zephyr/subsys/fs/fat_fs.c
Armin Brauns 63f713a170 fs: allow fs_mkfs() for FATFS without auto-format on mounting
Users should be able to call fs_mkfs() manually even if FS_FATFS_MOUNT_MKFS
is disabled.

Signed-off-by: Armin Brauns <armin.brauns@embedded-solutions.at>
2024-04-01 11:04:56 +01:00

531 lines
11 KiB
C

/*
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <errno.h>
#include <zephyr/init.h>
#include <zephyr/fs/fs.h>
#include <zephyr/fs/fs_sys.h>
#include <zephyr/sys/__assert.h>
#include <ff.h>
#define FATFS_MAX_FILE_NAME 12 /* Uses 8.3 SFN */
/* Memory pool for FatFs directory objects */
K_MEM_SLAB_DEFINE(fatfs_dirp_pool, sizeof(DIR),
CONFIG_FS_FATFS_NUM_DIRS, 4);
/* Memory pool for FatFs file objects */
K_MEM_SLAB_DEFINE(fatfs_filep_pool, sizeof(FIL),
CONFIG_FS_FATFS_NUM_FILES, 4);
static int translate_error(int error)
{
switch (error) {
case FR_OK:
return 0;
case FR_NO_FILE:
case FR_NO_PATH:
case FR_INVALID_NAME:
return -ENOENT;
case FR_DENIED:
return -EACCES;
case FR_EXIST:
return -EEXIST;
case FR_INVALID_OBJECT:
return -EBADF;
case FR_WRITE_PROTECTED:
return -EROFS;
case FR_INVALID_DRIVE:
case FR_NOT_ENABLED:
case FR_NO_FILESYSTEM:
return -ENODEV;
case FR_NOT_ENOUGH_CORE:
return -ENOMEM;
case FR_TOO_MANY_OPEN_FILES:
return -EMFILE;
case FR_INVALID_PARAMETER:
return -EINVAL;
case FR_LOCKED:
case FR_TIMEOUT:
case FR_MKFS_ABORTED:
case FR_DISK_ERR:
case FR_INT_ERR:
case FR_NOT_READY:
return -EIO;
}
return -EIO;
}
/* Converts a zephyr path like /SD:/foo into a path digestible by FATFS by stripping the
* leading slash, i.e. SD:/foo.
*/
static const char *translate_path(const char *path)
{
/* this is guaranteed by the fs subsystem */
__ASSERT_NO_MSG(path[0] == '/');
return &path[1];
}
static uint8_t translate_flags(fs_mode_t flags)
{
uint8_t fat_mode = 0;
fat_mode |= (flags & FS_O_READ) ? FA_READ : 0;
fat_mode |= (flags & FS_O_WRITE) ? FA_WRITE : 0;
fat_mode |= (flags & FS_O_CREATE) ? FA_OPEN_ALWAYS : 0;
/* NOTE: FA_APPEND is not translated because FAT FS does not
* support append semantics of the Zephyr, where file position
* is forwarded to the end before each write, the fatfs_write
* will be tasked with setting a file position to the end,
* if FA_APPEND flag is present.
*/
return fat_mode;
}
static int fatfs_open(struct fs_file_t *zfp, const char *file_name,
fs_mode_t mode)
{
FRESULT res;
uint8_t fs_mode;
void *ptr;
if (k_mem_slab_alloc(&fatfs_filep_pool, &ptr, K_NO_WAIT) == 0) {
(void)memset(ptr, 0, sizeof(FIL));
zfp->filep = ptr;
} else {
return -ENOMEM;
}
fs_mode = translate_flags(mode);
res = f_open(zfp->filep, translate_path(file_name), fs_mode);
if (res != FR_OK) {
k_mem_slab_free(&fatfs_filep_pool, ptr);
zfp->filep = NULL;
}
return translate_error(res);
}
static int fatfs_close(struct fs_file_t *zfp)
{
FRESULT res;
res = f_close(zfp->filep);
/* Free file ptr memory */
k_mem_slab_free(&fatfs_filep_pool, zfp->filep);
zfp->filep = NULL;
return translate_error(res);
}
static int fatfs_unlink(struct fs_mount_t *mountp, const char *path)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
res = f_unlink(translate_path(path));
res = translate_error(res);
#endif
return res;
}
static int fatfs_rename(struct fs_mount_t *mountp, const char *from,
const char *to)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
FILINFO fno;
/* Check if 'to' path exists; remove it if it does */
res = f_stat(translate_path(to), &fno);
if (FR_OK == res) {
res = f_unlink(translate_path(to));
if (FR_OK != res)
return translate_error(res);
}
res = f_rename(translate_path(from), translate_path(to));
res = translate_error(res);
#endif
return res;
}
static ssize_t fatfs_read(struct fs_file_t *zfp, void *ptr, size_t size)
{
FRESULT res;
unsigned int br;
res = f_read(zfp->filep, ptr, size, &br);
if (res != FR_OK) {
return translate_error(res);
}
return br;
}
static ssize_t fatfs_write(struct fs_file_t *zfp, const void *ptr, size_t size)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
unsigned int bw;
off_t pos = f_size((FIL *)zfp->filep);
res = FR_OK;
/* FA_APPEND flag means that file has been opened for append.
