zephyr/drivers/ieee802154/ieee802154_cc2520.c
Benedikt Schmidt 9eb993c063 drivers: ieee802154: fix thread function signatures
Fix thread function signatures to avoid stack corruption on thread exit.

Signed-off-by: Benedikt Schmidt <benedikt.schmidt@embedded-solutions.at>
2023-10-30 12:24:34 +01:00

1415 lines
31 KiB
C

/* ieee802154_cc2520.c - TI CC2520 driver */
#define DT_DRV_COMPAT ti_cc2520
/*
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME ieee802154_cc2520
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/debug/stack.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/random/random.h>
#include <zephyr/drivers/gpio.h>
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
#include <zephyr/crypto/crypto.h>
#include <zephyr/crypto/cipher.h>
#endif /* CONFIG_IEEE802154_CC2520_CRYPTO */
#include <zephyr/net/ieee802154_radio.h>
#include "ieee802154_cc2520.h"
/**
* Content is split as follows:
* 1 - Debug related functions
* 2 - Generic helper functions (for any parts)
* 3 - GPIO related functions
* 4 - TX related helper functions
* 5 - RX related helper functions
* 6 - Radio device API functions
* 7 - Legacy radio device API functions
* 8 - Initialization
*/
#define CC2520_AUTOMATISM (FRMCTRL0_AUTOCRC | FRMCTRL0_AUTOACK)
#define CC2520_TX_THRESHOLD (0x7F)
#define CC2520_FCS_LENGTH (2)
/*********
* DEBUG *
********/
#if LOG_LEVEL == LOG_LEVEL_DBG
static inline void cc2520_print_gpio_config(const struct device *dev)
{
struct cc2520_context *cc2520 = dev->data;
LOG_DBG("GPIOCTRL0/1/2/3/4/5 = 0x%x/0x%x/0x%x/0x%x/0x%x/0x%x",
read_reg_gpioctrl0(cc2520),
read_reg_gpioctrl1(cc2520),
read_reg_gpioctrl2(cc2520),
read_reg_gpioctrl3(cc2520),
read_reg_gpioctrl4(cc2520),
read_reg_gpioctrl5(cc2520));
LOG_DBG("GPIOPOLARITY: 0x%x",
read_reg_gpiopolarity(cc2520));
LOG_DBG("GPIOCTRL: 0x%x",
read_reg_gpioctrl(cc2520));
}
static inline void cc2520_print_exceptions(struct cc2520_context *cc2520)
{
uint8_t flag = read_reg_excflag0(cc2520);
LOG_DBG("EXCFLAG0:");
if (flag & EXCFLAG0_RF_IDLE) {
LOG_DBG(" RF_IDLE");
}
if (flag & EXCFLAG0_TX_FRM_DONE) {
LOG_DBG(" TX_FRM_DONE");
}
if (flag & EXCFLAG0_TX_ACK_DONE) {
LOG_DBG(" TX_ACK_DONE");
}
if (flag & EXCFLAG0_TX_UNDERFLOW) {
LOG_DBG(" TX_UNDERFLOW");
}
if (flag & EXCFLAG0_TX_OVERFLOW) {
LOG_DBG(" TX_OVERFLOW");
}
if (flag & EXCFLAG0_RX_UNDERFLOW) {
LOG_DBG(" RX_UNDERFLOW");
}
if (flag & EXCFLAG0_RX_OVERFLOW) {
LOG_DBG(" RX_OVERFLOW");
}
if (flag & EXCFLAG0_RXENABLE_ZERO) {
LOG_DBG(" RXENABLE_ZERO");
}
flag = read_reg_excflag1(cc2520);
LOG_DBG("EXCFLAG1:");
if (flag & EXCFLAG1_RX_FRM_DONE) {
LOG_DBG(" RX_FRM_DONE");
}
if (flag & EXCFLAG1_RX_FRM_ACCEPTED) {
LOG_DBG(" RX_FRM_ACCEPTED");
}
if (flag & EXCFLAG1_SRC_MATCH_DONE) {
LOG_DBG(" SRC_MATCH_DONE");
}
if (flag & EXCFLAG1_SRC_MATCH_FOUND) {
LOG_DBG(" SRC_MATCH_FOUND");
}
if (flag & EXCFLAG1_FIFOP) {
LOG_DBG(" FIFOP");
}
if (flag & EXCFLAG1_SFD) {
LOG_DBG(" SFD");
}
if (flag & EXCFLAG1_DPU_DONE_L) {
LOG_DBG(" DPU_DONE_L");
}
if (flag & EXCFLAG1_DPU_DONE_H) {
LOG_DBG(" DPU_DONE_H");
}
}
static inline void cc2520_print_errors(struct cc2520_context *cc2520)
{
uint8_t flag = read_reg_excflag2(cc2520);
LOG_DBG("EXCFLAG2:");
if (flag & EXCFLAG2_MEMADDR_ERROR) {
LOG_DBG(" MEMADDR_ERROR");
}
if (flag & EXCFLAG2_USAGE_ERROR) {
LOG_DBG(" USAGE_ERROR");
}
if (flag & EXCFLAG2_OPERAND_ERROR) {
LOG_DBG(" OPERAND_ERROR");
}
if (flag & EXCFLAG2_SPI_ERROR) {
LOG_DBG(" SPI_ERROR");
}
if (flag & EXCFLAG2_RF_NO_LOCK) {
LOG_DBG(" RF_NO_LOCK");
}
if (flag & EXCFLAG2_RX_FRM_ABORTED) {
LOG_DBG(" RX_FRM_ABORTED");
}
if (flag & EXCFLAG2_RFBUFMOV_TIMEOUT) {
LOG_DBG(" RFBUFMOV_TIMEOUT");
}
}
#else
#define cc2520_print_gpio_config(...)
