zephyr/drivers/ethernet/eth_esp32.c
Elias Speinle c9c98d07e7 drivers: eth: esp32: support setting mac address during runtime
Add support for setting the mac address of the esp32
during runtime.

Signed-off-by: Elias Speinle <e.speinle@vogl-electronic.com>
2024-03-08 15:19:22 +00:00

363 lines
9.3 KiB
C

/*
* Copyright (c) 2022 Grant Ramsay <grant.ramsay@hotmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_eth
#include <ethernet/eth_stats.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#include <zephyr/logging/log.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/phy.h>
#include <esp_attr.h>
#include <esp_mac.h>
#include <hal/emac_hal.h>
#include <hal/emac_ll.h>
#include <soc/rtc.h>
#include "eth.h"
LOG_MODULE_REGISTER(eth_esp32, CONFIG_ETHERNET_LOG_LEVEL);
#define MAC_RESET_TIMEOUT_MS 100
struct eth_esp32_dma_data {
uint8_t descriptors[
CONFIG_ETH_DMA_RX_BUFFER_NUM * sizeof(eth_dma_rx_descriptor_t) +
CONFIG_ETH_DMA_TX_BUFFER_NUM * sizeof(eth_dma_tx_descriptor_t)];
uint8_t rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM][CONFIG_ETH_DMA_BUFFER_SIZE];
uint8_t tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM][CONFIG_ETH_DMA_BUFFER_SIZE];
};
struct eth_esp32_dev_data {
struct net_if *iface;
uint8_t mac_addr[6];
emac_hal_context_t hal;
struct eth_esp32_dma_data *dma;
uint8_t txb[NET_ETH_MAX_FRAME_SIZE];
uint8_t rxb[NET_ETH_MAX_FRAME_SIZE];
uint8_t *dma_rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM];
uint8_t *dma_tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM];
struct k_sem int_sem;
K_KERNEL_STACK_MEMBER(rx_thread_stack, CONFIG_ETH_ESP32_RX_THREAD_STACK_SIZE);
struct k_thread rx_thread;
};
static const struct device *eth_esp32_phy_dev = DEVICE_DT_GET(
DT_INST_PHANDLE(0, phy_handle));
static enum ethernet_hw_caps eth_esp32_caps(const struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T;
}
static int eth_esp32_set_config(const struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
struct eth_esp32_dev_data *const dev_data = dev->data;
int ret = -ENOTSUP;
switch (type) {
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
memcpy(dev_data->mac_addr, config->mac_address.addr, 6);
emac_hal_set_address(&dev_data->hal, dev_data->mac_addr);
net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
ret = 0;
break;
default:
break;
}
return ret;
}
static int eth_esp32_send(const struct device *dev, struct net_pkt *pkt)
{
struct eth_esp32_dev_data *dev_data = dev->data;
size_t len = net_pkt_get_len(pkt);
if (net_pkt_read(pkt, dev_data->txb, len)) {
return -EIO;
}
uint32_t sent_len = emac_hal_transmit_frame(&dev_data->hal, dev_data->txb, len);
int res = len == sent_len ? 0 : -EIO;
return res;
}
static struct net_pkt *eth_esp32_rx(
struct eth_esp32_dev_data *const dev_data, uint32_t *frames_remaining)
{
uint32_t free_rx_descriptor;
uint32_t receive_len = emac_hal_receive_frame(
&dev_data->hal, dev_data->rxb, sizeof(dev_data->rxb),
frames_remaining, &free_rx_descriptor);
if (receive_len == 0) {
/* Nothing to receive */
return NULL;
}
struct net_pkt *pkt = net_pkt_rx_alloc_with_buffer(
