zephyr/drivers/i2s/i2s_mcux_sai.c
Daniel DeGrasse 906ee53834 drivers: i2s: i2s_mcux_sai: use clock-mux property to select SAI mux
Use a new property, "clock-mux" to select the clock mux for the SAI.
Previously, the clock mux was being selected using the "bits" specifier
of the "clocks" phandle property, which is not the purpose of this
specifier. This can be shown by the regression introduced by 5bebbb91,
which changed the "bits" field to the clock gate shift (which is the
intended meaning).

This incidently worked for the SAI1 and SAI3 peripherals, as the lower 2
bits of the correct clock source selection (0b10) are the same as the new
value placed in the "bit" specifier. For SAI2, the clock source was
switched to PLL3 PDF0 by this change.

To resolve this, use an explict "clock-mux" property for this selection.

Fixes #63541

Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
2023-10-20 15:01:10 +02:00

1353 lines
36 KiB
C

/*
* Copyright 2021,2023 NXP Semiconductor INC.
* All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief I2S bus (SAI) driver for NXP i.MX RT series.
*/
#include <errno.h>
#include <string.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/i2s.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/dt-bindings/clock/imx_ccm.h>
#include <zephyr/sys/barrier.h>
#include <soc.h>
#include "i2s_mcux_sai.h"
#define LOG_DOMAIN dev_i2s_mcux
#define LOG_LEVEL CONFIG_I2S_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#define DT_DRV_COMPAT nxp_mcux_i2s
#define NUM_DMA_BLOCKS_RX_PREP 3
#define MAX_TX_DMA_BLOCKS CONFIG_DMA_TCD_QUEUE_SIZE
#if (NUM_DMA_BLOCKS_RX_PREP >= CONFIG_DMA_TCD_QUEUE_SIZE)
#error NUM_DMA_BLOCKS_RX_PREP must be < CONFIG_DMA_TCD_QUEUE_SIZE
#endif
#if defined(CONFIG_DMA_MCUX_EDMA) && (NUM_DMA_BLOCKS_RX_PREP < 3)
#error eDMA avoids TCD coherency issue if NUM_DMA_BLOCKS_RX_PREP >= 3
#endif
/*
* SAI driver uses source_gather_en/dest_scatter_en feature of DMA, and relies
* on DMA driver managing circular list of DMA blocks. Like eDMA driver links
* Transfer Control Descriptors (TCDs) in list, and manages the tcdpool.
* Calling dma_reload() adds new DMA block to DMA channel already configured,
* into the DMA driver's circular list of blocks.
* This indicates the Tx/Rx stream.
*
* in_queue and out_queue are used as follows
* transmit stream:
* application provided buffer is queued to in_queue until loaded to DMA.
* when DMA channel is idle, buffer is retrieved from in_queue and loaded
* to DMA and queued to out_queue. when DMA completes, buffer is retrieved
* from out_queue and freed.
*
* receive stream:
* driver allocates buffer from slab and loads DMA buffer is queued to
* in_queue when DMA completes, buffer is retrieved from in_queue
* and queued to out_queue when application reads, buffer is read
* (may optionally block) from out_queue and presented to application.
*/
struct stream {
int32_t state;
uint32_t dma_channel;
uint32_t start_channel;
void (*irq_call_back)(void);
struct i2s_config cfg;
struct dma_config dma_cfg;
struct dma_block_config dma_block;
uint8_t free_tx_dma_blocks;
bool last_block;
struct k_msgq in_queue;
struct k_msgq out_queue;
};
struct i2s_mcux_config {
I2S_Type *base;
uint32_t clk_src;
uint32_t clk_pre_div;
uint32_t clk_src_div;
uint32_t pll_src;
uint32_t pll_lp;
uint32_t pll_pd;
uint32_t pll_num;
uint32_t pll_den;
uint32_t mclk_pin_mask;
uint32_t mclk_pin_offset;
uint32_t tx_channel;
clock_control_subsys_t clk_sub_sys;
const struct device *ccm_dev;
const struct pinctrl_dev_config *pinctrl;
void (*irq_connect)(const struct device *dev);
bool rx_sync_mode;
bool tx_sync_mode;
};
/* Device run time data */
struct i2s_dev_data {
const struct device *dev_dma;
struct stream tx;
void *tx_in_msgs[CONFIG_I2S_TX_BLOCK_COUNT];
void *tx_out_msgs[CONFIG_I2S_TX_BLOCK_COUNT];
struct stream rx;
void *rx_in_msgs[CONFIG_I2S_RX_BLOCK_COUNT];
void *rx_out_msgs[CONFIG_I2S_RX_BLOCK_COUNT];
};
static void i2s_dma_tx_callback(const struct device *, void *,
uint32_t, int);
static void i2s_tx_stream_disable(const struct device *, bool drop);
static void i2s_rx_stream_disable(const struct device *,