#define cc2520_print_exceptions(...)
#define cc2520_print_errors(...)
#endif /* LOG_LEVEL == LOG_LEVEL_DBG */
/*********************
* Generic functions *
********************/
#define z_usleep(usec) k_busy_wait(usec)
bool z_cc2520_access(const struct device *dev, bool read, uint8_t ins,
uint16_t addr, void *data, size_t length)
{
const struct cc2520_config *cfg = dev->config;
uint8_t cmd_buf[2];
struct spi_buf buf[2] = {
{
.buf = cmd_buf,
.len = 1,
},
{
.buf = data,
.len = length,
}
};
struct spi_buf_set tx = {
.buffers = buf,
};
cmd_buf[0] = ins;
if (ins == CC2520_INS_MEMRD || ins == CC2520_INS_MEMWR) {
buf[0].len = 2;
cmd_buf[0] |= (uint8_t)(addr >> 8);
cmd_buf[1] = (uint8_t)(addr & 0xff);
} else if (ins == CC2520_INS_REGRD || ins == CC2520_INS_REGWR) {
cmd_buf[0] |= (uint8_t)(addr & 0xff);
}
if (read) {
const struct spi_buf_set rx = {
.buffers = buf,
.count = 2
};
tx.count = 1;
return (spi_transceive_dt(&cfg->bus, &tx, &rx) == 0);
}
tx.count = data ? 2 : 1;
return (spi_write_dt(&cfg->bus, &tx) == 0);
}
static inline uint8_t cc2520_status(const struct device *dev)
{
uint8_t status;
if (z_cc2520_access(dev, true, CC2520_INS_SNOP, 0, &status, 1)) {
return status;
}
return 0;
}
static bool verify_osc_stabilization(const struct device *dev)
{
uint8_t timeout = 100U;
uint8_t status;
do {
status = cc2520_status(dev);
z_usleep(1);
timeout--;
} while (!(status & CC2520_STATUS_XOSC_STABLE_N_RUNNING) && timeout);
return !!(status & CC2520_STATUS_XOSC_STABLE_N_RUNNING);
}
static inline uint8_t *get_mac(const struct device *dev)
{
struct cc2520_context *cc2520 = dev->data;
#if defined(CONFIG_IEEE802154_CC2520_RANDOM_MAC)
uint32_t *ptr = (uint32_t *)(cc2520->mac_addr + 4);
UNALIGNED_PUT(sys_rand32_get(), ptr);
cc2520->mac_addr[7] = (cc2520->mac_addr[7] & ~0x01) | 0x02;
#else
cc2520->mac_addr[4] = CONFIG_IEEE802154_CC2520_MAC4;
cc2520->mac_addr[5] = CONFIG_IEEE802154_CC2520_MAC5;
cc2520->mac_addr[6] = CONFIG_IEEE802154_CC2520_MAC6;
cc2520->mac_addr[7] = CONFIG_IEEE802154_CC2520_MAC7;
#endif
cc2520->mac_addr[0] = 0x00;
cc2520->mac_addr[1] = 0x12;
cc2520->mac_addr[2] = 0x4b;
cc2520->mac_addr[3] = 0x00;
return cc2520->mac_addr;
}
static int cc2520_set_pan_id(const struct device *dev, uint16_t pan_id)
{
LOG_DBG("0x%x", pan_id);
pan_id = sys_le16_to_cpu(pan_id);
if (!write_mem_pan_id(dev, (uint8_t *) &pan_id)) {
LOG_ERR("Failed");
return -EIO;
}
return 0;
}
static int cc2520_set_short_addr(const struct device *dev,
uint16_t short_addr)
{
LOG_DBG("0x%x", short_addr);
short_addr = sys_le16_to_cpu(short_addr);
if (!write_mem_short_addr(dev, (uint8_t *) &short_addr)) {
LOG_ERR("Failed");
return -EIO;
}
return 0;
}
static int cc2520_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
if (!write_mem_ext_addr(dev, (void *)ieee_addr)) {
LOG_ERR("Failed");
return -EIO;
}
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
return 0;
}
/******************
* GPIO functions *
*****************/
static inline void set_reset(const struct device *dev, uint32_t value)
{
const struct cc2520_config *cfg = dev->config;
gpio_pin_set_raw(cfg->reset.port, cfg->reset.pin, value);
}
static inline void set_vreg_en(const struct device *dev, uint32_t value)
{
const struct cc2520_config *cfg = dev->config;
gpio_pin_set_raw(cfg->vreg_en.port, cfg->vreg_en.pin, value);
}
static inline uint32_t get_fifo(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
return gpio_pin_get_raw(cfg->fifo.port, cfg->fifo.pin);
}
static inline uint32_t get_fifop(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
return gpio_pin_get_raw(cfg->fifop.port, cfg->fifop.pin);
}
