zephyr/drivers/dma/dma_stm32.c
Marco Widmer 32b4388ba8 drivers: dma: stm32: do not clear busy flag in cyclic mode
The STM32 DMA driver supports cyclic mode by setting source_reload_en
and dest_reload_en. This causes the dma_callback to be called twice per
buffer run-through, at half-time and when wrapping back to the start of
the buffer.

However, the current implementation only calls dma_callback twice. When
wrapping the first time, it sets stream->busy to false and ignores
subsequent interrupts.

With this change, the busy flag is only cleared in non-cyclic mode.

Signed-off-by: Marco Widmer <marco.widmer@bytesatwork.ch>
2024-01-24 14:56:24 +01:00

859 lines
23 KiB
C

/*
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Common part of DMA drivers for stm32.
* @note Functions named with stm32_dma_* are SoCs related functions
* implemented in dma_stm32_v*.c
*/
#include "dma_stm32.h"
#include <zephyr/init.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dma_stm32, CONFIG_DMA_LOG_LEVEL);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v1)
#define DT_DRV_COMPAT st_stm32_dma_v1
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2)
#define DT_DRV_COMPAT st_stm32_dma_v2
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2bis)
#define DT_DRV_COMPAT st_stm32_dma_v2bis
#endif
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
#if DT_INST_IRQ_HAS_IDX(0, 7)
#define DMA_STM32_0_STREAM_COUNT 8
#elif DT_INST_IRQ_HAS_IDX(0, 6)
#define DMA_STM32_0_STREAM_COUNT 7
#elif DT_INST_IRQ_HAS_IDX(0, 5)
#define DMA_STM32_0_STREAM_COUNT 6
#elif DT_INST_IRQ_HAS_IDX(0, 4)
#define DMA_STM32_0_STREAM_COUNT 5
#else
#define DMA_STM32_0_STREAM_COUNT 3
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
#if DT_INST_IRQ_HAS_IDX(1, 7)
#define DMA_STM32_1_STREAM_COUNT 8
#elif DT_INST_IRQ_HAS_IDX(1, 6)
#define DMA_STM32_1_STREAM_COUNT 7
#elif DT_INST_IRQ_HAS_IDX(1, 5)
#define DMA_STM32_1_STREAM_COUNT 6
#else
#define DMA_STM32_1_STREAM_COUNT 5
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */
static const uint32_t table_m_size[] = {
LL_DMA_MDATAALIGN_BYTE,
LL_DMA_MDATAALIGN_HALFWORD,
LL_DMA_MDATAALIGN_WORD,
};
static const uint32_t table_p_size[] = {
LL_DMA_PDATAALIGN_BYTE,
LL_DMA_PDATAALIGN_HALFWORD,
LL_DMA_PDATAALIGN_WORD,
};
static void dma_stm32_dump_stream_irq(const struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
stm32_dma_dump_stream_irq(dma, id);
}
static void dma_stm32_clear_stream_irq(const struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
dma_stm32_clear_tc(dma, id);
dma_stm32_clear_ht(dma, id);
stm32_dma_clear_stream_irq(dma, id);
}
static void dma_stm32_irq_handler(const struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_stream *stream;
uint32_t callback_arg;
__ASSERT_NO_MSG(id < config->max_streams);
stream = &config->streams[id];
/* The busy channel is pertinent if not overridden by the HAL */
if ((stream->hal_override != true) && (stream->busy == false)) {
/*
* When DMA channel is not overridden by HAL,
* ignore irq if the channel is not busy anymore
*/
dma_stm32_clear_stream_irq(dev, id);
return;
}
#ifdef CONFIG_DMAMUX_STM32
callback_arg = stream->mux_channel;
#else
callback_arg = id + STM32_DMA_STREAM_OFFSET;
#endif /* CONFIG_DMAMUX_STM32 */
if (!IS_ENABLED(CONFIG_DMAMUX_STM32)) {
stream->busy = false;
}
/* The dma stream id is in range from STM32_DMA_STREAM_OFFSET..<dma-requests> */
if (stm32_dma_is_ht_irq_active(dma, id)) {
/* Let HAL DMA handle flags on its own */
if (!stream->hal_override) {
dma_stm32_clear_ht(dma, id);
}
stream->dma_callback(dev, stream->user_data, callback_arg, DMA_STATUS_BLOCK);
} else if (stm32_dma_is_tc_irq_active(dma, id)) {
#ifdef CONFIG_DMAMUX_STM32
/* Circular buffer never stops receiving as long as peripheral is enabled */
