI_WORD_SET(8),
};
ret = qmspi_configure(dev, &spi_cfg);
if (ret) {
LOG_ERR("XEC QMSPI-LDMA init configure failed (%d)", ret);
return ret;
}
#ifdef CONFIG_SPI_ASYNC
cfg->irq_config_func();
mchp_xec_ecia_enable(cfg->girq, cfg->girq_pos);
#endif
spi_context_unlock_unconditionally(&qdata->ctx);
return 0;
}
static const struct spi_driver_api spi_qmspi_xec_driver_api = {
.transceive = qmspi_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = qmspi_transceive_async,
#endif
.release = qmspi_release,
};
#define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
| (((b) & 0xFu) << 8) \
| (((c) & 0xFu) << 16) \
| (((d) & 0xFu) << 24))
#define XEC_QMSPI_TAPS_ADJ_VAL(a, b) (((a) & 0xffu) | (((b) & 0xffu) << 8))
#define XEC_QMSPI_CS_TIMING(i) XEC_QMSPI_CS_TIMING_VAL( \
DT_INST_PROP_OR(i, dcsckon, 6), \
DT_INST_PROP_OR(i, dckcsoff, 4), \
DT_INST_PROP_OR(i, dldh, 6), \
DT_INST_PROP_OR(i, dcsda, 6))
#define XEC_QMSPI_TAPS_ADJ(i) XEC_QMSPI_TAPS_ADJ_VAL( \
DT_INST_PROP_OR(i, tctradj, 0), \
DT_INST_PROP_OR(i, tsckadj, 0))
#define XEC_QMSPI_GIRQ(i) \
MCHP_XEC_ECIA_GIRQ(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_GIRQ_POS(i) \
MCHP_XEC_ECIA_GIRQ_POS(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_NVIC_AGGR(i) \
MCHP_XEC_ECIA_NVIC_AGGR(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_NVIC_DIRECT(i) \
MCHP_XEC_ECIA_NVIC_DIRECT(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_PCR_INFO(i) \
MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(i, regidx), \
DT_INST_CLOCKS_CELL(i, bitpos), \
DT_INST_CLOCKS_CELL(i, domain))
/*
* The instance number, i is not related to block ID's rather the
* order the DT tools process all DT files in a build.
*/
#define QMSPI_XEC_DEVICE(i) \
\
PINCTRL_DT_INST_DEFINE(i); \
\
static void qmspi_xec_irq_config_func_##i(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(i), \
DT_INST_IRQ(i, priority), \
qmspi_xec_isr, \
DEVICE_DT_INST_GET(i), 0); \
irq_enable(DT_INST_IRQN(i)); \
} \
\
static struct spi_qmspi_data qmspi_xec_data_##i = { \
SPI_CONTEXT_INIT_LOCK(qmspi_xec_data_##i, ctx), \
SPI_CONTEXT_INIT_SYNC(qmspi_xec_data_##i, ctx), \
}; \
static const struct spi_qmspi_config qmspi_xec_config_##i = { \
.regs = (struct qmspi_regs *) DT_INST_REG_ADDR(i), \
.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i)), \
.clksrc = { .pcr_info = XEC_QMSPI_PCR_INFO(i), }, \
.clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \
.cs1_freq = DT_INST_PROP_OR(i, cs1_freq, 0), \
.cs_timing = XEC_QMSPI_CS_TIMING(i), \
.taps_adj = XEC_QMSPI_TAPS_ADJ(i), \
.girq = XEC_QMSPI_GIRQ(i), \
.girq_pos = XEC_QMSPI_GIRQ_POS(i), \
.girq_nvic_aggr = XEC_QMSPI_NVIC_AGGR(i), \
.girq_nvic_direct = XEC_QMSPI_NVIC_DIRECT(i), \
.irq_pri = DT_INST_IRQ(i, priority), \
.chip_sel = DT_INST_PROP_OR(i, chip_select, 0), \
.width = DT_INST_PROP_OR(0, lines, 1), \
.irq_config_func = qmspi_xec_irq_config_func_##i, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \
}; \
PM_DEVICE_DT_INST_DEFINE(i, qmspi_xec_pm_action); \
DEVICE_DT_INST_DEFINE(i, &qmspi_xec_init, \
PM_DEVICE_DT_INST_GET(i), \
&qmspi_xec_data_##i, &qmspi_xec_config_##i, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_qmspi_xec_driver_api);
DT_INST_FOREACH_STATUS_OKAY(QMSPI_XEC_DEVICE)