zephyr/drivers/pwm/pwm_mcux_ftm.c
Manuel Argüelles 35e267d649 drivers: pwm: mcux_ftm: support multiple interrupts
Rework the interrupt handlers of the FTM driver to support SoCs on
which FTM channels and overflow are routed through individual
interrupts, as opposed to a single OR'ed interrupt.

Signed-off-by: Manuel Argüelles <manuel.arguelles@nxp.com>
2024-01-05 09:03:00 +01:00

603 lines
17 KiB
C

/*
* Copyright (c) 2017, NXP
* Copyright (c) 2020-2021 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kinetis_ftm_pwm
#include <zephyr/drivers/clock_control.h>
#include <errno.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/irq.h>
#include <soc.h>
#include <fsl_ftm.h>
#include <fsl_clock.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_mcux_ftm, CONFIG_PWM_LOG_LEVEL);
#define MAX_CHANNELS ARRAY_SIZE(FTM0->CONTROLS)
/* PWM capture operates on channel pairs */
#define MAX_CAPTURE_PAIRS (MAX_CHANNELS / 2U)
#define PAIR_1ST_CH(pair) (pair * 2U)
#define PAIR_2ND_CH(pair) (PAIR_1ST_CH(pair) + 1)
struct mcux_ftm_config {
FTM_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
ftm_clock_source_t ftm_clock_source;
ftm_clock_prescale_t prescale;
uint8_t channel_count;
ftm_pwm_mode_t mode;
#ifdef CONFIG_PWM_CAPTURE
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_PWM_CAPTURE */
const struct pinctrl_dev_config *pincfg;
};
struct mcux_ftm_capture_data {
ftm_dual_edge_capture_param_t param;
pwm_capture_callback_handler_t callback;
void *user_data;
uint32_t first_edge_overflows;
uint16_t first_edge_cnt;
bool first_edge_overflow;
bool pulse_capture;
};
struct mcux_ftm_data {
uint32_t clock_freq;
uint32_t period_cycles;
ftm_chnl_pwm_config_param_t channel[MAX_CHANNELS];
#ifdef CONFIG_PWM_CAPTURE
uint32_t overflows;
struct mcux_ftm_capture_data capture[MAX_CAPTURE_PAIRS];
#endif /* CONFIG_PWM_CAPTURE */
};
static int mcux_ftm_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
status_t status;
#ifdef CONFIG_PWM_CAPTURE
uint32_t pair = channel / 2U;
uint32_t irqs;
#endif /* CONFIG_PWM_CAPTURE */
if (period_cycles == 0U) {
LOG_ERR("Channel can not be set to inactive level");
return -ENOTSUP;
}
if (period_cycles > UINT16_MAX) {
LOG_ERR("Period cycles must be less or equal than %u", UINT16_MAX);
return -EINVAL;
}
if (channel >= config->channel_count) {
LOG_ERR("Invalid channel");
return -ENOTSUP;
}
#ifdef CONFIG_PWM_CAPTURE
irqs = FTM_GetEnabledInterrupts(config->base);
if (irqs & BIT(PAIR_2ND_CH(pair))) {
LOG_ERR("Cannot set PWM, capture in progress on pair %d", pair);
return -EBUSY;
}
#endif /* CONFIG_PWM_CAPTURE */
data->channel[channel].dutyValue = pulse_cycles;
if ((flags & PWM_POLARITY_INVERTED) == 0) {
data->channel[channel].level = kFTM_HighTrue;
} else {
data->channel[channel].level = kFTM_LowTrue;
}
LOG_DBG("pulse_cycles=%d, period_cycles=%d, flags=%d",
pulse_cycles, period_cycles, flags);
if (period_cycles != data->period_cycles) {
#ifdef CONFIG_PWM_CAPTURE
if (irqs & BIT_MASK(ARRAY_SIZE(data->channel))) {
LOG_ERR("Cannot change period, capture in progress");
return -EBUSY;
}
#endif /* CONFIG_PWM_CAPTURE */
if (data->period_cycles != 0) {
/* Only warn when not changing from zero */
LOG_WRN("Changing period cycles from %d to %d"
" affects all %d channels in %s",
data->period_cycles, period_cycles,
config->channel_count, dev->name);
}
data->period_cycles = period_cycles;
FTM_StopTimer(config->base);
FTM_SetTimerPeriod(config->base, period_cycles);
FTM_SetSoftwareTrigger(config->base, true);
FTM_StartTimer(config->base, config->ftm_clock_source);
}
status = FTM_SetupPwmMode(config->base, data->channel,
config->channel_count, config->mode);
if (status != kStatus_Success) {
LOG_ERR("Could not set up pwm");
return -ENOTSUP;
}
FTM_SetSoftwareTrigger(config->base, true);
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static int mcux_ftm_configure_capture(const struct device *dev,