bool in_drop, bool out_drop);
static inline void i2s_purge_stream_buffers(struct stream *strm,
struct k_mem_slab *mem_slab,
bool in_drop, bool out_drop)
{
void *buffer;
if (in_drop) {
while (k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, buffer);
}
}
if (out_drop) {
while (k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, buffer);
}
}
}
static void i2s_tx_stream_disable(const struct device *dev, bool drop)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
LOG_DBG("Stopping DMA channel %u for TX stream", strm->dma_channel);
/* Disable FIFO DMA request */
SAI_TxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable,
false);
dma_stop(dev_dma, strm->dma_channel);
/* wait for TX FIFO to drain before disabling */
while ((dev_cfg->base->TCSR & I2S_TCSR_FWF_MASK) == 0)
;
/* Disable the channel FIFO */
dev_cfg->base->TCR3 &= ~I2S_TCR3_TCE_MASK;
/* Disable Tx */
SAI_TxEnable(dev_cfg->base, false);
/* If Tx is disabled, reset the FIFO pointer, clear error flags */
if ((dev_cfg->base->TCSR & I2S_TCSR_TE_MASK) == 0UL) {
dev_cfg->base->TCSR |=
(I2S_TCSR_FR_MASK | I2S_TCSR_SR_MASK);
dev_cfg->base->TCSR &= ~I2S_TCSR_SR_MASK;
}
/* purge buffers queued in the stream */
if (drop) {
i2s_purge_stream_buffers(strm, dev_data->tx.cfg.mem_slab,
true, true);
}
}
static void i2s_rx_stream_disable(const struct device *dev,
bool in_drop, bool out_drop)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
LOG_DBG("Stopping RX stream & DMA channel %u", strm->dma_channel);
dma_stop(dev_dma, strm->dma_channel);
/* Disable the channel FIFO */
dev_cfg->base->RCR3 &= ~I2S_RCR3_RCE_MASK;
/* Disable DMA enable bit */
SAI_RxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable,
false);
/* Disable Rx */
SAI_RxEnable(dev_cfg->base, false);
/* wait for Receiver to disable */
while (dev_cfg->base->RCSR & I2S_RCSR_RE_MASK)
;
/* reset the FIFO pointer and clear error flags */
dev_cfg->base->RCSR |= (I2S_RCSR_FR_MASK | I2S_RCSR_SR_MASK);
dev_cfg->base->RCSR &= ~I2S_RCSR_SR_MASK;
/* purge buffers queued in the stream */
if (in_drop || out_drop) {
i2s_purge_stream_buffers(strm, dev_data->rx.cfg.mem_slab,
in_drop, out_drop);
}
}
static int i2s_tx_reload_multiple_dma_blocks(const struct device *dev,
uint8_t *blocks_queued)
{
struct i2s_dev_data *dev_data = dev->data;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct stream *strm = &dev_data->tx;
void *buffer = NULL;
int ret = 0;
unsigned int key;
*blocks_queued = 0;
key = irq_lock();
/* queue additional blocks to DMA if in_queue and DMA has free blocks */
while (strm->free_tx_dma_blocks) {
/* get the next buffer from queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret) {
/* in_queue is empty, no more blocks to send to DMA */
ret = 0;
break;
}
/* reload the DMA */
ret = dma_reload(dev_data->dev_dma, strm->dma_channel,
(uint32_t)buffer,
(uint32_t)&base->TDR[strm->start_channel],
strm->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x", ret);
break;
}
(strm->free_tx_dma_blocks)--;
ret = k_msgq_put(&strm->out_queue,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out %p err %d",
buffer, &strm->out_queue, ret);
break;
}
(*blocks_queued)++;
}
irq_unlock(key);
return ret;
}
/* This function is executed in the interrupt context */
static void i2s_dma_tx_callback(const struct device *dma_dev,
void *arg, uint32_t channel, int status)
{
const struct device *dev = (struct device *)arg;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
void *buffer = NULL;
int ret;
uint8_t blocks_queued;
LOG_DBG("tx cb");
ret = k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* transmission complete. free the buffer */
k_mem_slab_free(strm->cfg.mem_slab, buffer);
(strm->free_tx_dma_blocks)++;
} else {
LOG_ERR("no buf in out_queue for channel %u", channel);
}
if (strm->free_tx_dma_blocks > MAX_TX_DMA_BLOCKS) {
strm->state = I2S_STATE_ERROR;
LOG_ERR("free_tx_dma_blocks exceeded maximum, now %d",
strm->free_tx_dma_blocks);
goto disabled_exit_no_drop;
}
/* Received a STOP trigger, terminate TX immediately */
if (strm->last_block) {
strm->state = I2S_STATE_READY;
LOG_DBG("TX STOPPED last_block set");