static inline uint32_t get_cca(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
return gpio_pin_get_raw(cfg->cca.port, cfg->cca.pin);
}
static inline void sfd_int_handler(const struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct cc2520_context *cc2520 =
CONTAINER_OF(cb, struct cc2520_context, sfd_cb);
if (atomic_get(&cc2520->tx) == 1) {
atomic_set(&cc2520->tx, 0);
k_sem_give(&cc2520->tx_sync);
}
}
static inline void fifop_int_handler(const struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct cc2520_context *cc2520 =
CONTAINER_OF(cb, struct cc2520_context, fifop_cb);
/* Note: Errata document - 1.2 */
if (!get_fifop(cc2520->dev) && !get_fifop(cc2520->dev)) {
return;
}
if (!get_fifo(cc2520->dev)) {
cc2520->overflow = true;
}
k_sem_give(&cc2520->rx_lock);
}
static void enable_fifop_interrupt(const struct device *dev,
bool enable)
{
const struct cc2520_config *cfg = dev->config;
gpio_flags_t mode = enable ? GPIO_INT_EDGE_TO_ACTIVE : GPIO_INT_DISABLE;
gpio_pin_interrupt_configure_dt(&cfg->fifop, mode);
}
static void enable_sfd_interrupt(const struct device *dev,
bool enable)
{
const struct cc2520_config *cfg = dev->config;
gpio_flags_t mode = enable ? GPIO_INT_EDGE_TO_ACTIVE : GPIO_INT_DISABLE;
gpio_pin_interrupt_configure_dt(&cfg->sfd, mode);
}
static inline int setup_gpio_callbacks(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
struct cc2520_context *cc2520 = dev->data;
gpio_init_callback(&cc2520->sfd_cb, sfd_int_handler, BIT(cfg->sfd.pin));
if (gpio_add_callback(cfg->sfd.port, &cc2520->sfd_cb) != 0) {
return -EIO;
}
gpio_init_callback(&cc2520->fifop_cb, fifop_int_handler, BIT(cfg->fifop.pin));
if (gpio_add_callback(cfg->fifop.port, &cc2520->fifop_cb) != 0) {
return -EIO;
}
return 0;
}
/****************
* TX functions *
***************/
static inline bool write_txfifo_length(const struct device *dev, uint8_t len)
{
uint8_t length = len + CC2520_FCS_LENGTH;
return z_cc2520_access(dev, false, CC2520_INS_TXBUF, 0, &length, 1);
}
static inline bool write_txfifo_content(const struct device *dev,
uint8_t *frame, uint8_t len)
{
return z_cc2520_access(dev, false, CC2520_INS_TXBUF, 0, frame, len);
}
static inline bool verify_txfifo_status(const struct device *dev,
uint8_t len)
{
if (read_reg_txfifocnt(dev) < len ||
(read_reg_excflag0(dev) & EXCFLAG0_TX_UNDERFLOW)) {
return false;
}
return true;
}
static inline bool verify_tx_done(const struct device *dev)
{
uint8_t timeout = 10U;
uint8_t status;
do {
z_usleep(1);
timeout--;
status = read_reg_excflag0(dev);
} while (!(status & EXCFLAG0_TX_FRM_DONE) && timeout);
return !!(status & EXCFLAG0_TX_FRM_DONE);
}
/****************
* RX functions *
***************/
static inline void flush_rxfifo(const struct device *dev)
{
/* Note: Errata document - 1.1 */
enable_fifop_interrupt(dev, false);
instruct_sflushrx(dev);
instruct_sflushrx(dev);
enable_fifop_interrupt(dev, true);
write_reg_excflag0(dev, EXCFLAG0_RESET_RX_FLAGS);
}
static inline uint8_t read_rxfifo_length(const struct device *dev)
{
uint8_t len;
if (z_cc2520_access(dev, true, CC2520_INS_RXBUF, 0, &len, 1)) {
return len;
}
return 0;
}
static inline bool read_rxfifo_content(const struct device *dev,
struct net_buf *buf, uint8_t len)
{
if (!z_cc2520_access(dev, true, CC2520_INS_RXBUF, 0, buf->data, len)) {
return false;
}
if (read_reg_excflag0(dev) & EXCFLAG0_RX_UNDERFLOW) {
LOG_ERR("RX underflow!");
return false;
}
net_buf_add(buf, len);
return true;
}
static inline void insert_radio_noise_details(struct net_pkt *pkt, uint8_t *status)
{
uint8_t lqi;
net_pkt_set_ieee802154_rssi_dbm(pkt, (int8_t) status[0]);
/**
* CC2520 does not provide an LQI but a correlation factor.
