zephyr/subsys/fs/fat_fs.c
Peter A. Bigot 9b993bef6b subsys/fs/fatfs: correct misinterpretation of FatFs API
The FatFs f_readdir function returns OK with a zero-length file name
when the last directory entry has been found.  The Zephyr wrapper
unconditionally accessed fields that are left uninitialized in that
situation, propagating garbage values to the caller.

Avoid referencing uninitialized fields of the output structure in this
case.

Signed-off-by: Peter A. Bigot <pab@pabigot.com>
2019-10-23 07:59:01 -04:00

398 lines
7.7 KiB
C

/*
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <string.h>
#include <kernel.h>
#include <zephyr/types.h>
#include <errno.h>
#include <init.h>
#include <fs/fs.h>
#include <sys/__assert.h>
#include <ff.h>
#define FATFS_MAX_FILE_NAME 12 /* Uses 8.3 SFN */
/* Memory pool for FatFs directory objects */
K_MEM_SLAB_DEFINE(fatfs_dirp_pool, sizeof(DIR),
CONFIG_FS_FATFS_NUM_DIRS, 4);
/* Memory pool for FatFs file objects */
K_MEM_SLAB_DEFINE(fatfs_filep_pool, sizeof(FIL),
CONFIG_FS_FATFS_NUM_FILES, 4);
static int translate_error(int error)
{
switch (error) {
case FR_OK:
return 0;
case FR_NO_FILE:
case FR_NO_PATH:
case FR_INVALID_NAME:
return -ENOENT;
case FR_DENIED:
return -EACCES;
case FR_EXIST:
return -EEXIST;
case FR_INVALID_OBJECT:
return -EBADF;
case FR_WRITE_PROTECTED:
return -EROFS;
case FR_INVALID_DRIVE:
case FR_NOT_ENABLED:
case FR_NO_FILESYSTEM:
return -ENODEV;
case FR_NOT_ENOUGH_CORE:
return -ENOMEM;
case FR_TOO_MANY_OPEN_FILES:
return -EMFILE;
case FR_INVALID_PARAMETER:
return -EINVAL;
case FR_LOCKED:
case FR_TIMEOUT:
case FR_MKFS_ABORTED:
case FR_DISK_ERR:
case FR_INT_ERR:
case FR_NOT_READY:
return -EIO;
}
return -EIO;
}
static int fatfs_open(struct fs_file_t *zfp, const char *file_name)
{
FRESULT res;
u8_t fs_mode;
void *ptr;
if (k_mem_slab_alloc(&fatfs_filep_pool, &ptr, K_NO_WAIT) == 0) {
(void)memset(ptr, 0, sizeof(FIL));
zfp->filep = ptr;
} else {
return -ENOMEM;
}
fs_mode = FA_READ | FA_WRITE | FA_OPEN_ALWAYS;
res = f_open(zfp->filep, &file_name[1], fs_mode);
return translate_error(res);
}
static int fatfs_close(struct fs_file_t *zfp)
{
FRESULT res;
res = f_close(zfp->filep);
/* Free file ptr memory */
k_mem_slab_free(&fatfs_filep_pool, &zfp->filep);
return translate_error(res);
}
static int fatfs_unlink(struct fs_mount_t *mountp, const char *path)
{
FRESULT res;
res = f_unlink(&path[1]);
return translate_error(res);
}
static int fatfs_rename(struct fs_mount_t *mountp, const char *from,
const char *to)
{
FRESULT res;
FILINFO fno;
/* Check if 'to' path exists; remove it if it does */
res = f_stat(&to[1], &fno);
if (FR_OK == res) {
res = f_unlink(&to[1]);
if (FR_OK != res)
return translate_error(res);
}
res = f_rename(&from[1], &to[1]);
return translate_error(res);
}
static ssize_t fatfs_read(struct fs_file_t *zfp, void *ptr, size_t size)
{
FRESULT res;
unsigned int br;
res = f_read(zfp->filep, ptr, size, &br);
if (res != FR_OK) {
return translate_error(res);
}
return br;
}
static ssize_t fatfs_write(struct fs_file_t *zfp, const void *ptr, size_t size)
{
FRESULT res;
unsigned int bw;
res = f_write(zfp->filep, ptr, size, &bw);
if (res != FR_OK) {
return translate_error(res);
}
return bw;
}
static int fatfs_seek(struct fs_file_t *zfp, off_t offset, int whence)
{
FRESULT res = FR_OK;
off_t pos;
switch (whence) {
case FS_SEEK_SET:
pos = offset;
break;
case FS_SEEK_CUR:
pos = f_tell((FIL *)zfp->filep) + offset;
break;
case FS_SEEK_END:
pos = f_size((FIL *)zfp->filep) + offset;
break;
default:
return -EINVAL;
}
if ((pos < 0) || (pos > f_size((FIL *)zfp->filep))) {
return -EINVAL;
}
res = f_lseek(zfp->filep, pos);
return translate_error(res);
}
static off_t fatfs_tell(struct fs_file_t *zfp)
{
return f_tell((FIL *)zfp->filep);
}
static int fatfs_truncate(struct fs_file_t *zfp, off_t length)
{
FRESULT res = FR_OK;
off_t cur_length = f_size((FIL *)zfp->filep);
/* f_lseek expands file if new position is larger than file size */
res = f_lseek(zfp->filep, length);
if (res != FR_OK) {