uint32_t channel, pwm_flags_t flags,
pwm_capture_callback_handler_t cb,
void *user_data)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
ftm_dual_edge_capture_param_t *param;
uint32_t pair = channel / 2U;
if (channel & 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) {
LOG_ERR("Capture already active on channel pair %d", pair);
return -EBUSY;
}
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No capture type specified");
return -EINVAL;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
data->capture[pair].callback = cb;
data->capture[pair].user_data = user_data;
param = &data->capture[pair].param;
if ((flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS) {
param->mode = kFTM_Continuous;
} else {
param->mode = kFTM_OneShot;
}
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture[pair].pulse_capture = false;
if (flags & PWM_POLARITY_INVERTED) {
param->currChanEdgeMode = kFTM_FallingEdge;
param->nextChanEdgeMode = kFTM_FallingEdge;
} else {
param->currChanEdgeMode = kFTM_RisingEdge;
param->nextChanEdgeMode = kFTM_RisingEdge;
}
} else {
data->capture[pair].pulse_capture = true;
if (flags & PWM_POLARITY_INVERTED) {
param->currChanEdgeMode = kFTM_FallingEdge;
param->nextChanEdgeMode = kFTM_RisingEdge;
} else {
param->currChanEdgeMode = kFTM_RisingEdge;
param->nextChanEdgeMode = kFTM_FallingEdge;
}
}
return 0;
}
static int mcux_ftm_enable_capture(const struct device *dev, uint32_t channel)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
uint32_t pair = channel / 2U;
if (channel & 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
if (!data->capture[pair].callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) {
LOG_ERR("Capture already active on channel pair %d", pair);
return -EBUSY;
}
FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) |
BIT(PAIR_2ND_CH(pair)));
FTM_SetupDualEdgeCapture(config->base, pair, &data->capture[pair].param,
CONFIG_PWM_CAPTURE_MCUX_FTM_FILTER_VALUE);
FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) |
BIT(PAIR_2ND_CH(pair)));
return 0;
}
static int mcux_ftm_disable_capture(const struct device *dev, uint32_t channel)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
uint32_t pair = channel / 2U;
if (channel & 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) |
BIT(PAIR_2ND_CH(pair)));
/* Clear Dual Edge Capture Enable bit */
config->base->COMBINE &= ~(1UL << (FTM_COMBINE_DECAP0_SHIFT +
(FTM_COMBINE_COMBINE1_SHIFT * pair)));
return 0;
}
static void mcux_ftm_capture_first_edge(const struct device *dev, uint32_t channel,
uint16_t cnt, bool overflow)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
struct mcux_ftm_capture_data *capture;
uint32_t pair = channel / 2U;
__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
capture = &data->capture[pair];
FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)));
capture->first_edge_cnt = cnt;
capture->first_edge_overflows = data->overflows;
capture->first_edge_overflow = overflow;
LOG_DBG("pair = %d, 1st cnt = %u, 1st ovf = %d", pair, cnt, overflow);
}
static void mcux_ftm_capture_second_edge(const struct device *dev, uint32_t channel,
uint16_t cnt, bool overflow)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
uint32_t second_edge_overflows = data->overflows;
struct mcux_ftm_capture_data *capture;
uint32_t pair = channel / 2U;
uint32_t overflows;
uint32_t first_cnv;
uint32_t second_cnv;
uint32_t cycles = 0;
int status = 0;
__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
capture = &data->capture[pair];
first_cnv = config->base->CONTROLS[PAIR_1ST_CH(pair)].CnV;
second_cnv = config->base->CONTROLS[PAIR_2ND_CH(pair)].CnV;
if (capture->pulse_capture) {
/* Clear both edge flags for pulse capture to capture first edge overflow counter */
FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair)));
} else {
/* Only clear second edge flag for period capture as next first edge is this edge */
FTM_ClearStatusFlags(config->base, BIT(PAIR_2ND_CH(pair)));
}
if (unlikely(capture->first_edge_overflow && first_cnv > capture->first_edge_cnt)) {
/* Compensate for the overflow registered in the same IRQ */
capture->first_edge_overflows--;
}
if (unlikely(overflow && second_cnv > cnt)) {
/* Compensate for the overflow registered in the same IRQ */
second_edge_overflows--;
}
overflows = second_edge_overflows - capture->first_edge_overflows;
/* Calculate cycles, check for overflows */
if (overflows > 0) {
if (u32_mul_overflow(overflows, config->base->MOD, &cycles)) {
LOG_ERR("overflow while calculating cycles");
status = -ERANGE;
} else {
cycles -= first_cnv;
if (u32_add_overflow(cycles, second_cnv, &cycles)) {
LOG_ERR("overflow while calculating cycles");
cycles = 0;
status = -ERANGE;
}
}
} else {
cycles = second_cnv - first_cnv;
}
LOG_DBG("pair = %d, 1st ovfs = %u, 2nd ovfs = %u, ovfs = %u, 1st cnv = %u, "
"2nd cnv = %u, cycles = %u, 2nd cnt = %u, 2nd ovf = %d",
pair, capture->first_edge_overflows, second_edge_overflows, overflows, first_cnv,
second_cnv, cycles, cnt, overflow);
if (capture->pulse_capture) {
capture->callback(dev, pair, 0, cycles, status,
capture->user_data);
} else {
capture->callback(dev, pair, cycles, 0, status,
capture->user_data);
}
if (capture->param.mode == kFTM_OneShot) {
/* One-shot capture done */
FTM_DisableInterrupts(config->base, BIT(PAIR_2ND_CH(pair)));
} else if (capture->pulse_capture) {
/* Prepare for first edge of next pulse capture */
FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)));
} else {
/* First edge of next period capture is second edge of this capture (this edge) */
capture->first_edge_cnt = cnt;
capture->first_edge_overflows = second_edge_overflows;
capture->first_edge_overflow = false;
}
}
static bool mcux_ftm_handle_overflow(const struct device *dev)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
if (FTM_GetStatusFlags(config->base) & kFTM_TimeOverflowFlag) {
data->overflows++;
FTM_ClearStatusFlags(config->base, kFTM_TimeOverflowFlag);
return true;
}
return false;
}
static void mcux_ftm_irq_handler(const struct device *dev, uint32_t chan_start, uint32_t chan_end)
{
const struct mcux_ftm_config *config = dev->config;
bool overflow;
uint32_t flags;
uint32_t irqs;
uint16_t cnt;
uint32_t ch;
flags = FTM_GetStatusFlags(config->base);
irqs = FTM_GetEnabledInterrupts(config->base);
cnt = config->base->CNT;
overflow = mcux_ftm_handle_overflow(dev);
for (ch = chan_start; ch < chan_end; ch++) {
if ((flags & BIT(ch)) && (irqs & BIT(ch))) {
if (ch & 1) {
mcux_ftm_capture_second_edge(dev, ch, cnt, overflow);
} else {
mcux_ftm_capture_first_edge(dev, ch, cnt, overflow);
}
}
}
}
#endif /* CONFIG_PWM_CAPTURE */
static int mcux_ftm_get_cycles_per_sec(const struct device *dev,
uint32_t channel, uint64_t *cycles)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
*cycles = data->clock_freq >> config->prescale;
return 0;
}
static int mcux_ftm_init(const struct device *dev)
{
const struct mcux_ftm_config *config = dev->config;
struct mcux_ftm_data *data = dev->data;
ftm_chnl_pwm_config_param_t *channel = data->channel;
ftm_config_t ftm_config;
int i;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err != 0) {
return err;
}
if (config->channel_count > ARRAY_SIZE(data->channel)) {
LOG_ERR("Invalid channel count");
return -EINVAL;
}
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&data->clock_freq)) {
LOG_ERR("Could not get clock frequency");
return -EINVAL;
}
for (i = 0; i < config->channel_count; i++) {
channel->chnlNumber = i;
channel->level = kFTM_NoPwmSignal;
channel->dutyValue = 0;
channel->firstEdgeValue = 0;
channel++;
}
FTM_GetDefaultConfig(&ftm_config);