* See Section 20.6
* Such calculation can be loosely used to transform it to lqi:
* corr <= 50 ? lqi = 0
* or:
* corr >= 110 ? lqi = 255
* else:
* lqi = (lqi - 50) * 4
*/
lqi = status[1] & CC2520_FCS_CORRELATION;
if (lqi <= 50U) {
lqi = 0U;
} else if (lqi >= 110U) {
lqi = 255U;
} else {
lqi = (lqi - 50U) << 2;
}
net_pkt_set_ieee802154_lqi(pkt, lqi);
}
static inline bool verify_crc(const struct device *dev, struct net_pkt *pkt)
{
uint8_t status[2];
if (!z_cc2520_access(dev, true, CC2520_INS_RXBUF, 0, &status, 2)) {
return false;
}
if (!(status[1] & CC2520_FCS_CRC_OK)) {
return false;
}
insert_radio_noise_details(pkt, status);
return true;
}
static inline bool verify_rxfifo_validity(const struct device *dev,
uint8_t pkt_len)
{
if (pkt_len < 2 || read_reg_rxfifocnt(dev) != pkt_len) {
return false;
}
return true;
}
static void cc2520_rx(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
const struct device *dev = p1;
struct cc2520_context *cc2520 = dev->data;
struct net_pkt *pkt;
uint8_t pkt_len;
while (1) {
pkt = NULL;
k_sem_take(&cc2520->rx_lock, K_FOREVER);
if (cc2520->overflow) {
LOG_ERR("RX overflow!");
cc2520->overflow = false;
goto flush;
}
pkt_len = read_rxfifo_length(dev) & 0x7f;
if (!verify_rxfifo_validity(dev, pkt_len)) {
LOG_ERR("Invalid content");
goto flush;
}
pkt = net_pkt_rx_alloc_with_buffer(cc2520->iface, pkt_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
LOG_ERR("No pkt available");
goto flush;
}
if (!IS_ENABLED(CONFIG_IEEE802154_RAW_MODE)) {
pkt_len -= 2U;
}
if (!read_rxfifo_content(dev, pkt->buffer, pkt_len)) {
LOG_ERR("No content read");
goto flush;
}
if (!verify_crc(dev, pkt)) {
LOG_ERR("Bad packet CRC");
goto out;
}
if (ieee802154_handle_ack(cc2520->iface, pkt) == NET_OK) {
LOG_DBG("ACK packet handled");
goto out;
}
LOG_DBG("Caught a packet (%u)", pkt_len);
if (net_recv_data(cc2520->iface, pkt) < 0) {
LOG_DBG("Packet dropped by NET stack");
goto out;
}
log_stack_usage(&cc2520->cc2520_rx_thread);
continue;
flush:
cc2520_print_exceptions(cc2520);
cc2520_print_errors(cc2520);
flush_rxfifo(dev);
out:
if (pkt) {
net_pkt_unref(pkt);
}
}
}
/********************
* Radio device API *
*******************/
static enum ieee802154_hw_caps cc2520_get_capabilities(const struct device *dev)
{
/* TODO: Add support for IEEE802154_HW_PROMISC */
return IEEE802154_HW_FCS | IEEE802154_HW_FILTER |
IEEE802154_HW_RX_TX_ACK;
}
static int cc2520_cca(const struct device *dev)
{
if (!get_cca(dev)) {
LOG_WRN("Busy");
return -EBUSY;
}
return 0;
}
static int cc2520_set_channel(const struct device *dev, uint16_t channel)
{
LOG_DBG("%u", channel);
if (channel > 26) {
return -EINVAL;
}
if (channel < 11) {
return -ENOTSUP;
}
/* See chapter 16 */
channel = 11 + (channel - 11) * 5U;
if (!write_reg_freqctrl(dev, FREQCTRL_FREQ(channel))) {
LOG_ERR("Failed");
return -EIO;
}
return 0;
}
static int cc2520_filter(const struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return cc2520_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return cc2520_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return cc2520_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int cc2520_set_txpower(const struct device *dev, int16_t dbm)
{
uint8_t pwr;
LOG_DBG("%d", dbm);
/* See chapter 19 part 8 */
switch (dbm) {
case 5:
pwr = 0xF7;
break;
case 3:
pwr = 0xF2;
break;
case 2:
pwr = 0xAB;
break;
case 1:
pwr = 0x13;
break;
case 0:
pwr = 0x32;
break;
case -2:
pwr = 0x81;
break;
case -4:
pwr = 0x88;
break;
case -7:
pwr = 0x2C;
break;
case -18:
pwr = 0x03;
break;
default:
goto error;
}
if (!write_reg_txpower(dev, pwr)) {
goto error;
}
return 0;
error:
LOG_ERR("Failed");
return -EIO;
}
static int cc2520_tx(const struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