dev_data->iface, receive_len, AF_UNSPEC, 0, K_MSEC(100));
if (pkt == NULL) {
eth_stats_update_errors_rx(ctx->iface);
LOG_ERR("Could not allocate rx buffer");
return NULL;
}
if (net_pkt_write(pkt, dev_data->rxb, receive_len) != 0) {
LOG_ERR("Unable to write frame into the pkt");
eth_stats_update_errors_rx(ctx->iface);
net_pkt_unref(pkt);
return NULL;
}
return pkt;
}
FUNC_NORETURN static void eth_esp32_rx_thread(void *arg1, void *arg2, void *arg3)
{
const struct device *dev = arg1;
struct eth_esp32_dev_data *const dev_data = dev->data;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
while (true) {
k_sem_take(&dev_data->int_sem, K_FOREVER);
uint32_t frames_remaining;
do {
struct net_pkt *pkt = eth_esp32_rx(
dev_data, &frames_remaining);
if (pkt == NULL) {
break;
}
if (net_recv_data(dev_data->iface, pkt) < 0) {
/* Upper layers are not ready to receive packets */
net_pkt_unref(pkt);
}
} while (frames_remaining > 0);
}
}
IRAM_ATTR static void eth_esp32_isr(void *arg)
{
const struct device *dev = arg;
struct eth_esp32_dev_data *const dev_data = dev->data;
uint32_t intr_stat = emac_ll_get_intr_status(dev_data->hal.dma_regs);
emac_ll_clear_corresponding_intr(dev_data->hal.dma_regs, intr_stat);
if (intr_stat & EMAC_LL_DMA_RECEIVE_FINISH_INTR) {
k_sem_give(&dev_data->int_sem);
}
}
static int generate_mac_addr(uint8_t mac_addr[6])
{
int res = 0;
#if DT_INST_PROP(0, zephyr_random_mac_address)
gen_random_mac(mac_addr, 0x24, 0xD7, 0xEB);
#elif NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(0))
static const uint8_t addr[6] = DT_INST_PROP(0, local_mac_address);
memcpy(mac_addr, addr, sizeof(addr));
#else
if (esp_read_mac(mac_addr, ESP_MAC_ETH) != ESP_OK) {
res = -EIO;
}
#endif
return res;
}
static void phy_link_state_changed(const struct device *phy_dev,
struct phy_link_state *state,
void *user_data)
{
const struct device *dev = (const struct device *)user_data;
struct eth_esp32_dev_data *const dev_data = dev->data;
ARG_UNUSED(phy_dev);
if (state->is_up) {
net_eth_carrier_on(dev_data->iface);
} else {
net_eth_carrier_off(dev_data->iface);
}
}
int eth_esp32_initialize(const struct device *dev)
{
struct eth_esp32_dev_data *const dev_data = dev->data;
int res;
k_sem_init(&dev_data->int_sem, 0, 1);
const struct device *clock_dev =
DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_NODELABEL(eth)));
clock_control_subsys_t clock_subsys =
(clock_control_subsys_t)DT_CLOCKS_CELL(DT_NODELABEL(eth), offset);
res = clock_control_on(clock_dev, clock_subsys);
if (res != 0) {
goto err;
}
/* Convert 2D array DMA buffers to arrays of pointers */
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
dev_data->dma_rx_buf[i] = dev_data->dma->rx_buf[i];
}
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
dev_data->dma_tx_buf[i] = dev_data->dma->tx_buf[i];
}
emac_hal_init(&dev_data->hal, dev_data->dma->descriptors,
dev_data->dma_rx_buf, dev_data->dma_tx_buf);
/* Configure ISR */
res = esp_intr_alloc(DT_IRQN(DT_NODELABEL(eth)),
ESP_INTR_FLAG_IRAM,
eth_esp32_isr,
(void *)dev,
NULL);
