zephyr/drivers/rtc/rtc_ll_stm32.c
Georgij Cernysiov bc4825d6bf drivers: rtc: stm32: correct tm_mon conversion
tm_mon valid interval [0,11]
LL_RTC_DateTypeDef.Month valid interval [1,12]

Signed-off-by: Georgij Cernysiov <g.cernysiov@elco-automation.de>
2019-05-27 09:16:30 -04:00

314 lines
7.1 KiB
C

/*
* Copyright (c) 2018 Workaround GmbH
* Copyright (c) 2018 Allterco Robotics
*
* SPDX-License-Identifier: Apache-2.0
*
* Source file for the STM32 RTC driver
*
*/
#include <time.h>
#include <clock_control/stm32_clock_control.h>
#include <clock_control.h>
#include <misc/util.h>
#include <kernel.h>
#include <soc.h>
#include <rtc.h>
#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define EXTI_LINE LL_EXTI_LINE_18
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \
|| defined(CONFIG_SOC_SERIES_STM32F3X) \
|| defined(CONFIG_SOC_SERIES_STM32F7X)
#define EXTI_LINE LL_EXTI_LINE_17
#endif
#define EPOCH_OFFSET 946684800
struct rtc_stm32_config {
struct stm32_pclken pclken;
LL_RTC_InitTypeDef ll_rtc_config;
};
struct rtc_stm32_data {
void (*cb_fn)(struct device *dev);
struct k_sem sem;
};
#define DEV_DATA(dev) ((struct rtc_stm32_data *const)(dev)->driver_data)
#define DEV_SEM(dev) (&DEV_DATA(dev)->sem)
#define DEV_CFG(dev) \
((const struct rtc_stm32_config * const)(dev)->config->config_info)
static int rtc_stm32_set_alarm(struct device *dev, const u32_t alarm_val);
static void rtc_stm32_irq_config(struct device *dev);
static void rtc_stm32_enable(struct device *dev)
{
LL_RCC_EnableRTC();
}
static void rtc_stm32_disable(struct device *dev)
{
LL_RCC_DisableRTC();
}
static u32_t rtc_stm32_read(struct device *dev)
{
struct tm now = { 0 };
time_t ts;
u32_t rtc_date, rtc_time;
/* Read time and date registers */
rtc_time = LL_RTC_TIME_Get(RTC);
rtc_date = LL_RTC_DATE_Get(RTC);
/* Convert calendar datetime to UNIX timestamp */
now.tm_year = 100 + __LL_RTC_CONVERT_BCD2BIN(
__LL_RTC_GET_YEAR(rtc_date));
/* tm_mon starts from 0 */
now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1;
now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date));
now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time));
now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time));
now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time));
ts = mktime(&now);
/* Return number of seconds since 2000-01-01 00:00:00 */
ts -= EPOCH_OFFSET;
return (u32_t)ts;
}
static int rtc_stm32_set_alarm(struct device *dev, const u32_t alarm_val)
{
struct tm alarm_tm;
time_t alarm_ts;
LL_RTC_AlarmTypeDef rtc_alarm;
u32_t now = rtc_stm32_read(dev);
/* The longest period we can match for universally is the
duration of the shortest month */
if ((alarm_val - now) > (RTC_ALARM_DAY * 28)) {
return -ENOTSUP;
}
/* Convert seconds since 2000-01-01 00:00:00 to calendar datetime */
alarm_ts = alarm_val;
alarm_ts += EPOCH_OFFSET;
gmtime_r(&alarm_ts, &alarm_tm);
/* Apply ALARM_A */
rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour;
rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min;
rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec;
rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE;
rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE;
rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday;
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_ALMA_Disable(RTC);
if (LL_RTC_ALMA_Init(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) {
return -EIO;
}
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_ALMA_Enable(RTC);
LL_RTC_ClearFlag_ALRA(RTC);
LL_RTC_EnableIT_ALRA(RTC);
LL_RTC_EnableWriteProtection(RTC);
return 0;
}
static int rtc_stm32_set_config(struct device *dev, struct rtc_config *cfg)
{
int result = 0;