goto disabled_exit_no_drop;
}
if (ret) {
/* k_msgq_get() returned error, and was not last_block */
strm->state = I2S_STATE_ERROR;
goto disabled_exit_no_drop;
}
switch (strm->state) {
case I2S_STATE_RUNNING:
case I2S_STATE_STOPPING:
ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued);
if (ret) {
strm->state = I2S_STATE_ERROR;
goto disabled_exit_no_drop;
}
dma_start(dev_data->dev_dma, strm->dma_channel);
if (blocks_queued ||
(strm->free_tx_dma_blocks < MAX_TX_DMA_BLOCKS)) {
goto enabled_exit;
} else {
/* all DMA blocks are free but no blocks were queued */
if (strm->state == I2S_STATE_STOPPING) {
/* TX queue has drained */
strm->state = I2S_STATE_READY;
LOG_DBG("TX stream has stopped");
} else {
strm->state = I2S_STATE_ERROR;
LOG_ERR("TX Failed to reload DMA");
}
goto disabled_exit_no_drop;
}
case I2S_STATE_ERROR:
default:
goto disabled_exit_drop;
}
disabled_exit_no_drop:
i2s_tx_stream_disable(dev, false);
return;
disabled_exit_drop:
i2s_tx_stream_disable(dev, true);
return;
enabled_exit:
return;
}
static void i2s_dma_rx_callback(const struct device *dma_dev,
void *arg, uint32_t channel, int status)
{
struct device *dev = (struct device *)arg;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
void *buffer;
int ret;
LOG_DBG("RX cb");
switch (strm->state) {
case I2S_STATE_STOPPING:
case I2S_STATE_RUNNING:
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
__ASSERT_NO_MSG(ret == 0);
/* put buffer to output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out_queue %p err %d",
buffer,
&strm->out_queue, ret);
i2s_rx_stream_disable(dev, false, false);
strm->state = I2S_STATE_ERROR;
return;
}
if (strm->state == I2S_STATE_RUNNING) {
/* allocate new buffer for next audio frame */
ret = k_mem_slab_alloc(strm->cfg.mem_slab,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from slab %p err %d",
strm->cfg.mem_slab, ret);
i2s_rx_stream_disable(dev, false, false);
strm->state = I2S_STATE_ERROR;
} else {
uint32_t data_path = strm->start_channel;
ret = dma_reload(dev_data->dev_dma,
strm->dma_channel,
(uint32_t)&base->RDR[data_path],
(uint32_t)buffer,
strm->cfg.block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x",
ret);
i2s_rx_stream_disable(dev,
false, false);
strm->state = I2S_STATE_ERROR;
return;
}
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue,
&buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("%p -> in_queue %p err %d",
buffer, &strm->in_queue,
ret);
}
dma_start(dev_data->dev_dma,
strm->dma_channel);
}
} else {
i2s_rx_stream_disable(dev, true, false);
/* Received a STOP/DRAIN trigger */
strm->state = I2S_STATE_READY;
}
break;
case I2S_STATE_ERROR:
i2s_rx_stream_disable(dev, true, true);
break;
}
}
static void enable_mclk_direction(const struct device *dev, bool dir)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
uint32_t offset = dev_cfg->mclk_pin_offset;
uint32_t mask = dev_cfg->mclk_pin_mask;
uint32_t *gpr = (uint32_t *)
(DT_REG_ADDR(DT_NODELABEL(iomuxcgpr)) + offset);
if (dir) {
*gpr |= mask;
} else {
*gpr &= ~mask;
}
}
static void get_mclk_rate(const struct device *dev, uint32_t *mclk)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
const struct device *ccm_dev = dev_cfg->ccm_dev;
clock_control_subsys_t clk_sub_sys = dev_cfg->clk_sub_sys;
uint32_t rate = 0;
if (device_is_ready(ccm_dev)) {
clock_control_get_rate(ccm_dev, clk_sub_sys, &rate);
} else {
LOG_ERR("CCM driver is not installed");
*mclk = rate;
return;
}
*mclk = rate;
}
static int i2s_mcux_config(const struct device *dev, enum i2s_dir dir,
const struct i2s_config *i2s_cfg)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
sai_transceiver_t config;
uint32_t mclk;
/*num_words is frame size*/
uint8_t num_words = i2s_cfg->channels;
uint8_t word_size_bits = i2s_cfg->word_size;
if ((dev_data->tx.state != I2S_STATE_NOT_READY) &&
(dev_data->tx.state != I2S_STATE_READY) &&
(dev_data->rx.state != I2S_STATE_NOT_READY) &&
(dev_data->rx.state != I2S_STATE_READY)) {
LOG_ERR("invalid state tx(%u) rx(%u)",
dev_data->tx.state,
dev_data->rx.state);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0U) {
LOG_ERR("Invalid frame_clk_freq %u",