if (!stream->cyclic) {
stream->busy = false;
}
#endif
/* Let HAL DMA handle flags on its own */
if (!stream->hal_override) {
dma_stm32_clear_tc(dma, id);
}
stream->dma_callback(dev, stream->user_data, callback_arg, DMA_STATUS_COMPLETE);
} else if (stm32_dma_is_unexpected_irq_happened(dma, id)) {
LOG_ERR("Unexpected irq happened.");
stream->dma_callback(dev, stream->user_data,
callback_arg, -EIO);
} else {
LOG_ERR("Transfer Error.");
dma_stm32_dump_stream_irq(dev, id);
dma_stm32_clear_stream_irq(dev, id);
stream->dma_callback(dev, stream->user_data,
callback_arg, -EIO);
}
}
#ifdef CONFIG_DMA_STM32_SHARED_IRQS
#define HANDLE_IRQS(index) \
static const struct device *const dev_##index = \
DEVICE_DT_INST_GET(index); \
const struct dma_stm32_config *cfg_##index = dev_##index->config; \
DMA_TypeDef *dma_##index = (DMA_TypeDef *)(cfg_##index->base); \
\
for (id = 0; id < cfg_##index->max_streams; ++id) { \
if (stm32_dma_is_irq_active(dma_##index, id)) { \
dma_stm32_irq_handler(dev_##index, id); \
} \
}
static void dma_stm32_shared_irq_handler(const struct device *dev)
{
ARG_UNUSED(dev);
uint32_t id = 0;
DT_INST_FOREACH_STATUS_OKAY(HANDLE_IRQS)
}
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
static int dma_stm32_get_priority(uint8_t priority, uint32_t *ll_priority)
{
switch (priority) {
case 0x0:
*ll_priority = LL_DMA_PRIORITY_LOW;
break;
case 0x1:
*ll_priority = LL_DMA_PRIORITY_MEDIUM;
break;
case 0x2:
*ll_priority = LL_DMA_PRIORITY_HIGH;
break;
case 0x3:
*ll_priority = LL_DMA_PRIORITY_VERYHIGH;
break;
default:
LOG_ERR("Priority error. %d", priority);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_direction(enum dma_channel_direction direction,
uint32_t *ll_direction)
{
switch (direction) {
case MEMORY_TO_MEMORY:
*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_MEMORY;
break;
case MEMORY_TO_PERIPHERAL:
*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
break;
case PERIPHERAL_TO_MEMORY:
*ll_direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
break;
default:
LOG_ERR("Direction error. %d", direction);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_memory_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_DMA_MEMORY_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_DMA_MEMORY_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Memory increment error. %d", increment);
return -EINVAL;
}
return 0;
}
static int dma_stm32_get_periph_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_DMA_PERIPH_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_DMA_PERIPH_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Periph increment error. %d", increment);
return -EINVAL;
}
return 0;
}
static int dma_stm32_disable_stream(DMA_TypeDef *dma, uint32_t id)
{
int count = 0;
for (;;) {
if (stm32_dma_disable_stream(dma, id) == 0) {
return 0;
}
/* After trying for 5 seconds, give up */
if (count++ > (5 * 1000)) {
return -EBUSY;
}
k_sleep(K_MSEC(1));
}
return 0;
}
DMA_STM32_EXPORT_API int dma_stm32_configure(const struct device *dev,
uint32_t id,
struct dma_config *config)
{
const struct dma_stm32_config *dev_config = dev->config;
struct dma_stm32_stream *stream =
&dev_config->streams[id - STM32_DMA_STREAM_OFFSET];
DMA_TypeDef *dma = (DMA_TypeDef *)dev_config->base;
LL_DMA_InitTypeDef DMA_InitStruct;
int ret;
LL_DMA_StructInit(&DMA_InitStruct);
/* Give channel from index 0 */
id = id - STM32_DMA_STREAM_OFFSET;
if (id >= dev_config->max_streams) {
LOG_ERR("cannot configure the dma stream %d.", id);
return -EINVAL;
}
if (stream->busy) {
LOG_ERR("dma stream %d is busy.", id);
return -EBUSY;
}
if (dma_stm32_disable_stream(dma, id) != 0) {
LOG_ERR("could not disable dma stream %d.", id);
return -EBUSY;
}