* The FAT FS write does not support the POSIX append semantics,
* to always write at the end of file, so set file position
* at the end before each write if FA_APPEND is set.
*/
if (zfp->flags & FS_O_APPEND) {
res = f_lseek(zfp->filep, pos);
}
if (res == FR_OK) {
res = f_write(zfp->filep, ptr, size, &bw);
}
if (res != FR_OK) {
res = translate_error(res);
} else {
res = bw;
}
#endif
return res;
}
static int fatfs_seek(struct fs_file_t *zfp, off_t offset, int whence)
{
FRESULT res = FR_OK;
off_t pos;
switch (whence) {
case FS_SEEK_SET:
pos = offset;
break;
case FS_SEEK_CUR:
pos = f_tell((FIL *)zfp->filep) + offset;
break;
case FS_SEEK_END:
pos = f_size((FIL *)zfp->filep) + offset;
break;
default:
return -EINVAL;
}
if ((pos < 0) || (pos > f_size((FIL *)zfp->filep))) {
return -EINVAL;
}
res = f_lseek(zfp->filep, pos);
return translate_error(res);
}
static off_t fatfs_tell(struct fs_file_t *zfp)
{
return f_tell((FIL *)zfp->filep);
}
static int fatfs_truncate(struct fs_file_t *zfp, off_t length)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
off_t cur_length = f_size((FIL *)zfp->filep);
/* f_lseek expands file if new position is larger than file size */
res = f_lseek(zfp->filep, length);
if (res != FR_OK) {
return translate_error(res);
}
if (length < cur_length) {
res = f_truncate(zfp->filep);
} else {
/*
* Get actual length after expansion. This could be
* less if there was not enough space in the volume
* to expand to the requested length
*/
length = f_tell((FIL *)zfp->filep);
res = f_lseek(zfp->filep, cur_length);
if (res != FR_OK) {
return translate_error(res);
}
/*
* The FS module does caching and optimization of
* writes. Here we write 1 byte at a time to avoid
* using additional code and memory for doing any
* optimization.
*/
unsigned int bw;
uint8_t c = 0U;
for (int i = cur_length; i < length; i++) {
res = f_write(zfp->filep, &c, 1, &bw);
if (res != FR_OK) {
break;
}
}
}
res = translate_error(res);
#endif
return res;
}
static int fatfs_sync(struct fs_file_t *zfp)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
res = f_sync(zfp->filep);
res = translate_error(res);
#endif
return res;
}
static int fatfs_mkdir(struct fs_mount_t *mountp, const char *path)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
res = f_mkdir(translate_path(path));
res = translate_error(res);
#endif
return res;
}
static int fatfs_opendir(struct fs_dir_t *zdp, const char *path)
{
FRESULT res;
void *ptr;
if (k_mem_slab_alloc(&fatfs_dirp_pool, &ptr, K_NO_WAIT) == 0) {
(void)memset(ptr, 0, sizeof(DIR));
zdp->dirp = ptr;
} else {
return -ENOMEM;
}
res = f_opendir(zdp->dirp, translate_path(path));
if (res != FR_OK) {
k_mem_slab_free(&fatfs_dirp_pool, ptr);
zdp->dirp = NULL;
}
return translate_error(res);
}
static int fatfs_readdir(struct fs_dir_t *zdp, struct fs_dirent *entry)
{
FRESULT res;
FILINFO fno;
res = f_readdir(zdp->dirp, &fno);
if (res == FR_OK) {
strcpy(entry->name, fno.fname);
if (entry->name[0] != 0) {
entry->type = ((fno.fattrib & AM_DIR) ?
FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
entry->size = fno.fsize;
}
}
return translate_error(res);
}
static int fatfs_closedir(struct fs_dir_t *zdp)
{
FRESULT res;
res = f_closedir(zdp->dirp);
/* Free file ptr memory */
k_mem_slab_free(&fatfs_dirp_pool, zdp->dirp);
return translate_error(res);
}
static int fatfs_stat(struct fs_mount_t *mountp,
const char *path, struct fs_dirent *entry)
{
FRESULT res;
FILINFO fno;
res = f_stat(translate_path(path), &fno);
if (res == FR_OK) {
entry->type = ((fno.fattrib & AM_DIR) ?
FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
strcpy(entry->name, fno.fname);
entry->size = fno.fsize;
}
return translate_error(res);
}
static int fatfs_statvfs(struct fs_mount_t *mountp,
const char *path, struct fs_statvfs *stat)
{
int res = -ENOTSUP;
#if !defined(CONFIG_FS_FATFS_READ_ONLY)
FATFS *fs;
DWORD f_bfree = 0;
res = f_getfree(translate_path(mountp->mnt_point), &f_bfree, &fs);
if (res != FR_OK) {
return -EIO;
}
stat->f_bfree = f_bfree;
/*
* If FF_MIN_SS and FF_MAX_SS differ, variable sector size support is
* enabled and the file system object structure contains the actual sector
* size, otherwise it is configured to a fixed value give by FF_MIN_SS.
*/
#if FF_MAX_SS != FF_MIN_SS
stat->f_bsize = fs->ssize;
#else
stat->f_bsize = FF_MIN_SS;
#endif
stat->f_frsize = fs->csize * stat->f_bsize;
stat->f_blocks = (fs->n_fatent - 2);
res = translate_error(res);
#endif
return res;
}
static int fatfs_mount(struct fs_mount_t *mountp)
{
FRESULT res;
res = f_mount((FATFS *)mountp->fs_data, translate_path(mountp->mnt_point), 1);
#if defined(CONFIG_FS_FATFS_MOUNT_MKFS)
if (res == FR_NO_FILESYSTEM &&
(mountp->flags & FS_MOUNT_FLAG_READ_ONLY) != 0) {
return -EROFS;
}
/* If no file system found then create one */
if (res == FR_NO_FILESYSTEM &&
(mountp->flags & FS_MOUNT_FLAG_NO_FORMAT) == 0) {
uint8_t work[FF_MAX_SS];
MKFS_PARM mkfs_opt = {
.fmt = FM_ANY | FM_SFD, /* Any suitable FAT */
.n_fat = 1, /* One FAT fs table */
.align = 0, /* Get sector size via diskio query */
.n_root = CONFIG_FS_FATFS_MAX_ROOT_ENTRIES,
.au_size = 0 /* Auto calculate cluster size */
};
res = f_mkfs(translate_path(mountp->mnt_point), &mkfs_opt, work, sizeof(work));
if (res == FR_OK) {
res = f_mount((FATFS *)mountp->fs_data,
translate_path(mountp->mnt_point), 1);
}
}
#endif /* CONFIG_FS_FATFS_MOUNT_MKFS */
if (res == FR_OK) {
mountp->flags |= FS_MOUNT_FLAG_USE_DISK_ACCESS;
}
return translate_error(res);
}
static int fatfs_unmount(struct fs_mount_t *mountp)
{
FRESULT res;
res = f_mount(NULL, translate_path(mountp->mnt_point), 0);
return translate_error(res);
}
#if defined(CONFIG_FILE_SYSTEM_MKFS) && defined(CONFIG_FS_FATFS_MKFS)
static MKFS_PARM def_cfg = {
.fmt = FM_ANY | FM_SFD, /* Any suitable FAT */
.n_fat = 1, /* One FAT fs table */
.align = 0, /* Get sector size via diskio query */
.n_root = CONFIG_FS_FATFS_MAX_ROOT_ENTRIES,
.au_size = 0 /* Auto calculate cluster size */
};
static int fatfs_mkfs(uintptr_t dev_id, void *cfg, int flags)
{
FRESULT res;
uint8_t work[FF_MAX_SS];
MKFS_PARM *mkfs_opt = &def_cfg;
if (cfg != NULL) {
mkfs_opt = (MKFS_PARM *)cfg;
}
res = f_mkfs((char *)dev_id, mkfs_opt, work, sizeof(work));
return translate_error(res);
}
#endif /* CONFIG_FILE_SYSTEM_MKFS && FS_FATFS_MKFS */
/* File system interface */
static const struct fs_file_system_t fatfs_fs = {
.open = fatfs_open,
.close = fatfs_close,
.read = fatfs_read,
.write = fatfs_write,
.lseek = fatfs_seek,
.tell = fatfs_tell,
.truncate = fatfs_truncate,
.sync = fatfs_sync,
.opendir = fatfs_opendir,
.readdir = fatfs_readdir,
.closedir = fatfs_closedir,
.mount = fatfs_mount,
.unmount = fatfs_unmount,
.unlink = fatfs_unlink,
.rename = fatfs_rename,
.mkdir = fatfs_mkdir,
.stat = fatfs_stat,
.statvfs = fatfs_statvfs,
#if defined(CONFIG_FILE_SYSTEM_MKFS) && defined(CONFIG_FS_FATFS_MKFS)
.mkfs = fatfs_mkfs,
#endif
};
static int fatfs_init(void)
{
return fs_register(FS_FATFS, &fatfs_fs);
}
SYS_INIT(fatfs_init, POST_KERNEL, CONFIG_FILE_SYSTEM_INIT_PRIORITY);