i2s_cfg->frame_clk_freq);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return 0;
}
if (word_size_bits < SAI_WORD_SIZE_BITS_MIN ||
word_size_bits > SAI_WORD_SIZE_BITS_MAX) {
LOG_ERR("Unsupported I2S word size %u", word_size_bits);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if (num_words < SAI_WORD_PER_FRAME_MIN ||
num_words > SAI_WORD_PER_FRAME_MAX) {
LOG_ERR("Unsupported words length %u", num_words);
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
if ((i2s_cfg->options & I2S_OPT_PINGPONG) == I2S_OPT_PINGPONG) {
LOG_ERR("Ping-pong mode not supported");
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -ENOTSUP;
}
memset(&config, 0, sizeof(config));
const bool is_mclk_slave = i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE;
enable_mclk_direction(dev, !is_mclk_slave);
get_mclk_rate(dev, &mclk);
LOG_DBG("mclk is %d", mclk);
/* bit clock source is MCLK */
config.bitClock.bclkSource = kSAI_BclkSourceMclkDiv;
/*
* additional settings for bclk
* read the SDK header file for more details
*/
config.bitClock.bclkInputDelay = false;
/* frame sync default configurations */
#if defined(FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE) && \
FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE
config.frameSync.frameSyncGenerateOnDemand = false;
#endif
/* serial data default configurations */
#if defined(FSL_FEATURE_SAI_HAS_CHANNEL_MODE) && \
FSL_FEATURE_SAI_HAS_CHANNEL_MODE
config.serialData.dataMode = kSAI_DataPinStateOutputZero;
#endif
config.frameSync.frameSyncPolarity = kSAI_PolarityActiveLow;
config.bitClock.bclkSrcSwap = false;
/* format */
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
SAI_GetClassicI2SConfig(&config, word_size_bits,
kSAI_Stereo,
dev_cfg->tx_channel);
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
SAI_GetLeftJustifiedConfig(&config, word_size_bits,
kSAI_Stereo,
dev_cfg->tx_channel);
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
SAI_GetDSPConfig(&config, kSAI_FrameSyncLenOneBitClk,
word_size_bits, kSAI_Stereo,
dev_cfg->tx_channel);
/* We need to set the data word count manually, since the HAL
* function does not
*/
config.serialData.dataWordNum = num_words;
config.frameSync.frameSyncEarly = true;
config.bitClock.bclkPolarity = kSAI_SampleOnFallingEdge;
break;
case I2S_FMT_DATA_FORMAT_PCM_LONG:
SAI_GetTDMConfig(&config, kSAI_FrameSyncLenPerWordWidth,
word_size_bits, num_words,
dev_cfg->tx_channel);
config.bitClock.bclkPolarity = kSAI_SampleOnFallingEdge;
break;
default:
LOG_ERR("Unsupported I2S data format");
if (dir == I2S_DIR_TX) {
dev_data->tx.state = I2S_STATE_NOT_READY;
} else {
dev_data->rx.state = I2S_STATE_NOT_READY;
}
return -EINVAL;
}
/* sync mode configurations */
if (dir == I2S_DIR_TX) {
/* TX */
if (dev_cfg->tx_sync_mode) {
config.syncMode = kSAI_ModeSync;
} else {
config.syncMode = kSAI_ModeAsync;
}
} else {
/* RX */
if (dev_cfg->rx_sync_mode) {
config.syncMode = kSAI_ModeSync;
} else {
config.syncMode = kSAI_ModeAsync;
}
}
if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE) {
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
config.masterSlave = kSAI_Slave;
} else {
config.masterSlave =
kSAI_Bclk_Master_FrameSync_Slave;
}
} else {
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
config.masterSlave =
kSAI_Bclk_Slave_FrameSync_Master;
} else {
config.masterSlave = kSAI_Master;
}
}
/* clock signal polarity */
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
case I2S_FMT_CLK_NF_NB:
/* No action required, leave the configuration untouched */
break;
case I2S_FMT_CLK_NF_IB:
/* Swap bclk polarity */
config.bitClock.bclkPolarity =
(config.bitClock.bclkPolarity == kSAI_SampleOnFallingEdge) ?
kSAI_SampleOnRisingEdge :
kSAI_SampleOnFallingEdge;
break;
case I2S_FMT_CLK_IF_NB:
/* Swap frame sync polarity */
config.frameSync.frameSyncPolarity =
(config.frameSync.frameSyncPolarity == kSAI_PolarityActiveHigh) ?
kSAI_PolarityActiveLow :
kSAI_PolarityActiveHigh;
break;
case I2S_FMT_CLK_IF_IB:
/* Swap frame sync and bclk polarity */
config.frameSync.frameSyncPolarity =
(config.frameSync.frameSyncPolarity == kSAI_PolarityActiveHigh) ?