dma_stm32_clear_stream_irq(dev, id);
/* Check potential DMA override (if id parameters and stream are valid) */
if (config->linked_channel == STM32_DMA_HAL_OVERRIDE) {
/* DMA channel is overridden by HAL DMA
* Retain that the channel is busy and proceed to the minimal
* configuration to properly route the IRQ
*/
stream->busy = true;
stream->hal_override = true;
stream->dma_callback = config->dma_callback;
stream->user_data = config->user_data;
stream->cyclic = false;
return 0;
}
if (config->head_block->block_size > DMA_STM32_MAX_DATA_ITEMS) {
LOG_ERR("Data size too big: %d\n",
config->head_block->block_size);
return -EINVAL;
}
#ifdef CONFIG_DMA_STM32_V1
if ((config->channel_direction == MEMORY_TO_MEMORY) &&
(!dev_config->support_m2m)) {
LOG_ERR("Memcopy not supported for device %s",
dev->name);
return -ENOTSUP;
}
#endif /* CONFIG_DMA_STM32_V1 */
/* Support only the same data width for source and dest */
if ((config->dest_data_size != config->source_data_size)) {
LOG_ERR("source and dest data size differ.");
return -EINVAL;
}
if (config->source_data_size != 4U &&
config->source_data_size != 2U &&
config->source_data_size != 1U) {
LOG_ERR("source and dest unit size error, %d",
config->source_data_size);
return -EINVAL;
}
/*
* STM32's circular mode will auto reset both source address
* counter and destination address counter.
*/
if (config->head_block->source_reload_en !=
config->head_block->dest_reload_en) {
LOG_ERR("source_reload_en and dest_reload_en must "
"be the same.");
return -EINVAL;
}
stream->busy = true;
stream->dma_callback = config->dma_callback;
stream->direction = config->channel_direction;
stream->user_data = config->user_data;
stream->src_size = config->source_data_size;
stream->dst_size = config->dest_data_size;
stream->cyclic = config->head_block->source_reload_en;
/* Check dest or source memory address, warn if 0 */
if (config->head_block->source_address == 0) {
LOG_WRN("source_buffer address is null.");
}
if (config->head_block->dest_address == 0) {
LOG_WRN("dest_buffer address is null.");
}
if (stream->direction == MEMORY_TO_PERIPHERAL) {
DMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->source_address;
DMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->dest_address;
} else {
DMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->source_address;
DMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->dest_address;
}
uint16_t memory_addr_adj = 0, periph_addr_adj = 0;
ret = dma_stm32_get_priority(config->channel_priority,
&DMA_InitStruct.Priority);
if (ret < 0) {
return ret;
}
ret = dma_stm32_get_direction(config->channel_direction,
&DMA_InitStruct.Direction);
if (ret < 0) {
return ret;
}
switch (config->channel_direction) {
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
memory_addr_adj = config->head_block->dest_addr_adj;
periph_addr_adj = config->head_block->source_addr_adj;
break;
case MEMORY_TO_PERIPHERAL:
memory_addr_adj = config->head_block->source_addr_adj;
periph_addr_adj = config->head_block->dest_addr_adj;
break;
/* Direction has been asserted in dma_stm32_get_direction. */
default:
LOG_ERR("Channel direction error (%d).",
config->channel_direction);
return -EINVAL;
}
ret = dma_stm32_get_memory_increment(memory_addr_adj,
&DMA_InitStruct.MemoryOrM2MDstIncMode);
if (ret < 0) {
return ret;
}
LOG_DBG("Channel (%d) memory inc (%x).",
id, DMA_InitStruct.MemoryOrM2MDstIncMode);
ret = dma_stm32_get_periph_increment(periph_addr_adj,
&DMA_InitStruct.PeriphOrM2MSrcIncMode);
if (ret < 0) {
return ret;
}
LOG_DBG("Channel (%d) peripheral inc (%x).",
id, DMA_InitStruct.PeriphOrM2MSrcIncMode);
if (stream->cyclic) {
DMA_InitStruct.Mode = LL_DMA_MODE_CIRCULAR;
} else {
DMA_InitStruct.Mode = LL_DMA_MODE_NORMAL;
}
