4180d70439
Previously the logic was inverted for error_callback_en where 0 was enablement and 1 was disable. This was likely done so that the default, sensibly so, was to enable the error callback if possible. A variety of in tree users had confused the enable/disable value. Change the name of the flag to error_callback_dis where the default remains 0 (do not disable the callback!) and correct in tree uses of the flag where it seemed incorrect. Signed-off-by: Tom Burdick <thomas.burdick@intel.com>
993 lines
27 KiB
C
993 lines
27 KiB
C
/*
|
|
* Copyright (c) 2021, NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
#define DT_DRV_COMPAT nxp_lpc_i2s
|
|
|
|
#include <string.h>
|
|
#include <zephyr/drivers/dma.h>
|
|
#include <zephyr/drivers/i2s.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <fsl_i2s.h>
|
|
#include <fsl_dma.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
|
|
LOG_MODULE_REGISTER(i2s_mcux_flexcomm);
|
|
|
|
#define NUM_RX_DMA_BLOCKS 2
|
|
|
|
/* Device constant configuration parameters */
|
|
struct i2s_mcux_config {
|
|
I2S_Type *base;
|
|
const struct device *clock_dev;
|
|
clock_control_subsys_t clock_subsys;
|
|
void (*irq_config)(const struct device *dev);
|
|
const struct pinctrl_dev_config *pincfg;
|
|
};
|
|
|
|
struct stream {
|
|
int32_t state;
|
|
const struct device *dev_dma;
|
|
uint32_t channel; /* stores the channel for dma */
|
|
struct i2s_config cfg;
|
|
struct dma_config dma_cfg;
|
|
bool last_block;
|
|
struct k_msgq in_queue;
|
|
struct k_msgq out_queue;
|
|
};
|
|
|
|
struct i2s_txq_entry {
|
|
void *mem_block;
|
|
size_t size;
|
|
};
|
|
|
|
struct i2s_mcux_data {
|
|
struct stream rx;
|
|
void *rx_in_msgs[CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT];
|
|
void *rx_out_msgs[CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT];
|
|
struct dma_block_config rx_dma_blocks[NUM_RX_DMA_BLOCKS];
|
|
|
|
struct stream tx;
|
|
/* For tx, the in queue is for requests generated by
|
|
* the i2s_write() API call, and size must be tracked
|
|
* separate from the buffer size.
|
|
* The out_queue is for tracking buffers that should
|
|
* be freed once the DMA is done transferring it.
|
|
*/
|
|
struct i2s_txq_entry tx_in_msgs[CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT];
|
|
void *tx_out_msgs[CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT];
|
|
struct dma_block_config tx_dma_block;
|
|
};
|
|
|
|
static int i2s_mcux_flexcomm_cfg_convert(uint32_t base_frequency,
|
|
enum i2s_dir dir,
|
|
const struct i2s_config *i2s_cfg,
|
|
i2s_config_t *fsl_cfg)
|
|
{
|
|
if (dir == I2S_DIR_RX) {
|
|
I2S_RxGetDefaultConfig(fsl_cfg);
|
|
} else if (dir == I2S_DIR_TX) {
|
|
I2S_TxGetDefaultConfig(fsl_cfg);
|
|
}
|
|
|
|
fsl_cfg->dataLength = i2s_cfg->word_size;
|
|
if ((i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) ==
|
|
I2S_FMT_DATA_FORMAT_I2S) {
|
|
/* Classic I2S. We always use 2 channels */
|
|
fsl_cfg->frameLength = 2 * i2s_cfg->word_size;
|
|
} else {
|
|
fsl_cfg->frameLength = i2s_cfg->channels * i2s_cfg->word_size;
|
|
}
|
|
|
|
if (fsl_cfg->dataLength < 4 || fsl_cfg->dataLength > 32) {
|
|
LOG_ERR("Unsupported data length");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fsl_cfg->frameLength < 4 || fsl_cfg->frameLength > 2048) {
|
|
LOG_ERR("Unsupported frame length");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set master/slave configuration */
|
|
switch (i2s_cfg->options & (I2S_OPT_BIT_CLK_SLAVE |
|
|
I2S_OPT_FRAME_CLK_SLAVE)) {
|
|
case I2S_OPT_BIT_CLK_MASTER | I2S_OPT_FRAME_CLK_MASTER:
|
|
fsl_cfg->masterSlave = kI2S_MasterSlaveNormalMaster;
|
|
break;
|
|
case I2S_OPT_BIT_CLK_SLAVE | I2S_OPT_FRAME_CLK_SLAVE:
|
|
fsl_cfg->masterSlave = kI2S_MasterSlaveNormalSlave;
|
|
break;
|
|