kSAI_PolarityActiveLow :
kSAI_PolarityActiveHigh;
config.bitClock.bclkPolarity =
(config.bitClock.bclkPolarity == kSAI_SampleOnFallingEdge) ?
kSAI_SampleOnRisingEdge :
kSAI_SampleOnFallingEdge;
break;
}
/* PCM short format always requires that WS be one BCLK cycle */
if ((i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) !=
I2S_FMT_DATA_FORMAT_PCM_SHORT) {
config.frameSync.frameSyncWidth = (uint8_t)word_size_bits;
}
if (dir == I2S_DIR_TX) {
memcpy(&dev_data->tx.cfg, i2s_cfg, sizeof(struct i2s_config));
LOG_DBG("tx slab free_list = 0x%x",
(uint32_t)i2s_cfg->mem_slab->free_list);
LOG_DBG("tx slab num_blocks = %d",
(uint32_t)i2s_cfg->mem_slab->info.num_blocks);
LOG_DBG("tx slab block_size = %d",
(uint32_t)i2s_cfg->mem_slab->info.block_size);
LOG_DBG("tx slab buffer = 0x%x",
(uint32_t)i2s_cfg->mem_slab->buffer);
/* set bit clock divider */
SAI_TxSetConfig(base, &config);
dev_data->tx.start_channel = config.startChannel;
/* Disable the channel FIFO */
base->TCR3 &= ~I2S_TCR3_TCE_MASK;
SAI_TxSetBitClockRate(base, mclk,
i2s_cfg->frame_clk_freq,
word_size_bits,
i2s_cfg->channels);
LOG_DBG("tx start_channel = %d", dev_data->tx.start_channel);
/*set up dma settings*/
dev_data->tx.dma_cfg.source_data_size = word_size_bits / 8;
dev_data->tx.dma_cfg.dest_data_size = word_size_bits / 8;
dev_data->tx.dma_cfg.source_burst_length =
i2s_cfg->word_size / 8;
dev_data->tx.dma_cfg.dest_burst_length =
i2s_cfg->word_size / 8;
dev_data->tx.dma_cfg.user_data = (void *)dev;
dev_data->tx.state = I2S_STATE_READY;
} else {
/* For RX, DMA reads from FIFO whenever data present */
config.fifo.fifoWatermark = 0;
memcpy(&dev_data->rx.cfg, i2s_cfg, sizeof(struct i2s_config));
LOG_DBG("rx slab free_list = 0x%x",
(uint32_t)i2s_cfg->mem_slab->free_list);
LOG_DBG("rx slab num_blocks = %d",
(uint32_t)i2s_cfg->mem_slab->info.num_blocks);
LOG_DBG("rx slab block_size = %d",
(uint32_t)i2s_cfg->mem_slab->info.block_size);
LOG_DBG("rx slab buffer = 0x%x",
(uint32_t)i2s_cfg->mem_slab->buffer);
/* set bit clock divider */
SAI_RxSetConfig(base, &config);
dev_data->rx.start_channel = config.startChannel;
SAI_RxSetBitClockRate(base, mclk,
i2s_cfg->frame_clk_freq,
word_size_bits,
i2s_cfg->channels);
LOG_DBG("rx start_channel = %d", dev_data->rx.start_channel);
/*set up dma settings*/
dev_data->rx.dma_cfg.source_data_size = word_size_bits / 8;
dev_data->rx.dma_cfg.dest_data_size = word_size_bits / 8;
dev_data->rx.dma_cfg.source_burst_length =
i2s_cfg->word_size / 8;
dev_data->rx.dma_cfg.dest_burst_length =
i2s_cfg->word_size / 8;
dev_data->rx.dma_cfg.user_data = (void *)dev;
dev_data->rx.state = I2S_STATE_READY;
}
return 0;
}
const struct i2s_config *i2s_mcux_config_get(const struct device *dev,
enum i2s_dir dir)
{
struct i2s_dev_data *dev_data = dev->data;
if (dir == I2S_DIR_RX) {
return &dev_data->rx.cfg;
}
return &dev_data->tx.cfg;
}
static int i2s_tx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
/* retrieve buffer from input queue */
ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("No buffer in input queue to start");
return -EIO;
}
LOG_DBG("tx stream start");
/* Driver keeps track of how many DMA blocks can be loaded to the DMA */
strm->free_tx_dma_blocks = MAX_TX_DMA_BLOCKS;
/* Configure the DMA with the first TX block */
struct dma_block_config *blk_cfg = &strm->dma_block;
memset(blk_cfg, 0, sizeof(struct dma_block_config));
uint32_t data_path = strm->start_channel;
blk_cfg->dest_address = (uint32_t)&base->TDR[data_path];
blk_cfg->source_address = (uint32_t)buffer;
blk_cfg->block_size = strm->cfg.block_size;
blk_cfg->dest_scatter_en = 1;
strm->dma_cfg.block_count = 1;
strm->dma_cfg.head_block = &strm->dma_block;
strm->dma_cfg.user_data = (void *)dev;
(strm->free_tx_dma_blocks)--;
dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg);
/* put buffer in output queue */
ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in output queue");
return ret;
}
uint8_t blocks_queued;
ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued);
if (ret) {
LOG_ERR("i2s_tx_reload_multiple_dma_blocks() failed (%d)", ret);
return ret;
}
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("dma_start failed (%d)", ret);
return ret;
}
/* Enable DMA enable bit */
SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->TCR3 |= I2S_TCR3_TCE(1UL << strm->start_channel);
/* Enable SAI Tx clock */
SAI_TxEnable(base, true);
return 0;
}
static int i2s_rx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer;
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
const struct device *dev_dma = dev_data->dev_dma;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
uint8_t num_of_bufs;
num_of_bufs = k_mem_slab_num_free_get(strm->cfg.mem_slab);
/*
* Need at least NUM_DMA_BLOCKS_RX_PREP buffers on the RX memory slab
* for reliable DMA reception.