ftm_config.prescale = config->prescale;
FTM_Init(config->base, &ftm_config);
#ifdef CONFIG_PWM_CAPTURE
config->irq_config_func(dev);
FTM_EnableInterrupts(config->base,
kFTM_TimeOverflowInterruptEnable);
data->period_cycles = 0xFFFFU;
FTM_SetTimerPeriod(config->base, data->period_cycles);
FTM_SetSoftwareTrigger(config->base, true);
FTM_StartTimer(config->base, config->ftm_clock_source);
#endif /* CONFIG_PWM_CAPTURE */
return 0;
}
static const struct pwm_driver_api mcux_ftm_driver_api = {
.set_cycles = mcux_ftm_set_cycles,
.get_cycles_per_sec = mcux_ftm_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = mcux_ftm_configure_capture,
.enable_capture = mcux_ftm_enable_capture,
.disable_capture = mcux_ftm_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
#define TO_FTM_PRESCALE_DIVIDE(val) _DO_CONCAT(kFTM_Prescale_Divide_, val)
#ifdef CONFIG_PWM_CAPTURE
#if IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1)
static void mcux_ftm_isr(const struct device *dev)
{
const struct mcux_ftm_config *cfg = dev->config;
mcux_ftm_irq_handler(dev, 0, cfg->channel_count);
}
#define FTM_CONFIG_FUNC(n) \
static void mcux_ftm_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_ftm_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#else /* Multiple interrupts */
#define FTM_ISR_FUNC_NAME(suffix) _DO_CONCAT(mcux_ftm_isr_, suffix)
#define FTM_ISR_FUNC(chan_start, chan_end) \
static void mcux_ftm_isr_##chan_start##_##chan_end(const struct device *dev) \
{ \
mcux_ftm_irq_handler(dev, chan_start, chan_end + 1); \
}
#define FTM_ISR_CONFIG(node_id, prop, idx) \
do { \
IRQ_CONNECT(DT_IRQ_BY_IDX(node_id, idx, irq), \
DT_IRQ_BY_IDX(node_id, idx, priority), \
FTM_ISR_FUNC_NAME(DT_STRING_TOKEN_BY_IDX(node_id, prop, idx)), \
DEVICE_DT_GET(node_id), \
0); \
irq_enable(DT_IRQ_BY_IDX(node_id, idx, irq)); \
} while (false);
#define FTM_CONFIG_FUNC(n) \
static void mcux_ftm_config_func_##n(const struct device *dev) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, FTM_ISR_CONFIG) \
}
#if DT_INST_IRQ_HAS_NAME(0, overflow)
static void mcux_ftm_isr_overflow(const struct device *dev)
{
mcux_ftm_handle_overflow(dev);
}
#endif
#if DT_INST_IRQ_HAS_NAME(0, 0_1)
FTM_ISR_FUNC(0, 1)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 2_3)
FTM_ISR_FUNC(2, 3)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 4_5)
FTM_ISR_FUNC(4, 5)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 6_7)
FTM_ISR_FUNC(6, 7)
#endif
#endif /* IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1) */
#define FTM_CFG_CAPTURE_INIT(n) \
.irq_config_func = mcux_ftm_config_func_##n
#define FTM_INIT_CFG(n) FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT(n))
#else /* !CONFIG_PWM_CAPTURE */
#define FTM_CONFIG_FUNC(n)
#define FTM_CFG_CAPTURE_INIT
#define FTM_INIT_CFG(n) FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT)
#endif /* !CONFIG_PWM_CAPTURE */
#define FTM_DECLARE_CFG(n, CAPTURE_INIT) \
static const struct mcux_ftm_config mcux_ftm_config_##n = { \
.base = (FTM_Type *)DT_INST_REG_ADDR(n),\
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(n, name), \
.ftm_clock_source = kFTM_FixedClock, \
.prescale = TO_FTM_PRESCALE_DIVIDE(DT_INST_PROP(n, prescaler)),\
.channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn((FTM_Type *) \
DT_INST_REG_ADDR(n)), \
.mode = kFTM_EdgeAlignedPwm, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
CAPTURE_INIT \
}
#define FTM_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static struct mcux_ftm_data mcux_ftm_data_##n; \
static const struct mcux_ftm_config mcux_ftm_config_##n; \
DEVICE_DT_INST_DEFINE(n, &mcux_ftm_init, \
NULL, &mcux_ftm_data_##n, \
&mcux_ftm_config_##n, \
POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&mcux_ftm_driver_api); \
FTM_CONFIG_FUNC(n) \
FTM_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(FTM_DEVICE)