uint8_t *frame = frag->data;
uint8_t len = frag->len;
struct cc2520_context *cc2520 = dev->data;
uint8_t retry = 2U;
bool status;
if (mode != IEEE802154_TX_MODE_DIRECT) {
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
LOG_DBG("%p (%u)", frag, len);
if (!write_reg_excflag0(dev, EXCFLAG0_RESET_TX_FLAGS) ||
!write_txfifo_length(dev, len) ||
!write_txfifo_content(dev, frame, len)) {
LOG_ERR("Cannot feed in TX fifo");
goto error;
}
if (!verify_txfifo_status(dev, len)) {
LOG_ERR("Did not write properly into TX FIFO");
goto error;
}
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
k_sem_take(&cc2520->access_lock, K_FOREVER);
#endif
/* 1 retry is allowed here */
do {
atomic_set(&cc2520->tx, 1);
k_sem_init(&cc2520->tx_sync, 0, K_SEM_MAX_LIMIT);
if (!instruct_stxoncca(dev)) {
LOG_ERR("Cannot start transmission");
goto error;
}
/* TODO: Implement standard conforming CSMA/CA or use the soft MAC's default. */
k_sem_take(&cc2520->tx_sync, K_MSEC(10));
retry--;
status = verify_tx_done(dev);
} while (!status && retry);
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
k_sem_give(&cc2520->access_lock);
#endif
if (status) {
return 0;
}
error:
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
k_sem_give(&cc2520->access_lock);
#endif
LOG_ERR("No TX_FRM_DONE");
cc2520_print_exceptions(cc2520);
cc2520_print_errors(cc2520);
atomic_set(&cc2520->tx, 0);
instruct_sflushtx(dev);
return -EIO;
}
static int cc2520_start(const struct device *dev)
{
if (!instruct_sxoscon(dev) ||
!instruct_srxon(dev) ||
!verify_osc_stabilization(dev)) {
LOG_ERR("Error starting CC2520");
return -EIO;
}
flush_rxfifo(dev);
enable_fifop_interrupt(dev, true);
enable_sfd_interrupt(dev, true);
return 0;
}
static int cc2520_stop(const struct device *dev)
{
flush_rxfifo(dev);
enable_fifop_interrupt(dev, false);
enable_sfd_interrupt(dev, false);
if (!instruct_srfoff(dev) ||
!instruct_sxoscoff(dev)) {
LOG_ERR("Error stopping CC2520");
return -EIO;
}
return 0;
}
/* driver-allocated attribute memory - constant across all driver instances */
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26);
static int cc2520_attr_get(const struct device *dev, enum ieee802154_attr attr,
struct ieee802154_attr_value *value)
{
ARG_UNUSED(dev);
return ieee802154_attr_get_channel_page_and_range(
attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915,
&drv_attr.phy_supported_channels, value);
}
/******************
* Initialization *
*****************/
static int power_on_and_setup(const struct device *dev)
{
/* Switching to LPM2 mode */
set_reset(dev, 0);
z_usleep(150);
set_vreg_en(dev, 0);
z_usleep(250);
/* Then to ACTIVE mode */
set_vreg_en(dev, 1);
z_usleep(250);
set_reset(dev, 1);
z_usleep(150);
if (!verify_osc_stabilization(dev)) {
return -EIO;
}
/* Default settings to always write (see chapter 28 part 1) */
if (!write_reg_txpower(dev, CC2520_TXPOWER_DEFAULT) ||
!write_reg_ccactrl0(dev, CC2520_CCACTRL0_DEFAULT) ||
!write_reg_mdmctrl0(dev, CC2520_MDMCTRL0_DEFAULT) ||
!write_reg_mdmctrl1(dev, CC2520_MDMCTRL1_DEFAULT) ||
!write_reg_rxctrl(dev, CC2520_RXCTRL_DEFAULT) ||
!write_reg_fsctrl(dev, CC2520_FSCTRL_DEFAULT) ||
!write_reg_fscal1(dev, CC2520_FSCAL1_DEFAULT) ||
!write_reg_agcctrl1(dev, CC2520_AGCCTRL1_DEFAULT) ||
!write_reg_adctest0(dev, CC2520_ADCTEST0_DEFAULT) ||
!write_reg_adctest1(dev, CC2520_ADCTEST1_DEFAULT) ||
!write_reg_adctest2(dev, CC2520_ADCTEST2_DEFAULT)) {
return -EIO;
}
/* EXTCLOCK0: Disabling external clock
* FRMCTRL0: AUTOACK and AUTOCRC enabled
* FRMCTRL1: SET_RXENMASK_ON_TX and IGNORE_TX_UNDERF
* FRMFILT0: Frame filtering (setting CC2520_FRAME_FILTERING)
* FIFOPCTRL: Set TX threshold (setting CC2520_TX_THRESHOLD)