*/
if (num_of_bufs < NUM_DMA_BLOCKS_RX_PREP) {
return -EINVAL;
}
/* allocate 1st receive buffer from SLAB */
ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer,
K_NO_WAIT);
if (ret != 0) {
LOG_DBG("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
/* Configure DMA block */
struct dma_block_config *blk_cfg = &strm->dma_block;
memset(blk_cfg, 0, sizeof(struct dma_block_config));
uint32_t data_path = strm->start_channel;
blk_cfg->dest_address = (uint32_t)buffer;
blk_cfg->source_address = (uint32_t)&base->RDR[data_path];
blk_cfg->block_size = strm->cfg.block_size;
blk_cfg->source_gather_en = 1;
strm->dma_cfg.block_count = 1;
strm->dma_cfg.head_block = &strm->dma_block;
strm->dma_cfg.user_data = (void *)dev;
dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg);
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in input queue, ret1 %d", ret);
return ret;
}
/* prep DMA for each of remaining (NUM_DMA_BLOCKS_RX_PREP-1) buffers */
for (int i = 0; i < NUM_DMA_BLOCKS_RX_PREP - 1; i++) {
/* allocate receive buffer from SLAB */
ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer,
K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
ret = dma_reload(dev_dma, strm->dma_channel,
(uint32_t)&base->RDR[data_path],
(uint32_t)buffer, blk_cfg->block_size);
if (ret != 0) {
LOG_ERR("dma_reload() failed with error 0x%x", ret);
return ret;
}
/* put buffer in input queue */
ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in input queue, ret2 %d",
ret);
return ret;
}
}
LOG_DBG("Starting DMA Ch%u", strm->dma_channel);
ret = dma_start(dev_dma, strm->dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)", strm->dma_channel,
ret);
return ret;
}
/* Enable DMA enable bit */
SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->RCR3 |= I2S_RCR3_RCE(1UL << strm->start_channel);
/* Enable SAI Rx clock */
SAI_RxEnable(base, true);
return 0;
}
static int i2s_mcux_trigger(const struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm;
unsigned int key;
int ret = 0;
if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
}
strm = (dir == I2S_DIR_TX) ? &dev_data->tx : &dev_data->rx;
key = irq_lock();
switch (cmd) {
case I2S_TRIGGER_START:
if (strm->state != I2S_STATE_READY) {
LOG_ERR("START trigger: invalid state %u",
strm->state);
ret = -EIO;
break;
}
if (dir == I2S_DIR_TX) {
ret = i2s_tx_stream_start(dev);
} else {
ret = i2s_rx_stream_start(dev);
}
if (ret < 0) {
LOG_DBG("START trigger failed %d", ret);
ret = -EIO;
break;
}
strm->state = I2S_STATE_RUNNING;
strm->last_block = false;
break;
case I2S_TRIGGER_DROP:
if (strm->state == I2S_STATE_NOT_READY) {
LOG_ERR("DROP trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_tx_stream_disable(dev, true);
} else {
i2s_rx_stream_disable(dev, true, true);
}
break;
case I2S_TRIGGER_STOP:
if (strm->state != I2S_STATE_RUNNING) {
LOG_ERR("STOP trigger: invalid state %d", strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_STOPPING;
strm->last_block = true;
break;
case I2S_TRIGGER_DRAIN:
if (strm->state != I2S_STATE_RUNNING) {
LOG_ERR("DRAIN/STOP trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_STOPPING;
break;
case I2S_TRIGGER_PREPARE:
if (strm->state != I2S_STATE_ERROR) {
LOG_ERR("PREPARE trigger: invalid state %d",
strm->state);
ret = -EIO;
break;
}
strm->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_tx_stream_disable(dev, true);
} else {
i2s_rx_stream_disable(dev, true, true);
}
break;
default:
LOG_ERR("Unsupported trigger command");
ret = -EINVAL;
}
irq_unlock(key);
return ret;
}
static int i2s_mcux_read(const struct device *dev, void **mem_block,
size_t *size)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->rx;
void *buffer;
int status, ret = 0;
LOG_DBG("i2s_mcux_read");
if (strm->state == I2S_STATE_NOT_READY) {
LOG_ERR("invalid state %d", strm->state);
return -EIO;
}
status = k_msgq_get(&strm->out_queue, &buffer,
SYS_TIMEOUT_MS(strm->cfg.timeout));
if (status != 0) {
if (strm->state == I2S_STATE_ERROR) {
ret = -EIO;
} else {
LOG_DBG("need retry");