time_t init_ts = 0;
struct tm init_tm = { 0 };
LL_RTC_DateTypeDef rtc_date = { 0 };
LL_RTC_TimeTypeDef rtc_time = { 0 };
/* Convert seconds since 2000-01-01 00:00:00 to calendar datetime */
init_ts = cfg->init_val;
init_ts += EPOCH_OFFSET;
gmtime_r(&init_ts, &init_tm);
rtc_date.Year = init_tm.tm_year % 100;
/* tm_mon starts from 0 */
rtc_date.Month = init_tm.tm_mon + 1;
rtc_date.Day = init_tm.tm_mday;
rtc_date.WeekDay = init_tm.tm_wday + 1;
rtc_time.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
rtc_time.Hours = init_tm.tm_hour;
rtc_time.Minutes = init_tm.tm_min;
rtc_time.Seconds = init_tm.tm_sec;
k_sem_take(DEV_SEM(dev), K_FOREVER);
if (cfg->cb_fn != NULL) {
DEV_DATA(dev)->cb_fn = cfg->cb_fn;
}
if (LL_RTC_DATE_Init(RTC, LL_RTC_FORMAT_BIN, &rtc_date) != SUCCESS) {
result = -EIO;
goto fin;
}
if (LL_RTC_TIME_Init(RTC, LL_RTC_FORMAT_BIN, &rtc_time) != SUCCESS) {
result = -EIO;
goto fin;
}
if (cfg->alarm_enable) {
rtc_stm32_set_alarm(dev, cfg->alarm_val);
}
fin:
k_sem_give(DEV_SEM(dev));
return result;
}
static u32_t rtc_stm32_get_pending_int(struct device *dev)
{
return LL_RTC_IsActiveFlag_ALRA(RTC) != 0;
}
void rtc_stm32_isr(void *arg)
{
struct device *const dev = (struct device *)arg;
if (LL_RTC_IsActiveFlag_ALRA(RTC) != 0) {
if (DEV_DATA(dev)->cb_fn != NULL) {
DEV_DATA(dev)->cb_fn(dev);
}
LL_RTC_ClearFlag_ALRA(RTC);
LL_RTC_DisableIT_ALRA(RTC);
}
LL_EXTI_ClearFlag_0_31(EXTI_LINE);
}
static int rtc_stm32_init(struct device *dev)
{
struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME);
const struct rtc_stm32_config *cfg = DEV_CFG(dev);
__ASSERT_NO_MSG(clk);
k_sem_init(DEV_SEM(dev), 1, UINT_MAX);
DEV_DATA(dev)->cb_fn = NULL;
if (clock_control_on(clk,
(clock_control_subsys_t *) &cfg->pclken) != 0) {
return -EIO;
}
LL_PWR_EnableBkUpAccess();
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
#if defined(CONFIG_RTC_STM32_CLOCK_LSI)
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1)
;
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSI);
#else /* CONFIG_RTC_STM32_CLOCK_LSE */
LL_RCC_LSE_SetDriveCapability(CONFIG_RTC_STM32_LSE_DRIVE_STRENGTH);
LL_RCC_LSE_Enable();
/* Wait untill LSE is ready */
while (LL_RCC_LSE_IsReady() != 1)
;
LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSE);
#endif
LL_RCC_EnableRTC();
if (LL_RTC_DeInit(RTC) != SUCCESS) {
return -EIO;
}
if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *)
&cfg->ll_rtc_config)) != SUCCESS) {
return -EIO;
}
LL_RTC_EnableShadowRegBypass(RTC);
LL_EXTI_EnableIT_0_31(EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(EXTI_LINE);
rtc_stm32_irq_config(dev);
return 0;
}
static struct rtc_stm32_data rtc_data;
static const struct rtc_stm32_config rtc_config = {
.pclken = {
.enr = LL_APB1_GRP1_PERIPH_PWR,
.bus = STM32_CLOCK_BUS_APB1,
},
.ll_rtc_config = {
.HourFormat = LL_RTC_HOURFORMAT_24HOUR,
#if defined(CONFIG_RTC_STM32_CLOCK_LSI)
/* prescaler values for LSI @ 32 KHz */
.AsynchPrescaler = 0x7F,
.SynchPrescaler = 0x00F9,
#else /* CONFIG_RTC_STM32_CLOCK_LSE */
/* prescaler values for LSE @ 32768 Hz */
.AsynchPrescaler = 0x7F,
.SynchPrescaler = 0x00FF,
#endif
},
};
static const struct rtc_driver_api rtc_api = {
.enable = rtc_stm32_enable,
.disable = rtc_stm32_disable,
.read = rtc_stm32_read,
.set_config = rtc_stm32_set_config,
.set_alarm = rtc_stm32_set_alarm,
.get_pending_int = rtc_stm32_get_pending_int,
};
DEVICE_AND_API_INIT(rtc_stm32, CONFIG_RTC_0_NAME, &rtc_stm32_init,
&rtc_data, &rtc_config, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &rtc_api);
static void rtc_stm32_irq_config(struct device *dev)
{
IRQ_CONNECT(DT_RTC_0_IRQ, DT_RTC_0_IRQ_PRI,
rtc_stm32_isr, DEVICE_GET(rtc_stm32), 0);
irq_enable(DT_RTC_0_IRQ);
}