*/
if (!write_reg_extclock(dev, 0) ||
!write_reg_frmctrl0(dev, CC2520_AUTOMATISM) ||
!write_reg_frmctrl1(dev, FRMCTRL1_IGNORE_TX_UNDERF |
FRMCTRL1_SET_RXENMASK_ON_TX) ||
!write_reg_frmfilt0(dev, FRMFILT0_FRAME_FILTER_EN |
FRMFILT0_MAX_FRAME_VERSION(3)) ||
!write_reg_frmfilt1(dev, FRMFILT1_ACCEPT_ALL) ||
!write_reg_srcmatch(dev, SRCMATCH_DEFAULTS) ||
!write_reg_fifopctrl(dev,
FIFOPCTRL_FIFOP_THR(CC2520_TX_THRESHOLD))) {
return -EIO;
}
/* Cleaning up TX fifo */
instruct_sflushtx(dev);
if (setup_gpio_callbacks(dev) != 0) {
return -EIO;
}
cc2520_print_gpio_config(dev);
return 0;
}
static int configure_gpios(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
if (!gpio_is_ready_dt(&cfg->vreg_en) ||
!gpio_is_ready_dt(&cfg->reset) ||
!gpio_is_ready_dt(&cfg->fifo) ||
!gpio_is_ready_dt(&cfg->cca) ||
!gpio_is_ready_dt(&cfg->sfd) ||
!gpio_is_ready_dt(&cfg->fifop)) {
return -ENODEV;
}
gpio_pin_configure_dt(&cfg->vreg_en, GPIO_OUTPUT_LOW);
gpio_pin_configure_dt(&cfg->reset, GPIO_OUTPUT_LOW);
gpio_pin_configure_dt(&cfg->fifo, GPIO_INPUT);
gpio_pin_configure_dt(&cfg->cca, GPIO_INPUT);
gpio_pin_configure_dt(&cfg->sfd, GPIO_INPUT);
gpio_pin_configure_dt(&cfg->fifop, GPIO_INPUT);
return 0;
}
static int cc2520_init(const struct device *dev)
{
const struct cc2520_config *cfg = dev->config;
struct cc2520_context *cc2520 = dev->data;
cc2520->dev = dev;
atomic_set(&cc2520->tx, 0);
k_sem_init(&cc2520->rx_lock, 0, K_SEM_MAX_LIMIT);
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
k_sem_init(&cc2520->access_lock, 1, 1);
#endif
if (configure_gpios(dev) != 0) {
LOG_ERR("Configuring GPIOS failed");
return -EIO;
}
if (!spi_is_ready_dt(&cfg->bus)) {
LOG_ERR("SPI bus %s not ready", cfg->bus.bus->name);
return -EIO;
}
LOG_DBG("GPIO and SPI configured");
if (power_on_and_setup(dev) != 0) {
LOG_ERR("Configuring CC2520 failed");
return -EIO;
}
k_thread_create(&cc2520->cc2520_rx_thread, cc2520->cc2520_rx_stack,
CONFIG_IEEE802154_CC2520_RX_STACK_SIZE,
cc2520_rx,
(void *)dev, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT);
k_thread_name_set(&cc2520->cc2520_rx_thread, "cc2520_rx");
LOG_INF("CC2520 initialized");
return 0;
}
static void cc2520_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct cc2520_context *cc2520 = dev->data;
uint8_t *mac = get_mac(dev);
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
cc2520->iface = iface;
ieee802154_init(iface);
}
static const struct cc2520_config cc2520_config = {
.bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
.vreg_en = GPIO_DT_SPEC_INST_GET(0, vreg_en_gpios),
.reset = GPIO_DT_SPEC_INST_GET(0, reset_gpios),
.fifo = GPIO_DT_SPEC_INST_GET(0, fifo_gpios),
.cca = GPIO_DT_SPEC_INST_GET(0, cca_gpios),
.sfd = GPIO_DT_SPEC_INST_GET(0, sfd_gpios),
.fifop = GPIO_DT_SPEC_INST_GET(0, fifop_gpios)
};
static struct cc2520_context cc2520_context_data;
static struct ieee802154_radio_api cc2520_radio_api = {
.iface_api.init = cc2520_iface_init,
.get_capabilities = cc2520_get_capabilities,
.cca = cc2520_cca,
.set_channel = cc2520_set_channel,
.filter = cc2520_filter,
.set_txpower = cc2520_set_txpower,
.start = cc2520_start,
.stop = cc2520_stop,
.tx = cc2520_tx,
.attr_get = cc2520_attr_get,
};
#if defined(CONFIG_IEEE802154_RAW_MODE)
DEVICE_DT_INST_DEFINE(0, cc2520_init, NULL, &cc2520_context_data, NULL,
POST_KERNEL, CONFIG_IEEE802154_CC2520_INIT_PRIO,
&cc2520_radio_api);
#else
NET_DEVICE_DT_INST_DEFINE(0, cc2520_init, NULL, &cc2520_context_data,
&cc2520_config, CONFIG_IEEE802154_CC2520_INIT_PRIO,
&cc2520_radio_api, IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);
#endif
#ifdef CONFIG_IEEE802154_CC2520_CRYPTO
static inline bool cc2520_read_ram(const struct device *dev, uint16_t addr,