ret = -EAGAIN;
}
return ret;
}
*mem_block = buffer;
*size = strm->cfg.block_size;
return 0;
}
static int i2s_mcux_write(const struct device *dev, void *mem_block,
size_t size)
{
struct i2s_dev_data *dev_data = dev->data;
struct stream *strm = &dev_data->tx;
int ret;
LOG_DBG("i2s_mcux_write");
if (strm->state != I2S_STATE_RUNNING &&
strm->state != I2S_STATE_READY) {
LOG_ERR("invalid state (%d)", strm->state);
return -EIO;
}
ret = k_msgq_put(&strm->in_queue, &mem_block,
SYS_TIMEOUT_MS(strm->cfg.timeout));
if (ret) {
LOG_DBG("k_msgq_put returned code %d", ret);
return ret;
}
return ret;
}
static void sai_driver_irq(const struct device *dev)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
if ((base->TCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) {
/* Clear FIFO error flag to continue transfer */
SAI_TxClearStatusFlags(base, I2S_TCSR_FEF_MASK);
/* Reset FIFO for safety */
SAI_TxSoftwareReset(base, kSAI_ResetTypeFIFO);
LOG_DBG("sai tx error occurred");
}
if ((base->RCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) {
/* Clear FIFO error flag to continue transfer */
SAI_RxClearStatusFlags(base, I2S_RCSR_FEF_MASK);
/* Reset FIFO for safety */
SAI_RxSoftwareReset(base, kSAI_ResetTypeFIFO);
LOG_DBG("sai rx error occurred");
}
}
/* clear IRQ sources atm */
static void i2s_mcux_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
if ((base->RCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) {
sai_driver_irq(dev);
}
if ((base->TCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) {
sai_driver_irq(dev);
}
/*
* Add for ARM errata 838869, affects Cortex-M4,
* Cortex-M4F Store immediate overlapping exception return operation
* might vector to incorrect interrupt
*/
#if defined __CORTEX_M && (__CORTEX_M == 4U)
barrier_dsync_fence_full();
#endif
}
static void audio_clock_settings(const struct device *dev)
{
clock_audio_pll_config_t audioPllConfig;
const struct i2s_mcux_config *dev_cfg = dev->config;
uint32_t clock_name = (uint32_t) dev_cfg->clk_sub_sys;
/*Clock setting for SAI*/
imxrt_audio_codec_pll_init(clock_name, dev_cfg->clk_src,
dev_cfg->clk_pre_div, dev_cfg->clk_src_div);
#ifdef CONFIG_SOC_SERIES_IMX_RT11XX
audioPllConfig.loopDivider = dev_cfg->pll_lp;
audioPllConfig.postDivider = dev_cfg->pll_pd;
audioPllConfig.numerator = dev_cfg->pll_num;
audioPllConfig.denominator = dev_cfg->pll_den;
audioPllConfig.ssEnable = false;
#elif defined CONFIG_SOC_SERIES_IMX_RT10XX
audioPllConfig.src = dev_cfg->pll_src;
audioPllConfig.loopDivider = dev_cfg->pll_lp;
audioPllConfig.postDivider = dev_cfg->pll_pd;
audioPllConfig.numerator = dev_cfg->pll_num;
audioPllConfig.denominator = dev_cfg->pll_den;
#else
#error Initialize SOC Series-specific clock_audio_pll_config_t
#endif /* CONFIG_SOC_SERIES */
CLOCK_InitAudioPll(&audioPllConfig);
}
static int i2s_mcux_initialize(const struct device *dev)
{
const struct i2s_mcux_config *dev_cfg = dev->config;
I2S_Type *base = (I2S_Type *)dev_cfg->base;
struct i2s_dev_data *dev_data = dev->data;
uint32_t mclk;
int err;
if (!dev_data->dev_dma) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
/* Initialize the buffer queues */
k_msgq_init(&dev_data->tx.in_queue, (char *)dev_data->tx_in_msgs,
sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT);
k_msgq_init(&dev_data->rx.in_queue, (char *)dev_data->rx_in_msgs,
sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT);
k_msgq_init(&dev_data->tx.out_queue, (char *)dev_data->tx_out_msgs,
sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT);
k_msgq_init(&dev_data->rx.out_queue, (char *)dev_data->rx_out_msgs,
sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT);
/* register ISR */
dev_cfg->irq_connect(dev);
/* pinctrl */
err = pinctrl_apply_state(dev_cfg->pinctrl, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("mclk pinctrl setup failed (%d)", err);
return err;
}
/*clock configuration*/
audio_clock_settings(dev);
SAI_Init(base);
dev_data->tx.state = I2S_STATE_NOT_READY;
dev_data->rx.state = I2S_STATE_NOT_READY;