case I2S_OPT_BIT_CLK_SLAVE | I2S_OPT_FRAME_CLK_MASTER:
|
|
/* Master using external CLK */
|
|
fsl_cfg->masterSlave = kI2S_MasterSlaveExtSckMaster;
|
|
break;
|
|
case I2S_OPT_BIT_CLK_MASTER | I2S_OPT_FRAME_CLK_SLAVE:
|
|
/* WS synchronized master */
|
|
fsl_cfg->masterSlave = kI2S_MasterSlaveWsSyncMaster;
|
|
break;
|
|
}
|
|
|
|
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
|
|
case I2S_FMT_DATA_FORMAT_I2S:
|
|
fsl_cfg->mode = kI2S_ModeI2sClassic;
|
|
break;
|
|
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
|
|
fsl_cfg->mode = kI2S_ModeDspWsShort;
|
|
fsl_cfg->wsPol = true;
|
|
break;
|
|
case I2S_FMT_DATA_FORMAT_PCM_LONG:
|
|
fsl_cfg->mode = kI2S_ModeDspWsLong;
|
|
fsl_cfg->wsPol = true;
|
|
break;
|
|
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
|
|
fsl_cfg->mode = kI2S_ModeDspWs50;
|
|
fsl_cfg->wsPol = true;
|
|
break;
|
|
default:
|
|
LOG_ERR("Unsupported I2S data format");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fsl_cfg->masterSlave == kI2S_MasterSlaveNormalMaster ||
|
|
fsl_cfg->masterSlave == kI2S_MasterSlaveWsSyncMaster) {
|
|
fsl_cfg->divider = base_frequency /
|
|
i2s_cfg->frame_clk_freq /
|
|
fsl_cfg->frameLength;
|
|
}
|
|
|
|
/*
|
|
* Set frame and bit clock polarity according to
|
|
* inversion flags.
|
|
*/
|
|
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
|
|
case I2S_FMT_CLK_NF_NB:
|
|
break;
|
|
case I2S_FMT_CLK_NF_IB:
|
|
fsl_cfg->sckPol = !fsl_cfg->sckPol;
|
|
break;
|
|
case I2S_FMT_CLK_IF_NB:
|
|
fsl_cfg->wsPol = !fsl_cfg->wsPol;
|
|
break;
|
|
case I2S_FMT_CLK_IF_IB:
|
|
fsl_cfg->sckPol = !fsl_cfg->sckPol;
|
|
fsl_cfg->wsPol = !fsl_cfg->wsPol;
|
|
break;
|
|
default:
|
|
LOG_ERR("Unsupported clocks polarity");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2s_config *i2s_mcux_config_get(const struct device *dev,
|
|
enum i2s_dir dir)
|
|
{
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream;
|
|
|
|
if (dir == I2S_DIR_RX) {
|
|
stream = &dev_data->rx;
|
|
} else {
|
|
stream = &dev_data->tx;
|
|
}
|
|
|
|
if (stream->state == I2S_STATE_NOT_READY) {
|
|
return NULL;
|
|
}
|
|
|
|
return &stream->cfg;
|
|
}
|
|
|
|
static int i2s_mcux_configure(const struct device *dev, enum i2s_dir dir,
|
|
const struct i2s_config *i2s_cfg)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream;
|
|
uint32_t base_frequency;
|
|
i2s_config_t fsl_cfg;
|
|
int result;
|
|
|
|
if (dir == I2S_DIR_RX) {
|
|
stream = &dev_data->rx;
|
|
} else if (dir == I2S_DIR_TX) {
|
|
stream = &dev_data->tx;
|
|
} else if (dir == I2S_DIR_BOTH) {
|
|
return -ENOSYS;
|
|
} else {
|
|
LOG_ERR("Either RX or TX direction must be selected");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (stream->state != I2S_STATE_NOT_READY &&
|
|
stream->state != I2S_STATE_READY) {
|
|
LOG_ERR("invalid state");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (i2s_cfg->frame_clk_freq == 0U) {
|
|
stream->state = I2S_STATE_NOT_READY;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The memory block passed by the user to the i2s_write function is
|
|
* tightly packed next to each other.
|
|
* However for 8-bit word_size the I2S hardware expects the data
|
|
* to be in 2bytes which does not match what is passed by the user.
|
|
* This will be addressed in a separate PR once the zephyr API committee
|
|
* finalizes on an I2S API for the user to probe hardware variations.
|
|
*/
|
|
if (i2s_cfg->word_size <= 8) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (!device_is_ready(cfg->clock_dev)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Figure out function base clock */
|
|
if (clock_control_get_rate(cfg->clock_dev,
|
|
cfg->clock_subsys, &base_frequency)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Validate the configuration by converting it to SDK
|
|
* format.