uint8_t *data_buf, uint8_t len)
{
return z_cc2520_access(dev, true, CC2520_INS_MEMRD,
addr, data_buf, len);
}
static inline bool cc2520_write_ram(const struct device *dev, uint16_t addr,
uint8_t *data_buf, uint8_t len)
{
return z_cc2520_access(dev, false, CC2520_INS_MEMWR,
addr, data_buf, len);
}
static inline bool instruct_uccm_ccm(const struct device *dev,
bool uccm,
uint8_t key_addr,
uint8_t auth_crypt,
uint8_t nonce_addr,
uint16_t input_addr,
uint16_t output_addr,
uint8_t in_len,
uint8_t m)
{
const struct cc2520_config *cfg = dev->config;
struct cc2520_context *ctx = dev->data;
uint8_t cmd[9];
const struct spi_buf buf[1] = {
{
.buf = cmd,
.len = 9,
},
};
const struct spi_buf_set tx = {
.buffers = buf,
.count = 1
};
int ret;
LOG_DBG("%sCCM(P={01} K={%02x} C={%02x} N={%02x}"
" A={%03x} E={%03x} F{%02x} M={%02x})",
uccm ? "U" : "", key_addr, auth_crypt, nonce_addr,
input_addr, output_addr, in_len, m);
cmd[0] = uccm ? CC2520_INS_UCCM | 1 : CC2520_INS_CCM | 1;
cmd[1] = key_addr;
cmd[2] = (auth_crypt & 0x7f);
cmd[3] = nonce_addr;
cmd[4] = (uint8_t)(((input_addr & 0x0f00) >> 4) |
((output_addr & 0x0f00) >> 8));
cmd[5] = (uint8_t)(input_addr & 0x00ff);
cmd[6] = (uint8_t)(output_addr & 0x00ff);
cmd[7] = (in_len & 0x7f);
cmd[8] = (m & 0x03);
k_sem_take(&ctx->access_lock, K_FOREVER);
ret = spi_write_dt(&cfg->bus, &tx);
k_sem_give(&ctx->access_lock);
if (ret) {
LOG_ERR("%sCCM Failed", uccm ? "U" : "");
return false;
}
return true;
}
static inline void generate_nonce(uint8_t *ccm_nonce, uint8_t *nonce,
struct cipher_aead_pkt *apkt, uint8_t m)
{
nonce[0] = 0 | (apkt->ad_len ? 0x40 : 0) | (m << 3) | 1;
memcpy(&nonce[1], ccm_nonce, 13);
nonce[14] = (uint8_t)(apkt->pkt->in_len >> 8);
nonce[15] = (uint8_t)(apkt->pkt->in_len);
/* See section 26.8.1 */
sys_mem_swap(nonce, 16);
}
static int insert_crypto_parameters(struct cipher_ctx *ctx,
struct cipher_aead_pkt *apkt,
uint8_t *ccm_nonce, uint8_t *auth_crypt)
{
const struct device *cc2520 = ctx->device;
uint8_t data[128];
uint8_t *in_buf;
uint8_t in_len;
uint8_t m = 0U;
if (!apkt->pkt->out_buf || !apkt->pkt->out_buf_max) {
LOG_ERR("Out buffer needs to be set");
return -EINVAL;
}
if (!ctx->key.bit_stream || !ctx->keylen) {
LOG_ERR("No key installed");
return -EINVAL;
}
if (!(ctx->flags & CAP_INPLACE_OPS)) {
LOG_ERR("It supports only in-place operation");
return -EINVAL;
}
if (!apkt->ad || !apkt->ad_len) {
LOG_ERR("CCM needs associated data");
return -EINVAL;
}
if (apkt->pkt->in_buf && apkt->pkt->in_buf - apkt->ad_len != apkt->ad) {
LOG_ERR("In-place needs ad and input in same memory");
return -EINVAL;
}
if (!apkt->pkt->in_buf) {
if (!ctx->mode_params.ccm_info.tag_len) {
LOG_ERR("Auth only needs a tag length");
return -EINVAL;
}
in_buf = apkt->ad;
in_len = apkt->ad_len;
*auth_crypt = 0U;
} else {
in_buf = data;
memcpy(in_buf, apkt->ad, apkt->ad_len);
memcpy(in_buf + apkt->ad_len,
apkt->pkt->in_buf, apkt->pkt->in_len);
in_len = apkt->ad_len + apkt->pkt->in_len;
*auth_crypt = !apkt->tag ? apkt->pkt->in_len :
apkt->pkt->in_len - ctx->mode_params.ccm_info.tag_len;
}
if (ctx->mode_params.ccm_info.tag_len) {
if ((ctx->mode_params.ccm_info.tag_len >> 2) > 3) {
m = 3U;
} else {
m = ctx->mode_params.ccm_info.tag_len >> 2;
}
}
/* Writing the frame in RAM */
if (!cc2520_write_ram(cc2520, CC2520_MEM_DATA, in_buf, in_len)) {
LOG_ERR("Cannot write the frame in RAM");
return -EIO;
}
/* See section 26.8.1 */
sys_memcpy_swap(data, ctx->key.bit_stream, ctx->keylen);
/* Writing the key in RAM */
if (!cc2520_write_ram(cc2520, CC2520_MEM_KEY, data, 16)) {
LOG_ERR("Cannot write the key in RAM");
return -EIO;
}
generate_nonce(ccm_nonce, data, apkt, m);
/* Writing the nonce in RAM */
