zephyr/drivers/ethernet/phy_cyclonev.c
Benjamin Kyd f3a610fffe drivers: ethernet: cvsx change bit label
Change the bit label to include the BIT() macro to tidy up the code.

Signed-off-by: Benjamin Kyd <benjamin.kyd@intel.com>
2023-01-24 17:46:17 -06:00

379 lines
10 KiB
C

#ifndef PHY_CYCLONEV_SRC
#define PHY_CYCLONEV_SRC
/*
* SPDX-License-Identifier: Apache-2.0
* Copyright (C) 2022, Intel Corporation
* Description:
* Driver for the PHY KSZ9021RL/RN Datasheet:(https://ww1.microchip.com/
* downloads/en/DeviceDoc/KSZ9021RL-RN-Data-Sheet-DS00003050A.pdf)
* specifically designed for Cyclone V SoC DevKit use only.
*/
/* PHY */
/* According to default Cyclone V DevKit Bootstrap Encoding Scheme */
#include "eth_cyclonev_priv.h"
#include <stdio.h>
#include <zephyr/kernel.h>
#include <sys/types.h>
#define PHY_ADDR (4)
/* PHY_Read_write_Timeouts */
#define PHY_READ_TO ((uint32_t)0x0004FFFF)
#define PHY_WRITE_TO ((uint32_t)0x0004FFFF)
/* Speed and Duplex mask values */
#define PHY_SPEED_100 (0x0020)
#define PHY_SPEED_1000 (0x0040)
#define PHY_CLK_AND_CONTROL_PAD_SKEW_VALUE 0xa0d0
#define PHY_RX_DATA_PAD_SKEW_VALUE 0x0000
/* Write/read to/from extended registers */
#define MII_KSZPHY_EXTREG 0x0b
#define KSZPHY_EXTREG_WRITE 0x8000
#define MII_KSZPHY_EXTREG_WRITE 0x0c
#define MII_KSZPHY_EXTREG_READ 0x0d
/* PHY Regs */
/* Basic Control Register */
#define PHY_BCR (0)
#define PHY_RESET BIT(15) /* Do a PHY reset */
#define PHY_AUTONEGOTIATION BIT(12)
#define PHY_RESTART_AUTONEGOTIATION BIT(9)
/* Basic Status Register */
#define PHY_BSR BIT(0)
#define PHY_AUTOCAP BIT(3) /* Auto-negotiation capability */
#define PHY_LINKED_STATUS BIT(2)
#define PHY_AUTONEGO_COMPLETE BIT(5)
/* Auto-Negotiation Advertisement */
#define PHY_AUTON (4)
#define PHYANA_10BASET BIT(5)
#define PHYANA_10BASETFD BIT(6)
#define PHYANA_100BASETX BIT(7)
#define PHYANA_100BASETXFD BIT(8)
#define PHYSYMETRIC_PAUSE BIT(10)
#define PHYASYMETRIC_PAUSE BIT(11)
/* 1000Base-T Control */
#define PHY_1GCTL (9)
#define PHYADVERTISE_1000HALF BIT(8)
#define PHYADVERTISE_1000FULL BIT(9)
#define PHYINDICATE_PORTTYPE BIT(10)
#define PHYCONFIG_MASTER BIT(11)
#define PHYENABLE_MANUALCONFIG BIT(12)
/* PHY Control Register */
#define PHY_CR (31)
#define PHY_DUPLEX_STATUS BIT(3)
/* Extended registers */
#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
#define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
#define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
int alt_eth_phy_write_register(uint16_t emac_instance, uint16_t phy_reg,
uint16_t phy_value, struct eth_cyclonev_priv *p);
int alt_eth_phy_read_register(uint16_t emac_instance, uint16_t phy_reg,
uint16_t *rdval, struct eth_cyclonev_priv *p);
int alt_eth_phy_write_register_extended(uint16_t emac_instance, uint16_t phy_reg,
uint16_t phy_value, struct eth_cyclonev_priv *p);
int alt_eth_phy_read_register_extended(uint16_t emac_instance, uint16_t phy_reg,
uint16_t *rdval, struct eth_cyclonev_priv *p);
int alt_eth_phy_config(uint16_t instance, struct eth_cyclonev_priv *p);
int alt_eth_phy_reset(uint16_t instance, struct eth_cyclonev_priv *p);
int alt_eth_phy_get_duplex_and_speed(uint16_t *phy_duplex_status, uint16_t *phy_speed,
uint16_t instance, struct eth_cyclonev_priv *p);
int alt_eth_phy_write_register(uint16_t emac_instance, uint16_t phy_reg,
uint16_t phy_value, struct eth_cyclonev_priv *p)
{
uint16_t tmpreg = 0;