return translate_error(res);
}
if (length < cur_length) {
res = f_truncate(zfp->filep);
} else {
/*
* Get actual length after expansion. This could be
* less if there was not enough space in the volume
* to expand to the requested length
*/
length = f_tell((FIL *)zfp->filep);
res = f_lseek(zfp->filep, cur_length);
if (res != FR_OK) {
return translate_error(res);
}
/*
* The FS module does caching and optimization of
* writes. Here we write 1 byte at a time to avoid
* using additional code and memory for doing any
* optimization.
*/
unsigned int bw;
u8_t c = 0U;
for (int i = cur_length; i < length; i++) {
res = f_write(zfp->filep, &c, 1, &bw);
if (res != FR_OK) {
break;
}
}
}
return translate_error(res);
}
static int fatfs_sync(struct fs_file_t *zfp)
{
FRESULT res = FR_OK;
res = f_sync(zfp->filep);
return translate_error(res);
}
static int fatfs_mkdir(struct fs_mount_t *mountp, const char *path)
{
FRESULT res;
res = f_mkdir(&path[1]);
return translate_error(res);
}
static int fatfs_opendir(struct fs_dir_t *zdp, const char *path)
{
FRESULT res;
void *ptr;
if (k_mem_slab_alloc(&fatfs_dirp_pool, &ptr, K_NO_WAIT) == 0) {
(void)memset(ptr, 0, sizeof(DIR));
zdp->dirp = ptr;
} else {
return -ENOMEM;
}
res = f_opendir(zdp->dirp, &path[1]);
return translate_error(res);
}
static int fatfs_readdir(struct fs_dir_t *zdp, struct fs_dirent *entry)
{
FRESULT res;
FILINFO fno;
res = f_readdir(zdp->dirp, &fno);
if (res == FR_OK) {
strcpy(entry->name, fno.fname);
if (entry->name[0] != 0) {
entry->type = ((fno.fattrib & AM_DIR) ?
FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
entry->size = fno.fsize;
}
}
return translate_error(res);
}
static int fatfs_closedir(struct fs_dir_t *zdp)
{
FRESULT res;
res = f_closedir(zdp->dirp);
/* Free file ptr memory */
k_mem_slab_free(&fatfs_dirp_pool, &zdp->dirp);
return translate_error(res);
}
static int fatfs_stat(struct fs_mount_t *mountp,
const char *path, struct fs_dirent *entry)
{
FRESULT res;
FILINFO fno;
res = f_stat(&path[1], &fno);
if (res == FR_OK) {
entry->type = ((fno.fattrib & AM_DIR) ?
FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
strcpy(entry->name, fno.fname);
entry->size = fno.fsize;
}
return translate_error(res);
}
static int fatfs_statvfs(struct fs_mount_t *mountp,
const char *path, struct fs_statvfs *stat)
{
FATFS *fs;
FRESULT res;
res = f_getfree(&mountp->mnt_point[1], &stat->f_bfree, &fs);
if (res != FR_OK) {
return -EIO;
}
/*
* _MIN_SS holds the sector size. It is one of the configuration
* constants used by the FS module
*/
stat->f_bsize = _MIN_SS;
stat->f_frsize = fs->csize * stat->f_bsize;
stat->f_blocks = (fs->n_fatent - 2);
return translate_error(res);
}
static int fatfs_mount(struct fs_mount_t *mountp)
{
FRESULT res;
res = f_mount((FATFS *)mountp->fs_data, &mountp->mnt_point[1], 1);
/* If no file system found then create one */
if (res == FR_NO_FILESYSTEM) {
u8_t work[_MAX_SS];
res = f_mkfs(&mountp->mnt_point[1],
(FM_FAT | FM_SFD), 0, work, sizeof(work));
if (res == FR_OK) {
res = f_mount((FATFS *)mountp->fs_data,
&mountp->mnt_point[1], 1);
}
}
__ASSERT((res == FR_OK), "FS init failed (%d)", translate_error(res));
return translate_error(res);
}
static int fatfs_unmount(struct fs_mount_t *mountp)
{
FRESULT res;
res = f_mount(NULL, &mountp->mnt_point[1], 1);
return translate_error(res);
}
/* File system interface */
static struct fs_file_system_t fatfs_fs = {
.open = fatfs_open,
.close = fatfs_close,
.read = fatfs_read,
.write = fatfs_write,
.lseek = fatfs_seek,
.tell = fatfs_tell,
.truncate = fatfs_truncate,
.sync = fatfs_sync,
.opendir = fatfs_opendir,
.readdir = fatfs_readdir,
.closedir = fatfs_closedir,
.mount = fatfs_mount,
.unmount = fatfs_unmount,
.unlink = fatfs_unlink,
.rename = fatfs_rename,
.mkdir = fatfs_mkdir,
.stat = fatfs_stat,
.statvfs = fatfs_statvfs,
};
static int fatfs_init(struct device *dev)
{
ARG_UNUSED(dev);
return fs_register(FS_FATFS, &fatfs_fs);
}
SYS_INIT(fatfs_init, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);