if (!cc2520_write_ram(cc2520, CC2520_MEM_NONCE, data, 16)) {
LOG_ERR("Cannot write the nonce in RAM");
return -EIO;
}
return m;
}
static int cc2520_crypto_ccm(struct cipher_ctx *ctx,
struct cipher_aead_pkt *apkt,
uint8_t *ccm_nonce)
{
const struct device *cc2520 = ctx->device;
uint8_t auth_crypt;
int m;
if (!apkt || !apkt->pkt) {
LOG_ERR("Invalid crypto packet to operate with");
return -EINVAL;
}
m = insert_crypto_parameters(ctx, apkt, ccm_nonce, &auth_crypt);
if (m < 0) {
LOG_ERR("Inserting crypto parameters failed");
return m;
}
apkt->pkt->out_len = apkt->pkt->in_len + apkt->ad_len +
(m ? ctx->mode_params.ccm_info.tag_len : 0);
if (apkt->pkt->out_len > apkt->pkt->out_buf_max) {
LOG_ERR("Result will not fit into out buffer %u vs %u",
apkt->pkt->out_len, apkt->pkt->out_buf_max);
return -ENOBUFS;
}
if (!instruct_uccm_ccm(cc2520, false, CC2520_MEM_KEY >> 4, auth_crypt,
CC2520_MEM_NONCE >> 4, CC2520_MEM_DATA,
0x000, apkt->ad_len, m) ||
!cc2520_read_ram(cc2520, CC2520_MEM_DATA,
apkt->pkt->out_buf, apkt->pkt->out_len)) {
LOG_ERR("CCM or reading result from RAM failed");
return -EIO;
}
if (apkt->tag) {
memcpy(apkt->tag, apkt->pkt->out_buf + apkt->pkt->in_len,
ctx->mode_params.ccm_info.tag_len);
}
return 0;
}
static int cc2520_crypto_uccm(struct cipher_ctx *ctx,
struct cipher_aead_pkt *apkt,
uint8_t *ccm_nonce)
{
const struct device *cc2520 = ctx->device;
uint8_t auth_crypt;
int m;
if (!apkt || !apkt->pkt) {
LOG_ERR("Invalid crypto packet to operate with");
return -EINVAL;
}
if (ctx->mode_params.ccm_info.tag_len && !apkt->tag) {
LOG_ERR("In case of MIC you need to provide a tag");
return -EINVAL;
}
m = insert_crypto_parameters(ctx, apkt, ccm_nonce, &auth_crypt);
if (m < 0) {
return m;
}
apkt->pkt->out_len = apkt->pkt->in_len + apkt->ad_len;
if (!instruct_uccm_ccm(cc2520, true, CC2520_MEM_KEY >> 4, auth_crypt,
CC2520_MEM_NONCE >> 4, CC2520_MEM_DATA,
0x000, apkt->ad_len, m) ||
!cc2520_read_ram(cc2520, CC2520_MEM_DATA,
apkt->pkt->out_buf, apkt->pkt->out_len)) {
LOG_ERR("UCCM or reading result from RAM failed");
return -EIO;
}
if (m && (!(read_reg_dpustat(cc2520) & DPUSTAT_AUTHSTAT_H))) {
LOG_ERR("Authentication of the frame failed");
return -EBADMSG;
}
return 0;
}
static int cc2520_crypto_hw_caps(const struct device *dev)
{
return CAP_RAW_KEY | CAP_INPLACE_OPS | CAP_SYNC_OPS;
}
static int cc2520_crypto_begin_session(const struct device *dev,
struct cipher_ctx *ctx,
enum cipher_algo algo,
enum cipher_mode mode,
enum cipher_op op_type)
{
if (algo != CRYPTO_CIPHER_ALGO_AES || mode != CRYPTO_CIPHER_MODE_CCM) {
LOG_ERR("Wrong algo (%u) or mode (%u)", algo, mode);
return -EINVAL;
}
if (ctx->mode_params.ccm_info.nonce_len != 13U) {
LOG_ERR("Nonce length erroneous (%u)",
ctx->mode_params.ccm_info.nonce_len);
return -EINVAL;
}
if (op_type == CRYPTO_CIPHER_OP_ENCRYPT) {
ctx->ops.ccm_crypt_hndlr = cc2520_crypto_ccm;
} else {
ctx->ops.ccm_crypt_hndlr = cc2520_crypto_uccm;
}
ctx->ops.cipher_mode = mode;
ctx->device = dev;
return 0;
}
static int cc2520_crypto_free_session(const struct device *dev,
struct cipher_ctx *ctx)
{
ARG_UNUSED(dev);
ctx->ops.ccm_crypt_hndlr = NULL;
ctx->device = NULL;
return 0;
}
static int cc2520_crypto_init(const struct device *dev)
{
LOG_INF("CC2520 crypto part initialized");
return 0;
}
struct crypto_driver_api cc2520_crypto_api = {
.query_hw_caps = cc2520_crypto_hw_caps,
.cipher_begin_session = cc2520_crypto_begin_session,
.cipher_free_session = cc2520_crypto_free_session,
.cipher_async_callback_set = NULL
};
DEVICE_DEFINE(cc2520_crypto, "cc2520_crypto",
cc2520_crypto_init, NULL,
&cc2520_context_data, NULL, POST_KERNEL,
CONFIG_IEEE802154_CC2520_CRYPTO_INIT_PRIO, &cc2520_crypto_api);
#endif /* CONFIG_IEEE802154_CC2520_CRYPTO */