volatile uint32_t timeout = 0;
uint16_t phy_addr;
if (emac_instance > 1) {
return -1;
}
phy_addr = PHY_ADDR;
/* Prepare the MII address register value */
tmpreg = 0;
/* Set the PHY device address */
tmpreg |= EMAC_GMAC_GMII_ADDR_PA_SET(phy_addr);
/* Set the PHY register address */
tmpreg |= EMAC_GMAC_GMII_ADDR_GR_SET(phy_reg);
/* Set the write mode */
tmpreg |= EMAC_GMAC_GMII_ADDR_GW_SET_MSK;
/* Set the clock divider */
tmpreg |= EMAC_GMAC_GMII_ADDR_CR_SET(EMAC_GMAC_GMII_ADDR_CR_E_DIV102);
/* Set the MII Busy bit */
tmpreg |= EMAC_GMAC_GMII_ADDR_GB_SET(EMAC_GMAC_GMII_ADDR_GB_SET_MSK);
/* Give the value to the MII data register */
sys_write32(phy_value & 0xffff, EMAC_GMAC_GMII_DATA_ADDR(p->base_addr));
/* Write the result value into the MII Address register */
sys_write32(tmpreg & 0xffff, EMAC_GMAC_GMII_ADDR_ADDR(p->base_addr));
/* Check the Busy flag */
do {
timeout++;
tmpreg = sys_read32(EMAC_GMAC_GMII_ADDR_ADDR(p->base_addr));
} while ((tmpreg & EMAC_GMAC_GMII_ADDR_GB_SET_MSK) && (timeout < PHY_WRITE_TO));
/* Return ERROR in case of timeout */
if (timeout == PHY_WRITE_TO) {
return -1;
}
/* Return SUCCESS */
return 0;
}
int alt_eth_phy_read_register(uint16_t emac_instance, uint16_t phy_reg, uint16_t *rdval,
struct eth_cyclonev_priv *p)
{
uint16_t tmpreg = 0;
volatile uint32_t timeout = 0;
uint16_t phy_addr;
if (emac_instance > 1) {
return -1;
}
phy_addr = PHY_ADDR;
/* Prepare the MII address register value */
tmpreg = 0;
/* Set the PHY device address */
tmpreg |= EMAC_GMAC_GMII_ADDR_PA_SET(phy_addr);
/* Set the PHY register address */
tmpreg |= EMAC_GMAC_GMII_ADDR_GR_SET(phy_reg);
/* Set the read mode */
tmpreg &= EMAC_GMAC_GMII_ADDR_GW_CLR_MSK;
/* Set the clock divider */
tmpreg |= EMAC_GMAC_GMII_ADDR_CR_SET(EMAC_GMAC_GMII_ADDR_CR_E_DIV102);
/* Set the MII Busy bit */
tmpreg |= EMAC_GMAC_GMII_ADDR_GB_SET(EMAC_GMAC_GMII_ADDR_GB_SET_MSK);
/* Write the result value into the MII Address register */
sys_write32(tmpreg & 0xffff, EMAC_GMAC_GMII_ADDR_ADDR(p->base_addr));
/* Check the Busy flag */
do {
timeout++;
tmpreg = sys_read32(EMAC_GMAC_GMII_ADDR_ADDR(p->base_addr));
} while ((tmpreg & EMAC_GMAC_GMII_ADDR_GB_SET_MSK) && (timeout < PHY_READ_TO));
/* Return ERROR in case of timeout */
if (timeout == PHY_READ_TO) {
return -1;
}
/* Return data register value */
*rdval = sys_read32(EMAC_GMAC_GMII_DATA_ADDR(p->base_addr));
return 0;
}
int alt_eth_phy_write_register_extended(uint16_t emac_instance, uint16_t phy_reg,
uint16_t phy_value, struct eth_cyclonev_priv *p)
{
int rc;
rc = alt_eth_phy_write_register(emac_instance, MII_KSZPHY_EXTREG,
KSZPHY_EXTREG_WRITE | phy_reg, p);
if (rc == -1) {
return rc;
}
rc = alt_eth_phy_write_register(emac_instance, MII_KSZPHY_EXTREG_WRITE, phy_value, p);
return rc;
}
int alt_eth_phy_read_register_extended(uint16_t emac_instance, uint16_t phy_reg, uint16_t *rdval,
struct eth_cyclonev_priv *p)
{
int rc;
rc = alt_eth_phy_write_register(emac_instance, MII_KSZPHY_EXTREG, phy_reg, p);
if (rc == -1) {
return rc;
}
k_sleep(K_MSEC(1));
rc = alt_eth_phy_read_register(emac_instance, MII_KSZPHY_EXTREG_READ, rdval, p);
return rc;
}
int alt_eth_phy_config(uint16_t instance, struct eth_cyclonev_priv *p)
{
int rc;
uint16_t rdval;
uint32_t timeout;
/*-------------------- Configure the PHY skew values ----------------*/
rc = alt_eth_phy_write_register_extended(instance, MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