|
|
*/
|
|
result = i2s_mcux_flexcomm_cfg_convert(base_frequency, dir, i2s_cfg,
|
|
&fsl_cfg);
|
|
if (result != 0) {
|
|
return result;
|
|
}
|
|
|
|
/* Apply the configuration */
|
|
if (dir == I2S_DIR_RX) {
|
|
I2S_RxInit(cfg->base, &fsl_cfg);
|
|
} else {
|
|
I2S_TxInit(cfg->base, &fsl_cfg);
|
|
}
|
|
|
|
if ((i2s_cfg->channels > 2) &&
|
|
(i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) !=
|
|
I2S_FMT_DATA_FORMAT_I2S) {
|
|
/*
|
|
* More than 2 channels are enabled, so we need to enable
|
|
* secondary channel pairs.
|
|
*/
|
|
#if (defined(FSL_FEATURE_I2S_SUPPORT_SECONDARY_CHANNEL) && \
|
|
FSL_FEATURE_I2S_SUPPORT_SECONDARY_CHANNEL)
|
|
for (uint32_t slot = 1; slot < i2s_cfg->channels / 2; slot++) {
|
|
/* Position must be set so that data does not overlap
|
|
* with previous channel pair. Each channel pair
|
|
* will occupy slots of "word_size" bits.
|
|
*/
|
|
I2S_EnableSecondaryChannel(cfg->base, slot - 1, false,
|
|
i2s_cfg->word_size * 2 * slot);
|
|
}
|
|
#else
|
|
/* No support */
|
|
return -ENOTSUP;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* I2S API definition specifies that a "16 bit word will occupy 2 bytes,
|
|
* a 24 or 32 bit word will occupy 4 bytes". Therefore, we will assume
|
|
* that "odd" word sizes will be aligned to 16 or 32 bit boundaries.
|
|
*
|
|
* FIFO depth is controlled by the number of bits per word (DATALEN).
|
|
* Per the RM:
|
|
* If the data length is 4-16, the FIFO should be filled
|
|
* with two 16 bit values (one for left, one for right channel)
|
|
*
|
|
* If the data length is 17-24, the FIFO should be filled with 2 24 bit
|
|
* values (one for left, one for right channel). We can just transfer
|
|
* 4 bytes, since the I2S API specifies 24 bit values would be aligned
|
|
* to a 32 bit boundary.
|
|
*
|
|
* If the data length is 25-32, the FIFO should be filled
|
|
* with one 32 bit value. First value is left channel, second is right.
|
|
*
|
|
* All this is to say that we can always use 4 byte transfer widths
|
|
* with the DMA engine, regardless of the data length.
|
|
*/
|
|
stream->dma_cfg.dest_data_size = 4U;
|
|
stream->dma_cfg.source_data_size = 4U;
|
|
|
|
/* Save configuration for get_config */
|
|
memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config));
|
|
|
|
stream->state = I2S_STATE_READY;
|
|
return 0;
|
|
}
|
|
|
|
static inline void i2s_purge_stream_buffers(struct stream *stream,
|
|
struct k_mem_slab *mem_slab,
|
|
bool tx)
|
|
{
|
|
void *buffer;
|
|
|
|
if (tx) {
|
|
struct i2s_txq_entry queue_entry;
|
|
|
|
while (k_msgq_get(&stream->in_queue, &queue_entry, K_NO_WAIT) == 0) {
|
|
k_mem_slab_free(mem_slab, queue_entry.mem_block);
|
|
}
|
|
} else {
|
|
while (k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT) == 0) {
|
|
k_mem_slab_free(mem_slab, buffer);
|
|
}
|
|
}
|
|
while (k_msgq_get(&stream->out_queue, &buffer, K_NO_WAIT) == 0) {
|
|
k_mem_slab_free(mem_slab, buffer);
|
|
}
|
|
}
|
|
|
|
static void i2s_mcux_tx_stream_disable(const struct device *dev, bool drop)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->tx;
|
|
I2S_Type *base = cfg->base;
|
|
|
|
LOG_DBG("Stopping DMA channel %u for TX stream", stream->channel);
|
|
dma_stop(stream->dev_dma, stream->channel);
|
|
|
|
/* Clear TX error interrupt flag */
|
|
base->FIFOSTAT = I2S_FIFOSTAT_TXERR(1U);
|
|
I2S_DisableInterrupts(base, (uint32_t)kI2S_TxErrorFlag);
|
|
|
|
if (base->CFG1 & I2S_CFG1_MAINENABLE_MASK) {
|
|
/* Wait until all transmitted data get out of FIFO */
|
|
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U) {
|
|
}
|
|
/*
|
|
* The last piece of valid data can be still being transmitted from
|
|
* I2S at this moment
|
|
*/
|
|
