zephyr/drivers/timer/arm_arch_timer.c
Nicolas Pitre 0fc9c9f46a drivers/timer/arm_arch_timer: driver revamp
Couple issues:

- `sys_clock_set_timeout()` should not base its `mtime` on the current
  time either. Tracking the `last_tick` and `last_elapsed` values avoids
  the need for all the tick rounding computation.

- The MIN_DELAY thing is pointless. The hardware performs a signed
  comparison. If the delay gets close or even behind current time then
  the IRQ will be triggered right away. This is unlikely to happen very
  often anyway so the constant overhead is uncalled for.

- Runtime 64-bits divisions on 32-bits hardware are very expensive.

- The timer must be enabled before the count can return a sensible
  value during driver init (at least on qemu_cortex_a9).

Discussion in PR #54919 applies here too.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2023-03-02 15:37:35 -05:00

222 lines
6 KiB
C

/*
* Copyright (c) 2019 Carlo Caione <ccaione@baylibre.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/drivers/timer/arm_arch_timer.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/irq.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/arch/cpu.h>
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
/* precompute CYC_PER_TICK at driver init to avoid runtime double divisions */
static uint32_t cyc_per_tick;
#define CYC_PER_TICK cyc_per_tick
#else
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#endif
/* the unsigned long cast limits divisors to native CPU register width */
#define cycle_diff_t unsigned long
static struct k_spinlock lock;
static uint64_t last_cycle;
static uint64_t last_tick;
static uint32_t last_elapsed;
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = ARM_ARCH_TIMER_IRQ;
#endif
static void arm_arch_timer_compare_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
#ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657
/*
* Workaround required for Cortex-A9 MPCore erratum 740657
* comp. ARM Cortex-A9 processors Software Developers Errata Notice,
* ARM document ID032315.
*/
if (!arm_arch_timer_get_int_status()) {
/*
* If the event flag is not set, this is a spurious interrupt.
* DO NOT modify the compare register's value, DO NOT announce
* elapsed ticks!
*/
k_spin_unlock(&lock, key);
return;
}
#endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */
uint64_t curr_cycle = arm_arch_timer_count();
uint64_t delta_cycles = curr_cycle - last_cycle;
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK;
last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK;
last_tick += delta_ticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next_cycle = last_cycle + CYC_PER_TICK;
arm_arch_timer_set_compare(next_cycle);
arm_arch_timer_set_irq_mask(false);
} else {
arm_arch_timer_set_irq_mask(true);
#ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657
/*
* In tickless mode, the compare register is normally not
* updated from within the ISR. Yet, to work around the timer's
* erratum, a new value *must* be written while the interrupt
* is being processed before the interrupt is acknowledged
* by the handling interrupt controller.
*/
arm_arch_timer_set_compare(~0ULL);
}
/*
* Clear the event flag so that in case the erratum strikes (the timer's
* vector will still be indicated as pending by the GIC's pending register
* after this ISR has been executed) the error will be detected by the
* check performed upon entry of the ISR -> the event flag is not set,
* therefore, no actual hardware interrupt has occurred.
*/
arm_arch_timer_clear_int_status();
#else
}
#endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */
k_spin_unlock(&lock, key);
sys_clock_announce(delta_ticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
#if defined(CONFIG_TICKLESS_KERNEL)
if (ticks == K_TICKS_FOREVER) {
if (idle) {
return;
}
ticks = INT32_MAX;
}
/*
* Clamp the max period length to a number of cycles that can fit
* in half the range of a cycle_diff_t for native width divisions
* to be usable elsewhere. Also clamp it to half the range of an
* int32_t as this is the type used for elapsed tick announcements.
* The half range gives us one bit of extra room to cope with the
* unavoidable IRQ servicing latency (we never need as much but this
* is simple). The compiler should optimize away the least restrictive
* of those tests automatically.
*/
ticks = CLAMP(ticks, 0, (cycle_diff_t)-1 / 2 / CYC_PER_TICK);
ticks = CLAMP(ticks, 0, INT32_MAX / 2);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK;
arm_arch_timer_set_compare(next_cycle);
arm_arch_timer_set_irq_mask(false);
k_spin_unlock(&lock, key);
#else /* CONFIG_TICKLESS_KERNEL */
ARG_UNUSED(ticks);
ARG_UNUSED(idle);
#endif
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t curr_cycle = arm_arch_timer_count();
uint64_t delta_cycles = curr_cycle - last_cycle;
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK;
last_elapsed = delta_ticks;
k_spin_unlock(&lock, key);
return delta_ticks;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)arm_arch_timer_count();
}
uint64_t sys_clock_cycle_get_64(void)
{
return arm_arch_timer_count();
}
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
void arch_busy_wait(uint32_t usec_to_wait)
{
if (usec_to_wait == 0) {
return;
}
uint64_t start_cycles = arm_arch_timer_count();
uint64_t cycles_to_wait = sys_clock_hw_cycles_per_sec() / USEC_PER_SEC * usec_to_wait;
for (;;) {
uint64_t current_cycles = arm_arch_timer_count();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
}
#endif
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
/*
* set the initial status of timer0 of each secondary core
*/
arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK);
arm_arch_timer_enable(true);
irq_enable(ARM_ARCH_TIMER_IRQ);
arm_arch_timer_set_irq_mask(false);
}
#endif
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
IRQ_CONNECT(ARM_ARCH_TIMER_IRQ, ARM_ARCH_TIMER_PRIO,
arm_arch_timer_compare_isr, NULL, ARM_ARCH_TIMER_FLAGS);
arm_arch_timer_init();
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#endif
arm_arch_timer_enable(true);
last_tick = arm_arch_timer_count() / CYC_PER_TICK;
last_cycle = last_tick * CYC_PER_TICK;
arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK);
irq_enable(ARM_ARCH_TIMER_IRQ);
arm_arch_timer_set_irq_mask(false);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);