PHY_CLK_AND_CONTROL_PAD_SKEW_VALUE, p);
if (rc == -1) {
return rc;
}
rc = alt_eth_phy_write_register_extended(instance, MII_KSZPHY_RX_DATA_PAD_SKEW,
PHY_RX_DATA_PAD_SKEW_VALUE, p);
if (rc == -1) {
return rc;
}
/* Implement Auto-negotiation Process */
/* Check PHY Status if auto-negotiation is supported */
rc = alt_eth_phy_read_register(instance, PHY_BSR, &rdval, p);
if (((rdval & PHY_AUTOCAP) == 0) || (rc == -1)) {
return -1;
}
/* Set Advertise capabilities for 10Base-T/
*10Base-T full-duplex/100Base-T/100Base-T full-duplex
*/
rc = alt_eth_phy_read_register(instance, PHY_AUTON, &rdval, p);
if (rc == -1) {
return rc;
}
rdval |= (PHYANA_10BASET | PHYANA_10BASETFD | PHYANA_100BASETX | PHYANA_100BASETXFD |
PHYSYMETRIC_PAUSE);
rc = alt_eth_phy_write_register(instance, PHY_AUTON, rdval, p);
if (rc == -1) {
return rc;
}
/* Set Advertise capabilities for 1000 Base-T/1000 Base-T full-duplex */
rc = alt_eth_phy_write_register(instance, PHY_1GCTL,
PHYADVERTISE_1000FULL | PHYADVERTISE_1000HALF |
PHYINDICATE_PORTTYPE | PHYCONFIG_MASTER | PHYENABLE_MANUALCONFIG
, p);
if (rc == -1) {
return rc;
}
/* Wait for linked status... */
timeout = 0;
do {
timeout++;
rc = alt_eth_phy_read_register(instance, PHY_BSR, &rdval, p);
} while (!(rdval & PHY_LINKED_STATUS) && (timeout < PHY_READ_TO) && (rc == 0));
/* Return ERROR in case of timeout */
if ((timeout == PHY_READ_TO) || (rc == -1)) {
LOG_ERR("Error Link Down\n");
return -1;
}
LOG_INF("Link is up!");
/* Configure the PHY for AutoNegotiate */
rc = alt_eth_phy_read_register(instance, PHY_BCR, &rdval, p);
if (rc == -1) {
return rc;
}
rdval |= PHY_AUTONEGOTIATION;
rdval |= PHY_RESTART_AUTONEGOTIATION;
rc = alt_eth_phy_write_register(instance, PHY_BCR, rdval, p);
if (rc == -1) {
return rc;
}
/* Wait until the auto-negotiation is completed */
timeout = 0;
do {
timeout++;
rc = alt_eth_phy_read_register(instance, PHY_BSR, &rdval, p);
} while (!(rdval & PHY_AUTONEGO_COMPLETE) && (timeout < PHY_READ_TO) && (rc == 0));
/* Return ERROR in case of timeout */
if ((timeout == PHY_READ_TO) || (rc == -1)) {
alt_eth_phy_read_register(instance, PHY_BSR, &rdval, p);
LOG_ERR("Auto Negotiation: Status reg = 0x%x\n", rdval);
return -1;
}
LOG_INF("Auto Negotiation Complete!");
return rc;
};
int alt_eth_phy_reset(uint16_t instance, struct eth_cyclonev_priv *p)
{
int i;
int rc;
uint16_t rdval;
/* Put the PHY in reset mode */
if ((alt_eth_phy_write_register(instance, PHY_BCR, PHY_RESET, p)) != 0) {
/* Return ERROR in case of write timeout */
return -1;
}
/* Wait for the reset to clear */
for (i = 0; i < 10; i++) {
k_sleep(K_MSEC(10));
rc = alt_eth_phy_read_register(instance, PHY_BCR, &rdval, p);
if (((rdval & PHY_RESET) == 0) || (rc == -1)) {
break;
}
}
if (i == 10) {
return -1;
}
/* Delay to assure PHY reset */
k_sleep(K_MSEC(10));
return rc;
};
int alt_eth_phy_get_duplex_and_speed(uint16_t *phy_duplex_status, uint16_t *phy_speed,
uint16_t instance, struct eth_cyclonev_priv *p)
{
LOG_DBG("PHY: func_alt_eth_phy_get_duplex_and_speed\n");
uint16_t regval = 0;
int rc;
rc = alt_eth_phy_read_register(instance, PHY_CR, &regval, p);
if (regval & PHY_DUPLEX_STATUS) {
*phy_duplex_status = 1;
} else {
*phy_duplex_status = 0;
}
if (regval & PHY_SPEED_100) {
*phy_speed = 100;
} else {
if (regval & PHY_SPEED_1000) {
*phy_speed = 1000;
} else {
*phy_speed = 10;
}
}
return rc;
}
#endif