stream->source_periph = (stream->direction == PERIPHERAL_TO_MEMORY);
/* set the data width, when source_data_size equals dest_data_size */
int index = find_lsb_set(config->source_data_size) - 1;
DMA_InitStruct.PeriphOrM2MSrcDataSize = table_p_size[index];
index = find_lsb_set(config->dest_data_size) - 1;
DMA_InitStruct.MemoryOrM2MDstDataSize = table_m_size[index];
#if defined(CONFIG_DMA_STM32_V1)
DMA_InitStruct.MemBurst = stm32_dma_get_mburst(config,
stream->source_periph);
DMA_InitStruct.PeriphBurst = stm32_dma_get_pburst(config,
stream->source_periph);
#if !defined(CONFIG_SOC_SERIES_STM32H7X) && !defined(CONFIG_SOC_SERIES_STM32MP1X)
if (config->channel_direction != MEMORY_TO_MEMORY) {
if (config->dma_slot >= 8) {
LOG_ERR("dma slot error.");
return -EINVAL;
}
} else {
if (config->dma_slot >= 8) {
LOG_ERR("dma slot is too big, using 0 as default.");
config->dma_slot = 0;
}
}
DMA_InitStruct.Channel = dma_stm32_slot_to_channel(config->dma_slot);
#endif
DMA_InitStruct.FIFOThreshold = stm32_dma_get_fifo_threshold(
config->head_block->fifo_mode_control);
if (stm32_dma_check_fifo_mburst(&DMA_InitStruct)) {
DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
} else {
DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_DISABLE;
}
#endif
if (stream->source_periph) {
DMA_InitStruct.NbData = config->head_block->block_size /
config->source_data_size;
} else {
DMA_InitStruct.NbData = config->head_block->block_size /
config->dest_data_size;
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2) || DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dmamux)
/* With dma V2 and dmamux,the request ID is stored in the dma_slot */
DMA_InitStruct.PeriphRequest = config->dma_slot;
#endif
LL_DMA_Init(dma, dma_stm32_id_to_stream(id), &DMA_InitStruct);
LL_DMA_EnableIT_TC(dma, dma_stm32_id_to_stream(id));
/* Enable Half-Transfer irq if circular mode is enabled */
if (stream->cyclic) {
LL_DMA_EnableIT_HT(dma, dma_stm32_id_to_stream(id));
}
#if defined(CONFIG_DMA_STM32_V1)
if (DMA_InitStruct.FIFOMode == LL_DMA_FIFOMODE_ENABLE) {
LL_DMA_EnableFifoMode(dma, dma_stm32_id_to_stream(id));
LL_DMA_EnableIT_FE(dma, dma_stm32_id_to_stream(id));
} else {
LL_DMA_DisableFifoMode(dma, dma_stm32_id_to_stream(id));
LL_DMA_DisableIT_FE(dma, dma_stm32_id_to_stream(id));
}
#endif
return ret;
}
DMA_STM32_EXPORT_API int dma_stm32_reload(const struct device *dev, uint32_t id,
uint32_t src, uint32_t dst,
size_t size)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_stream *stream;
/* Give channel from index 0 */
id = id - STM32_DMA_STREAM_OFFSET;
if (id >= config->max_streams) {
return -EINVAL;
}
stream = &config->streams[id];
if (dma_stm32_disable_stream(dma, id) != 0) {
return -EBUSY;
}
switch (stream->direction) {
case MEMORY_TO_PERIPHERAL:
LL_DMA_SetMemoryAddress(dma, dma_stm32_id_to_stream(id), src);
LL_DMA_SetPeriphAddress(dma, dma_stm32_id_to_stream(id), dst);
break;
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
LL_DMA_SetPeriphAddress(dma, dma_stm32_id_to_stream(id), src);
LL_DMA_SetMemoryAddress(dma, dma_stm32_id_to_stream(id), dst);
break;
default:
return -EINVAL;
}
if (stream->source_periph) {
LL_DMA_SetDataLength(dma, dma_stm32_id_to_stream(id),
size / stream->src_size);
} else {
LL_DMA_SetDataLength(dma, dma_stm32_id_to_stream(id),
size / stream->dst_size);
}
/* When reloading the dma, the stream is busy again before enabling */
stream->busy = true;
stm32_dma_enable_stream(dma, id);
return 0;
}
DMA_STM32_EXPORT_API int dma_stm32_start(const struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_stream *stream;
/* Give channel from index 0 */
id = id - STM32_DMA_STREAM_OFFSET;
/* Only M2P or M2M mode can be started manually. */
if (id >= config->max_streams) {
return -EINVAL;
}