/* Write additional data to FIFO */
|
|
base->FIFOWR = 0U;
|
|
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U) {
|
|
}
|
|
|
|
/* At this moment the additional data is out of FIFO, we can stop I2S */
|
|
/* Disable TX DMA */
|
|
base->FIFOCFG &= (~I2S_FIFOCFG_DMATX_MASK);
|
|
base->FIFOCFG |= I2S_FIFOCFG_EMPTYTX_MASK;
|
|
|
|
I2S_Disable(base);
|
|
}
|
|
|
|
/* purge buffers queued in the stream */
|
|
if (drop) {
|
|
i2s_purge_stream_buffers(stream, stream->cfg.mem_slab, true);
|
|
}
|
|
}
|
|
|
|
static void i2s_mcux_rx_stream_disable(const struct device *dev, bool drop)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->rx;
|
|
I2S_Type *base = cfg->base;
|
|
|
|
LOG_DBG("Stopping DMA channel %u for RX stream", stream->channel);
|
|
dma_stop(stream->dev_dma, stream->channel);
|
|
|
|
/* Clear RX error interrupt flag */
|
|
base->FIFOSTAT = I2S_FIFOSTAT_RXERR(1U);
|
|
I2S_DisableInterrupts(base, (uint32_t)kI2S_RxErrorFlag);
|
|
|
|
/* stop transfer */
|
|
/* Disable Rx DMA */
|
|
base->FIFOCFG &= (~I2S_FIFOCFG_DMARX_MASK);
|
|
base->FIFOCFG |= I2S_FIFOCFG_EMPTYRX_MASK;
|
|
|
|
I2S_Disable(base);
|
|
|
|
/* purge buffers queued in the stream */
|
|
if (drop) {
|
|
i2s_purge_stream_buffers(stream, stream->cfg.mem_slab, false);
|
|
}
|
|
}
|
|
|
|
static void i2s_mcux_config_dma_blocks(const struct device *dev,
|
|
enum i2s_dir dir, uint32_t *buffer,
|
|
size_t block_size)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
I2S_Type *base = cfg->base;
|
|
struct dma_block_config *blk_cfg;
|
|
struct stream *stream;
|
|
|
|
if (dir == I2S_DIR_RX) {
|
|
stream = &dev_data->rx;
|
|
blk_cfg = &dev_data->rx_dma_blocks[0];
|
|
memset(blk_cfg, 0, sizeof(dev_data->rx_dma_blocks));
|
|
} else {
|
|
stream = &dev_data->tx;
|
|
blk_cfg = &dev_data->tx_dma_block;
|
|
memset(blk_cfg, 0, sizeof(dev_data->tx_dma_block));
|
|
}
|
|
|
|
stream->dma_cfg.head_block = blk_cfg;
|
|
|
|
if (dir == I2S_DIR_RX) {
|
|
|
|
blk_cfg->source_address = (uint32_t)&base->FIFORD;
|
|
blk_cfg->dest_address = (uint32_t)buffer[0];
|
|
blk_cfg->block_size = block_size;
|
|
blk_cfg->next_block = &dev_data->rx_dma_blocks[1];
|
|
blk_cfg->dest_reload_en = 1;
|
|
|
|
blk_cfg = &dev_data->rx_dma_blocks[1];
|
|
blk_cfg->source_address = (uint32_t)&base->FIFORD;
|
|
blk_cfg->dest_address = (uint32_t)buffer[1];
|
|
blk_cfg->block_size = block_size;
|
|
} else {
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->source_address = (uint32_t)buffer;
|
|
blk_cfg->block_size = block_size;
|
|
}
|
|
|
|
stream->dma_cfg.user_data = (void *)dev;
|
|
|
|
dma_config(stream->dev_dma, stream->channel, &stream->dma_cfg);
|
|
|
|
LOG_DBG("dma_slot is %d", stream->dma_cfg.dma_slot);
|
|
LOG_DBG("channel_direction is %d", stream->dma_cfg.channel_direction);
|
|
LOG_DBG("complete_callback_en is %d",
|
|
stream->dma_cfg.complete_callback_en);
|
|
LOG_DBG("error_callback_dis is %d", stream->dma_cfg.error_callback_dis);
|
|
LOG_DBG("source_handshake is %d", stream->dma_cfg.source_handshake);
|
|
LOG_DBG("dest_handshake is %d", stream->dma_cfg.dest_handshake);
|
|
LOG_DBG("channel_priority is %d", stream->dma_cfg.channel_priority);
|
|
LOG_DBG("source_chaining_en is %d", stream->dma_cfg.source_chaining_en);
|
|
LOG_DBG("dest_chaining_en is %d", stream->dma_cfg.dest_chaining_en);
|
|
LOG_DBG("linked_channel is %d", stream->dma_cfg.linked_channel);
|
|
LOG_DBG("source_data_size is %d", stream->dma_cfg.source_data_size);
|
|
LOG_DBG("dest_data_size is %d", stream->dma_cfg.dest_data_size);
|
|
LOG_DBG("source_burst_length is %d", stream->dma_cfg.source_burst_length);
|
|
LOG_DBG("dest_burst_length is %d", stream->dma_cfg.dest_burst_length);
|
|
LOG_DBG("block_count is %d", stream->dma_cfg.block_count);