if (res != 0) {
goto err;
}
/* Configure phy for Media-Independent Interface (MII) or
* Reduced Media-Independent Interface (RMII) mode
*/
const char *phy_connection_type = DT_INST_PROP_OR(0,
phy_connection_type,
"rmii");
if (strcmp(phy_connection_type, "rmii") == 0) {
emac_hal_iomux_init_rmii();
#if DT_INST_NODE_HAS_PROP(0, ref_clk_output_gpios)
BUILD_ASSERT(DT_INST_GPIO_PIN(0, ref_clk_output_gpios) == 16 ||
DT_INST_GPIO_PIN(0, ref_clk_output_gpios) == 17,
"Only GPIO16/17 are allowed as a GPIO REF_CLK source!");
int ref_clk_gpio = DT_INST_GPIO_PIN(0, ref_clk_output_gpios);
emac_hal_iomux_rmii_clk_output(ref_clk_gpio);
emac_ll_clock_enable_rmii_output(dev_data->hal.ext_regs);
rtc_clk_apll_enable(true, 0, 0, 6, 2);
#else
emac_hal_iomux_rmii_clk_input();
emac_ll_clock_enable_rmii_input(dev_data->hal.ext_regs);
#endif
} else if (strcmp(phy_connection_type, "mii") == 0) {
emac_hal_iomux_init_mii();
emac_ll_clock_enable_mii(dev_data->hal.ext_regs);
} else {
res = -EINVAL;
goto err;
}
/* Reset mac registers and wait until ready */
emac_ll_reset(dev_data->hal.dma_regs);
bool reset_success = false;
for (uint32_t t_ms = 0; t_ms < MAC_RESET_TIMEOUT_MS; t_ms += 10) {
/* Busy wait rather than sleep in case kernel is not yet initialized */
k_busy_wait(10 * 1000);
if (emac_ll_is_reset_done(dev_data->hal.dma_regs)) {
reset_success = true;
break;
}
}
if (!reset_success) {
res = -ETIMEDOUT;
goto err;
}
emac_hal_reset_desc_chain(&dev_data->hal);
emac_hal_init_mac_default(&dev_data->hal);
emac_hal_init_dma_default(&dev_data->hal);
res = generate_mac_addr(dev_data->mac_addr);
if (res != 0) {
goto err;
}
emac_hal_set_address(&dev_data->hal, dev_data->mac_addr);
k_tid_t tid = k_thread_create(
&dev_data->rx_thread, dev_data->rx_thread_stack,
K_KERNEL_STACK_SIZEOF(dev_data->rx_thread_stack),
eth_esp32_rx_thread,
(void *)dev, NULL, NULL,
CONFIG_ETH_ESP32_RX_THREAD_PRIORITY,
K_ESSENTIAL, K_NO_WAIT);
if (IS_ENABLED(CONFIG_THREAD_NAME)) {
k_thread_name_set(tid, "esp32_eth");
}
emac_hal_start(&dev_data->hal);
return 0;
err:
return res;
}
static void eth_esp32_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct eth_esp32_dev_data *dev_data = dev->data;
dev_data->iface = iface;
net_if_set_link_addr(iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
ethernet_init(iface);
if (device_is_ready(eth_esp32_phy_dev)) {
phy_link_callback_set(eth_esp32_phy_dev, phy_link_state_changed,
(void *)dev);
} else {
LOG_ERR("PHY device not ready");
}
/* Do not start the interface until PHY link is up */
net_if_carrier_off(iface);
}
static const struct ethernet_api eth_esp32_api = {
.iface_api.init = eth_esp32_iface_init,
.get_capabilities = eth_esp32_caps,
.set_config = eth_esp32_set_config,
.send = eth_esp32_send,
};
/* DMA data must be in DRAM */
static struct eth_esp32_dma_data eth_esp32_dma_data WORD_ALIGNED_ATTR DRAM_ATTR;
static struct eth_esp32_dev_data eth_esp32_dev = {
.dma = &eth_esp32_dma_data,
};
ETH_NET_DEVICE_DT_INST_DEFINE(0,
eth_esp32_initialize,
NULL,
&eth_esp32_dev,
NULL,
CONFIG_ETH_INIT_PRIORITY,
&eth_esp32_api,
NET_ETH_MTU);