#if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \
(defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER))
sai_master_clock_t mclkConfig = {
#if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)
.mclkOutputEnable = true,
#if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && \
(FSL_FEATURE_SAI_HAS_NO_MCR_MICS))
.mclkSource = kSAI_MclkSourceSysclk,
#endif
#endif
};
#endif
get_mclk_rate(dev, &mclk);
/* master clock configurations */
#if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \
(defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER))
#if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \
(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)
mclkConfig.mclkHz = mclk;
mclkConfig.mclkSourceClkHz = mclk;
#endif
SAI_SetMasterClockConfig(base, &mclkConfig);
#endif
LOG_INF("Device %s initialized", dev->name);
return 0;
}
static const struct i2s_driver_api i2s_mcux_driver_api = {
.configure = i2s_mcux_config,
.read = i2s_mcux_read,
.write = i2s_mcux_write,
.config_get = i2s_mcux_config_get,
.trigger = i2s_mcux_trigger,
};
#define I2S_MCUX_INIT(i2s_id) \
static void i2s_irq_connect_##i2s_id(const struct device *dev); \
\
PINCTRL_DT_INST_DEFINE(i2s_id); \
\
static const struct i2s_mcux_config i2s_##i2s_id##_config = { \
.base = (I2S_Type *)DT_INST_REG_ADDR(i2s_id), \
.clk_src = DT_INST_PROP(i2s_id, clock_mux), \
.clk_pre_div = DT_INST_PROP(i2s_id, pre_div), \
.clk_src_div = DT_INST_PROP(i2s_id, podf), \
.pll_src = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, src, value), \
.pll_lp = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, lp, value), \
.pll_pd = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, pd, value), \
.pll_num = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, num, value), \
.pll_den = \
DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \
pll_clocks, den, value), \
.mclk_pin_mask = \
DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \
pinmuxes, 0, function), \
.mclk_pin_offset = \
DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \
pinmuxes, 0, pin), \
.clk_sub_sys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL_BY_IDX(i2s_id, 0, name), \
.ccm_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i2s_id)), \
.irq_connect = i2s_irq_connect_##i2s_id, \
.pinctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(i2s_id), \
.tx_sync_mode = \
DT_INST_PROP(i2s_id, nxp_tx_sync_mode), \
.rx_sync_mode = \
DT_INST_PROP(i2s_id, nxp_rx_sync_mode), \
.tx_channel = DT_INST_PROP(i2s_id, nxp_tx_channel), \
}; \
\
static struct i2s_dev_data i2s_##i2s_id##_data = { \
.dev_dma = DEVICE_DT_GET( \
DT_INST_DMAS_CTLR_BY_NAME(i2s_id, rx)), \
.tx = { \
.dma_channel = \
DT_INST_PROP(i2s_id, nxp_tx_dma_channel), \
.dma_cfg = { \
.source_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dest_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dma_callback = i2s_dma_tx_callback, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_##i2s_id##_data.tx.dma_block, \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(i2s_id, \
tx, source), \
}, \
}, \
.rx = { \
.dma_channel = \
DT_INST_PROP(i2s_id, nxp_rx_dma_channel), \
.dma_cfg = { \
.source_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dest_burst_length = \
CONFIG_I2S_EDMA_BURST_SIZE, \
.dma_callback = i2s_dma_rx_callback, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&i2s_##i2s_id##_data.rx.dma_block, \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(i2s_id, \
rx, source), \
}, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(i2s_id, &i2s_mcux_initialize, NULL, \
&i2s_##i2s_id##_data, &i2s_##i2s_id##_config, \
POST_KERNEL, \
CONFIG_I2S_INIT_PRIORITY, &i2s_mcux_driver_api); \
\
static void i2s_irq_connect_##i2s_id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(i2s_id, 0, irq), \
DT_INST_IRQ_BY_IDX(i2s_id, 0, priority), \
i2s_mcux_isr, \
DEVICE_DT_INST_GET(i2s_id), 0); \
irq_enable(DT_INST_IRQN(i2s_id)); \
}
DT_INST_FOREACH_STATUS_OKAY(I2S_MCUX_INIT)