|
|
}
|
|
|
|
/* This function is executed in the interrupt context */
|
|
static void i2s_mcux_dma_tx_callback(const struct device *dma_dev, void *arg,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *dev = (const struct device *)arg;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->tx;
|
|
struct i2s_txq_entry queue_entry;
|
|
int ret;
|
|
|
|
LOG_DBG("tx cb: %d", stream->state);
|
|
|
|
ret = k_msgq_get(&stream->out_queue, &queue_entry.mem_block, K_NO_WAIT);
|
|
if (ret == 0) {
|
|
/* transmission complete. free the buffer */
|
|
k_mem_slab_free(stream->cfg.mem_slab, queue_entry.mem_block);
|
|
} else {
|
|
LOG_ERR("no buffer in output queue for channel %u", channel);
|
|
}
|
|
|
|
/* Received a STOP trigger, terminate TX immediately */
|
|
if (stream->last_block) {
|
|
stream->state = I2S_STATE_READY;
|
|
i2s_mcux_tx_stream_disable(dev, false);
|
|
LOG_DBG("TX STOPPED");
|
|
return;
|
|
}
|
|
|
|
switch (stream->state) {
|
|
case I2S_STATE_RUNNING:
|
|
case I2S_STATE_STOPPING:
|
|
/* get the next buffer from queue */
|
|
ret = k_msgq_get(&stream->in_queue, &queue_entry, K_NO_WAIT);
|
|
if (ret == 0) {
|
|
/* config the DMA */
|
|
i2s_mcux_config_dma_blocks(dev, I2S_DIR_TX,
|
|
(uint32_t *)queue_entry.mem_block,
|
|
queue_entry.size);
|
|
k_msgq_put(&stream->out_queue, &queue_entry.mem_block, K_NO_WAIT);
|
|
dma_start(stream->dev_dma, stream->channel);
|
|
}
|
|
|
|
if (ret || status < 0) {
|
|
/*
|
|
* DMA encountered an error (status < 0)
|
|
* or
|
|
* No buffers in input queue
|
|
*/
|
|
LOG_DBG("DMA status %08x channel %u k_msgq_get ret %d",
|
|
status, channel, ret);
|
|
if (stream->state == I2S_STATE_STOPPING) {
|
|
stream->state = I2S_STATE_READY;
|
|
} else {
|
|
stream->state = I2S_STATE_ERROR;
|
|
}
|
|
i2s_mcux_tx_stream_disable(dev, false);
|
|
}
|
|
break;
|
|
case I2S_STATE_ERROR:
|
|
i2s_mcux_tx_stream_disable(dev, true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void i2s_mcux_dma_rx_callback(const struct device *dma_dev, void *arg,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *dev = (const struct device *)arg;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->rx;
|
|
void *buffer;
|
|
int ret;
|
|
|
|
LOG_DBG("rx cb: %d", stream->state);
|
|
|
|
if (status < 0) {
|
|
stream->state = I2S_STATE_ERROR;
|
|
i2s_mcux_rx_stream_disable(dev, false);
|
|
return;
|
|
}
|
|
|
|
switch (stream->state) {
|
|
case I2S_STATE_STOPPING:
|
|
case I2S_STATE_RUNNING:
|
|
/* retrieve buffer from input queue */
|
|
ret = k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT);
|
|
__ASSERT_NO_MSG(ret == 0);
|
|
|
|
/* put buffer to output queue */
|
|
ret = k_msgq_put(&stream->out_queue, &buffer, K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("buffer %p -> out_queue %p err %d", buffer,
|
|
&stream->out_queue, ret);
|
|
i2s_mcux_rx_stream_disable(dev, false);
|
|
stream->state = I2S_STATE_ERROR;
|
|
}
|
|
if (stream->state == I2S_STATE_RUNNING) {
|
|
/* allocate new buffer for next audio frame */
|
|
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &buffer, K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("buffer alloc from slab %p err %d",
|
|
stream->cfg.mem_slab, ret);
|
|
i2s_mcux_rx_stream_disable(dev, false);
|
|
stream->state = I2S_STATE_ERROR;
|
|
} else {
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
I2S_Type *base = cfg->base;
|
|
|
|
dma_reload(stream->dev_dma, stream->channel,
|
|
(uint32_t)&base->FIFORD, (uint32_t)buffer,
|
|
stream->cfg.block_size);
|
|
/* put buffer in input queue */
|
|
ret = k_msgq_put(&stream->in_queue, &buffer, K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("buffer %p -> in_queue %p err %d",
|
|
buffer, &stream->in_queue, ret);
|
|
}
|
|
dma_start(stream->dev_dma, stream->channel);
|
|
}
|
|
} else {
|
|
/* Received a STOP/DRAIN trigger */
|
|
i2s_mcux_rx_stream_disable(dev, true);
|
|
stream->state = I2S_STATE_READY;
|
|
}
|
|
break;
|
|
case I2S_STATE_ERROR:
|
|
i2s_mcux_rx_stream_disable(dev, true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int i2s_mcux_tx_stream_start(const struct device *dev)
|
|
{
|
|
int ret = 0;
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->tx;
|
|
I2S_Type *base = cfg->base;
|
|
struct i2s_txq_entry queue_entry;
|
|
|
|
/* retrieve buffer from input queue */
|
|
ret = k_msgq_get(&stream->in_queue, &queue_entry, K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("No buffer in input queue to start transmission");
|
|
return ret;
|
|
}
|
|
|
|
i2s_mcux_config_dma_blocks(dev, I2S_DIR_TX,
|
|
(uint32_t *)queue_entry.mem_block,
|
|
queue_entry.size);
|
|
|
|
/* put buffer in output queue */
|
|
ret = k_msgq_put(&stream->out_queue, &queue_entry.mem_block, K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to put buffer in output queue");
|
|
return ret;
|
|
}
|
|
|
|
/* Enable TX DMA */
|
|
base->FIFOCFG |= I2S_FIFOCFG_DMATX_MASK;
|
|
|
|
ret = dma_start(stream->dev_dma, stream->channel);
|
|
if (ret < 0) {
|
|
LOG_ERR("dma_start failed (%d)", ret);
|
|
return ret;
|
|
}
|
|
|
|
I2S_Enable(base);
|
|
I2S_EnableInterrupts(base, (uint32_t)kI2S_TxErrorFlag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i2s_mcux_rx_stream_start(const struct device *dev)
|
|
{
|
|
int ret = 0;
|
|
void *buffer[NUM_RX_DMA_BLOCKS];
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->rx;
|
|
I2S_Type *base = cfg->base;
|
|
uint8_t num_of_bufs;
|
|
|
|
num_of_bufs = k_mem_slab_num_free_get(stream->cfg.mem_slab);
|
|
|
|
/*
|
|
* Need at least two buffers on the RX memory slab for
|
|
* reliable DMA reception.
|
|
*/
|
|
if (num_of_bufs <= 1) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (int i = 0; i < NUM_RX_DMA_BLOCKS; i++) {
|
|
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &buffer[i],
|
|
K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("buffer alloc from mem_slab failed (%d)", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
i2s_mcux_config_dma_blocks(dev, I2S_DIR_RX, (uint32_t *)buffer,
|
|
stream->cfg.block_size);
|
|
|
|
/* put buffers in input queue */
|
|
for (int i = 0; i < NUM_RX_DMA_BLOCKS; i++) {
|
|
ret = k_msgq_put(&stream->in_queue, &buffer[i], K_NO_WAIT);
|
|
if (ret != 0) {
|
|
LOG_ERR("failed to put buffer in input queue");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Enable RX DMA */
|
|
base->FIFOCFG |= I2S_FIFOCFG_DMARX_MASK;
|
|
|
|
ret = dma_start(stream->dev_dma, stream->channel);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to start DMA Ch%d (%d)", stream->channel, ret);
|
|
return ret;
|
|
}
|
|
|
|
I2S_Enable(base);
|
|
I2S_EnableInterrupts(base, (uint32_t)kI2S_RxErrorFlag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i2s_mcux_trigger(const struct device *dev, enum i2s_dir dir,
|
|
enum i2s_trigger_cmd cmd)
|
|
{
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream;
|
|
unsigned int key;
|
|
int ret = 0;
|
|
|
|
if (dir == I2S_DIR_RX) {
|
|
stream = &dev_data->rx;
|
|
} else if (dir == I2S_DIR_TX) {
|
|
stream = &dev_data->tx;
|
|
} else if (dir == I2S_DIR_BOTH) {
|
|
return -ENOSYS;
|
|
} else {
|
|
LOG_ERR("Either RX or TX direction must be selected");
|
|
return -EINVAL;
|
|
}
|
|
|
|
key = irq_lock();
|
|
|
|
switch (cmd) {
|
|
case I2S_TRIGGER_START:
|
|
if (stream->state != I2S_STATE_READY) {
|
|
LOG_ERR("START trigger: invalid state %d",
|
|
stream->state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (dir == I2S_DIR_TX) {
|
|
ret = i2s_mcux_tx_stream_start(dev);
|
|
} else {
|
|
ret = i2s_mcux_rx_stream_start(dev);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
LOG_ERR("START trigger failed %d", ret);
|
|
break;
|
|
}
|
|
|
|
stream->state = I2S_STATE_RUNNING;
|
|
stream->last_block = false;
|
|
break;
|
|
|
|
case I2S_TRIGGER_STOP:
|
|
if (stream->state != I2S_STATE_RUNNING) {
|
|
LOG_ERR("STOP trigger: invalid state %d", stream->state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
stream->state = I2S_STATE_STOPPING;
|
|
stream->last_block = true;
|
|
break;
|
|
|
|
case I2S_TRIGGER_DRAIN:
|
|
if (stream->state != I2S_STATE_RUNNING) {
|
|
LOG_ERR("DRAIN trigger: invalid state %d", stream->state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
stream->state = I2S_STATE_STOPPING;
|
|
break;
|
|
|
|
case I2S_TRIGGER_DROP:
|
|
if (stream->state == I2S_STATE_NOT_READY) {
|
|
LOG_ERR("DROP trigger: invalid state %d", stream->state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
stream->state = I2S_STATE_READY;
|
|
if (dir == I2S_DIR_TX) {
|
|
i2s_mcux_tx_stream_disable(dev, true);
|
|
} else {
|
|
i2s_mcux_rx_stream_disable(dev, true);
|
|
}
|
|
break;
|
|
|
|
case I2S_TRIGGER_PREPARE:
|
|
if (stream->state != I2S_STATE_ERROR) {
|
|
LOG_ERR("PREPARE trigger: invalid state %d", stream->state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
stream->state = I2S_STATE_READY;
|
|
if (dir == I2S_DIR_TX) {
|
|
i2s_mcux_tx_stream_disable(dev, true);
|
|
} else {
|
|
i2s_mcux_rx_stream_disable(dev, true);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG_ERR("Unsupported trigger command");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int i2s_mcux_read(const struct device *dev, void **mem_block,
|
|
size_t *size)
|
|
{
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->rx;
|
|
void *buffer;
|
|
int ret = 0;
|
|
|
|
if (stream->state == I2S_STATE_NOT_READY) {
|
|
LOG_ERR("invalid state %d", stream->state);
|
|
return -EIO;
|
|
}
|
|
|
|
ret = k_msgq_get(&stream->out_queue, &buffer,
|
|
SYS_TIMEOUT_MS(stream->cfg.timeout));
|
|
|
|
if (ret != 0) {
|
|
if (stream->state == I2S_STATE_ERROR) {
|
|
return -EIO;
|
|
} else {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
*mem_block = buffer;
|
|
*size = stream->cfg.block_size;
|
|
return 0;
|
|
}
|
|
|
|
static int i2s_mcux_write(const struct device *dev, void *mem_block,
|
|
size_t size)
|
|
{
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->tx;
|
|
int ret;
|
|
struct i2s_txq_entry queue_entry = {
|
|
.mem_block = mem_block,
|
|
.size = size,
|
|
};
|
|
|
|
if (stream->state != I2S_STATE_RUNNING &&
|
|
stream->state != I2S_STATE_READY) {
|
|
LOG_ERR("invalid state (%d)", stream->state);
|
|
return -EIO;
|
|
}
|
|
|
|
ret = k_msgq_put(&stream->in_queue, &queue_entry,
|
|
SYS_TIMEOUT_MS(stream->cfg.timeout));
|
|
|
|
if (ret) {
|
|
LOG_ERR("k_msgq_put failed %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct i2s_driver_api i2s_mcux_driver_api = {
|
|
.configure = i2s_mcux_configure,
|
|
.config_get = i2s_mcux_config_get,
|
|
.read = i2s_mcux_read,
|
|
.write = i2s_mcux_write,
|
|
.trigger = i2s_mcux_trigger,
|
|
};
|
|
|
|
static void i2s_mcux_isr(const struct device *dev)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *dev_data = dev->data;
|
|
struct stream *stream = &dev_data->tx;
|
|
I2S_Type *base = cfg->base;
|
|
uint32_t intstat = base->FIFOINTSTAT;
|
|
|
|
if ((intstat & I2S_FIFOINTSTAT_TXERR_MASK) != 0UL) {
|
|
/* Clear TX error interrupt flag */
|
|
base->FIFOSTAT = I2S_FIFOSTAT_TXERR(1U);
|
|
stream = &dev_data->tx;
|
|
stream->state = I2S_STATE_ERROR;
|
|
}
|
|
|
|
if ((intstat & I2S_FIFOINTSTAT_RXERR_MASK) != 0UL) {
|
|
/* Clear RX error interrupt flag */
|
|
base->FIFOSTAT = I2S_FIFOSTAT_RXERR(1U);
|
|
stream = &dev_data->rx;
|
|
stream->state = I2S_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
static int i2s_mcux_init(const struct device *dev)
|
|
{
|
|
const struct i2s_mcux_config *cfg = dev->config;
|
|
struct i2s_mcux_data *const data = dev->data;
|
|
int err;
|
|
|
|
err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
cfg->irq_config(dev);
|
|
|
|
/* Initialize the buffer queues */
|
|
k_msgq_init(&data->tx.in_queue, (char *)data->tx_in_msgs,
|
|
sizeof(struct i2s_txq_entry), CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT);
|
|
k_msgq_init(&data->rx.in_queue, (char *)data->rx_in_msgs,
|
|
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT);
|
|
k_msgq_init(&data->tx.out_queue, (char *)data->tx_out_msgs,
|
|
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT);
|
|
k_msgq_init(&data->rx.out_queue, (char *)data->rx_out_msgs,
|
|
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT);
|
|
|
|
if (data->tx.dev_dma != NULL) {
|
|
if (!device_is_ready(data->tx.dev_dma)) {
|
|
LOG_ERR("%s device not ready", data->tx.dev_dma->name);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (data->rx.dev_dma != NULL) {
|
|
if (!device_is_ready(data->rx.dev_dma)) {
|
|
LOG_ERR("%s device not ready", data->rx.dev_dma->name);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
data->tx.state = I2S_STATE_NOT_READY;
|
|
data->rx.state = I2S_STATE_NOT_READY;
|
|
|
|
LOG_DBG("Device %s inited", dev->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define I2S_DMA_CHANNELS(id) \
|
|
.tx = { \
|
|
.dev_dma = UTIL_AND( \
|
|
DT_INST_DMAS_HAS_NAME(id, tx), \
|
|
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx))), \
|
|
.channel = UTIL_AND( \
|
|
DT_INST_DMAS_HAS_NAME(id, tx), \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, tx, channel)), \
|
|
.dma_cfg = { \
|
|
.channel_direction = MEMORY_TO_PERIPHERAL, \
|
|
.dma_callback = i2s_mcux_dma_tx_callback, \
|
|
.block_count = 1, \
|
|
} \
|
|
}, \
|
|
.rx = { \
|
|
.dev_dma = UTIL_AND( \
|
|
DT_INST_DMAS_HAS_NAME(id, rx), \
|
|
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx))), \
|
|
.channel = UTIL_AND( \
|
|
DT_INST_DMAS_HAS_NAME(id, rx), \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, rx, channel)), \
|
|
.dma_cfg = { \
|
|
.channel_direction = PERIPHERAL_TO_MEMORY, \
|
|
.dma_callback = i2s_mcux_dma_rx_callback, \
|
|
.complete_callback_en = true, \
|
|
.block_count = NUM_RX_DMA_BLOCKS, \
|
|
} \
|
|
}
|
|
|
|
#define I2S_MCUX_FLEXCOMM_DEVICE(id) \
|
|
PINCTRL_DT_INST_DEFINE(id); \
|
|
static void i2s_mcux_config_func_##id(const struct device *dev); \
|
|
static const struct i2s_mcux_config i2s_mcux_config_##id = { \
|
|
.base = \
|
|
(I2S_Type *)DT_INST_REG_ADDR(id), \
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
|
|
.clock_subsys = \
|
|
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
|
|
.irq_config = i2s_mcux_config_func_##id, \
|
|
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
|
|
}; \
|
|
static struct i2s_mcux_data i2s_mcux_data_##id = { \
|
|
I2S_DMA_CHANNELS(id) \
|
|
}; \
|
|
DEVICE_DT_INST_DEFINE(id, \
|
|
&i2s_mcux_init, \
|
|
NULL, \
|
|
&i2s_mcux_data_##id, \
|
|
&i2s_mcux_config_##id, \
|
|
POST_KERNEL, \
|
|
CONFIG_I2S_INIT_PRIORITY, \
|
|
&i2s_mcux_driver_api); \
|
|
static void i2s_mcux_config_func_##id(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(id), \
|
|
DT_INST_IRQ(id, priority), \
|
|
i2s_mcux_isr, \
|
|
DEVICE_DT_INST_GET(id), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQN(id)); \
|
|
}
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(I2S_MCUX_FLEXCOMM_DEVICE)
|