/* Repeated start : return now if channel is already started */
if (stm32_dma_is_enabled_stream(dma, id)) {
return 0;
}
/* When starting the dma, the stream is busy before enabling */
stream = &config->streams[id];
stream->busy = true;
dma_stm32_clear_stream_irq(dev, id);
stm32_dma_enable_stream(dma, id);
return 0;
}
DMA_STM32_EXPORT_API int dma_stm32_stop(const struct device *dev, uint32_t id)
{
const struct dma_stm32_config *config = dev->config;
struct dma_stm32_stream *stream = &config->streams[id - STM32_DMA_STREAM_OFFSET];
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
/* Give channel from index 0 */
id = id - STM32_DMA_STREAM_OFFSET;
if (id >= config->max_streams) {
return -EINVAL;
}
/* Repeated stop : return now if channel is already stopped */
if (!stm32_dma_is_enabled_stream(dma, id)) {
return 0;
}
#if !defined(CONFIG_DMAMUX_STM32) \
|| defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32MP1X)
LL_DMA_DisableIT_TC(dma, dma_stm32_id_to_stream(id));
#endif /* CONFIG_DMAMUX_STM32 */
#if defined(CONFIG_DMA_STM32_V1)
stm32_dma_disable_fifo_irq(dma, id);
#endif
dma_stm32_clear_stream_irq(dev, id);
dma_stm32_disable_stream(dma, id);
/* Finally, flag stream as free */
stream->busy = false;
return 0;
}
static int dma_stm32_init(const struct device *dev)
{
const struct dma_stm32_config *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_on(clk,
(clock_control_subsys_t) &config->pclken) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
config->config_irq(dev);
for (uint32_t i = 0; i < config->max_streams; i++) {
config->streams[i].busy = false;
#ifdef CONFIG_DMAMUX_STM32
/* Each further stream->mux_channel is fixed here */
config->streams[i].mux_channel = i + config->offset;
#endif /* CONFIG_DMAMUX_STM32 */
}
((struct dma_stm32_data *)dev->data)->dma_ctx.magic = 0;
((struct dma_stm32_data *)dev->data)->dma_ctx.dma_channels = 0;
((struct dma_stm32_data *)dev->data)->dma_ctx.atomic = 0;
return 0;
}
DMA_STM32_EXPORT_API int dma_stm32_get_status(const struct device *dev,
uint32_t id, struct dma_status *stat)
{
const struct dma_stm32_config *config = dev->config;
DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
struct dma_stm32_stream *stream;
/* Give channel from index 0 */
id = id - STM32_DMA_STREAM_OFFSET;
if (id >= config->max_streams) {
return -EINVAL;
}
stream = &config->streams[id];
stat->pending_length = LL_DMA_GetDataLength(dma, dma_stm32_id_to_stream(id));
stat->dir = stream->direction;
stat->busy = stream->busy;
return 0;
}
static const struct dma_driver_api dma_funcs = {
.reload = dma_stm32_reload,
.config = dma_stm32_configure,
.start = dma_stm32_start,
.stop = dma_stm32_stop,
.get_status = dma_stm32_get_status,
};
#define DMA_STM32_INIT_DEV(index) \
static struct dma_stm32_stream \
dma_stm32_streams_##index[DMA_STM32_##index##_STREAM_COUNT]; \
\
const struct dma_stm32_config dma_stm32_config_##index = { \
.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \
.enr = DT_INST_CLOCKS_CELL(index, bits) }, \
.config_irq = dma_stm32_config_irq_##index, \
.base = DT_INST_REG_ADDR(index), \
IF_ENABLED(CONFIG_DMA_STM32_V1, \
(.support_m2m = DT_INST_PROP(index, st_mem2mem),)) \
.max_streams = DMA_STM32_##index##_STREAM_COUNT, \
.streams = dma_stm32_streams_##index, \
IF_ENABLED(CONFIG_DMAMUX_STM32, \
(.offset = DT_INST_PROP(index, dma_offset),)) \
}; \
\
static struct dma_stm32_data dma_stm32_data_##index = { \
}; \
\
DEVICE_DT_INST_DEFINE(index, \
&dma_stm32_init, \
NULL, \
&dma_stm32_data_##index, &dma_stm32_config_##index, \
PRE_KERNEL_1, CONFIG_DMA_INIT_PRIORITY, \
&dma_funcs)
#ifdef CONFIG_DMA_STM32_SHARED_IRQS
#define DMA_STM32_DEFINE_IRQ_HANDLER(dma, chan) /* nothing */
#define DMA_STM32_IRQ_CONNECT(dma, chan) \
do { \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(dma, chan, irq), \
DT_INST_IRQ_BY_IDX(dma, chan, priority), \
dma_stm32_shared_irq_handler, \
DEVICE_DT_INST_GET(dma), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq)); \
} while (false)
#else /* CONFIG_DMA_STM32_SHARED_IRQS */
#define DMA_STM32_DEFINE_IRQ_HANDLER(dma, chan) \
static void dma_stm32_irq_##dma##_##chan(const struct device *dev) \
{ \
dma_stm32_irq_handler(dev, chan); \
}
#define DMA_STM32_IRQ_CONNECT(dma, chan) \
do { \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(dma, chan, irq), \
DT_INST_IRQ_BY_IDX(dma, chan, priority), \
dma_stm32_irq_##dma##_##chan, \
DEVICE_DT_INST_GET(dma), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq)); \
} while (false)
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 0);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 1);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 2);
#if DT_INST_IRQ_HAS_IDX(0, 3)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 3);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 4);
#if DT_INST_IRQ_HAS_IDX(0, 5)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 5);
#if DT_INST_IRQ_HAS_IDX(0, 6)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 6);
#if DT_INST_IRQ_HAS_IDX(0, 7)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 7);
#endif /* DT_INST_IRQ_HAS_IDX(0, 3) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 7) */
static void dma_stm32_config_irq_0(const struct device *dev)
{
ARG_UNUSED(dev);
DMA_STM32_IRQ_CONNECT(0, 0);
DMA_STM32_IRQ_CONNECT(0, 1);
#ifndef CONFIG_DMA_STM32_SHARED_IRQS
DMA_STM32_IRQ_CONNECT(0, 2);
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
#if DT_INST_IRQ_HAS_IDX(0, 3)
DMA_STM32_IRQ_CONNECT(0, 3);
#ifndef CONFIG_DMA_STM32_SHARED_IRQS
DMA_STM32_IRQ_CONNECT(0, 4);
#if DT_INST_IRQ_HAS_IDX(0, 5)
DMA_STM32_IRQ_CONNECT(0, 5);
#if DT_INST_IRQ_HAS_IDX(0, 6)
DMA_STM32_IRQ_CONNECT(0, 6);
#if DT_INST_IRQ_HAS_IDX(0, 7)
DMA_STM32_IRQ_CONNECT(0, 7);
#endif /* DT_INST_IRQ_HAS_IDX(0, 3) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 7) */
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
/* Either 3 or 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */
}
DMA_STM32_INIT_DEV(0);
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 0);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 1);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 2);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 3);
#if DT_INST_IRQ_HAS_IDX(1, 4)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 4);
#if DT_INST_IRQ_HAS_IDX(1, 5)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 5);
#if DT_INST_IRQ_HAS_IDX(1, 6)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 6);
#if DT_INST_IRQ_HAS_IDX(1, 7)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 7);
#endif /* DT_INST_IRQ_HAS_IDX(1, 4) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 7) */
static void dma_stm32_config_irq_1(const struct device *dev)
{
ARG_UNUSED(dev);
#ifndef CONFIG_DMA_STM32_SHARED_IRQS
DMA_STM32_IRQ_CONNECT(1, 0);
DMA_STM32_IRQ_CONNECT(1, 1);
DMA_STM32_IRQ_CONNECT(1, 2);
DMA_STM32_IRQ_CONNECT(1, 3);
#if DT_INST_IRQ_HAS_IDX(1, 4)
DMA_STM32_IRQ_CONNECT(1, 4);
#if DT_INST_IRQ_HAS_IDX(1, 5)
DMA_STM32_IRQ_CONNECT(1, 5);
#if DT_INST_IRQ_HAS_IDX(1, 6)
DMA_STM32_IRQ_CONNECT(1, 6);
#if DT_INST_IRQ_HAS_IDX(1, 7)
DMA_STM32_IRQ_CONNECT(1, 7);
#endif /* DT_INST_IRQ_HAS_IDX(1, 4) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 7) */
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
/*
* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series.
* STM32F0 and STM32G0: if dma2 exits, the channel interrupts overlap with dma1
*/
}
DMA_STM32_INIT_DEV(1);
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */