905209ba7d
The mempool blocking implementation was mixing tick and millisecond APIs. Get it right. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
221 lines
4.6 KiB
C
221 lines
4.6 KiB
C
/*
|
|
* Copyright (c) 2017 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <init.h>
|
|
#include <string.h>
|
|
#include <sys/__assert.h>
|
|
#include <sys/math_extras.h>
|
|
#include <stdbool.h>
|
|
|
|
static struct k_spinlock lock;
|
|
|
|
static struct k_mem_pool *get_pool(int id)
|
|
{
|
|
extern struct k_mem_pool _k_mem_pool_list_start[];
|
|
return &_k_mem_pool_list_start[id];
|
|
}
|
|
|
|
static int pool_id(struct k_mem_pool *pool)
|
|
{
|
|
extern struct k_mem_pool _k_mem_pool_list_start[];
|
|
return pool - &_k_mem_pool_list_start[0];
|
|
}
|
|
|
|
static void k_mem_pool_init(struct k_mem_pool *p)
|
|
{
|
|
z_waitq_init(&p->wait_q);
|
|
z_sys_mem_pool_base_init(&p->base);
|
|
}
|
|
|
|
int init_static_pools(struct device *unused)
|
|
{
|
|
ARG_UNUSED(unused);
|
|
|
|
Z_STRUCT_SECTION_FOREACH(k_mem_pool, p) {
|
|
k_mem_pool_init(p);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_static_pools, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
int k_mem_pool_alloc(struct k_mem_pool *p, struct k_mem_block *block,
|
|
size_t size, s32_t timeout)
|
|
{
|
|
int ret;
|
|
s64_t end = 0;
|
|
|
|
__ASSERT(!(z_is_in_isr() && timeout != K_NO_WAIT), "");
|
|
|
|
if (timeout > 0) {
|
|
end = k_uptime_get() + timeout;
|
|
}
|
|
|
|
while (true) {
|
|
u32_t level_num, block_num;
|
|
|
|
/* There is a "managed race" in alloc that can fail
|
|
* (albeit in a well-defined way, see comments there)
|
|
* with -EAGAIN when simultaneous allocations happen.
|
|
* Retry exactly once before sleeping to resolve it.
|
|
* If we're so contended that it fails twice, then we
|
|
* clearly want to block.
|
|
*/
|
|
for (int i = 0; i < 2; i++) {
|
|
ret = z_sys_mem_pool_block_alloc(&p->base, size,
|
|
&level_num, &block_num,
|
|
&block->data);
|
|
if (ret != -EAGAIN) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret == -EAGAIN) {
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
block->id.pool = pool_id(p);
|
|
block->id.level = level_num;
|
|
block->id.block = block_num;
|
|
|
|
if (ret == 0 || timeout == K_NO_WAIT ||
|
|
ret != -ENOMEM) {
|
|
return ret;
|
|
}
|
|
|
|
z_pend_curr_unlocked(&p->wait_q, timeout);
|
|
|
|
if (timeout != K_FOREVER) {
|
|
timeout = end - k_uptime_get();
|
|
if (timeout <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
void k_mem_pool_free_id(struct k_mem_block_id *id)
|
|
{
|
|
int need_sched = 0;
|
|
struct k_mem_pool *p = get_pool(id->pool);
|
|
|
|
z_sys_mem_pool_block_free(&p->base, id->level, id->block);
|
|
|
|
/* Wake up anyone blocked on this pool and let them repeat
|
|
* their allocation attempts
|
|
*
|
|
* (Note that this spinlock only exists because z_unpend_all()
|
|
* is unsynchronized. Maybe we want to put the lock into the
|
|
* wait_q instead and make the API safe?)
|
|
*/
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
need_sched = z_unpend_all(&p->wait_q);
|
|
|
|
if (need_sched != 0) {
|
|
z_reschedule(&lock, key);
|
|
} else {
|
|
k_spin_unlock(&lock, key);
|
|
}
|
|
}
|
|
|
|
void k_mem_pool_free(struct k_mem_block *block)
|
|
{
|
|
k_mem_pool_free_id(&block->id);
|
|
}
|
|
|
|
void *k_mem_pool_malloc(struct k_mem_pool *pool, size_t size)
|
|
{
|
|
struct k_mem_block block;
|
|
|
|
/*
|
|
* get a block large enough to hold an initial (hidden) block
|
|
* descriptor, as well as the space the caller requested
|
|
*/
|
|
if (size_add_overflow(size, sizeof(struct k_mem_block_id), &size)) {
|
|
return NULL;
|
|
}
|
|
if (k_mem_pool_alloc(pool, &block, size, K_NO_WAIT) != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* save the block descriptor info at the start of the actual block */
|
|
(void)memcpy(block.data, &block.id, sizeof(struct k_mem_block_id));
|
|
|
|
/* return address of the user area part of the block to the caller */
|
|
return (char *)block.data + sizeof(struct k_mem_block_id);
|
|
}
|
|
|
|
void k_free(void *ptr)
|
|
{
|
|
if (ptr != NULL) {
|
|
/* point to hidden block descriptor at start of block */
|
|
ptr = (char *)ptr - sizeof(struct k_mem_block_id);
|
|
|
|
/* return block to the heap memory pool */
|
|
k_mem_pool_free_id(ptr);
|
|
}
|
|
}
|
|
|
|
#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
|
|
|
|
/*
|
|
* Heap is defined using HEAP_MEM_POOL_SIZE configuration option.
|
|
*
|
|
* This module defines the heap memory pool and the _HEAP_MEM_POOL symbol
|
|
* that has the address of the associated memory pool struct.
|
|
*/
|
|
|
|
K_MEM_POOL_DEFINE(_heap_mem_pool, CONFIG_HEAP_MEM_POOL_MIN_SIZE,
|
|
CONFIG_HEAP_MEM_POOL_SIZE, 1, 4);
|
|
#define _HEAP_MEM_POOL (&_heap_mem_pool)
|
|
|
|
void *k_malloc(size_t size)
|
|
{
|
|
return k_mem_pool_malloc(_HEAP_MEM_POOL, size);
|
|
}
|
|
|
|
void *k_calloc(size_t nmemb, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t bounds;
|
|
|
|
if (size_mul_overflow(nmemb, size, &bounds)) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = k_malloc(bounds);
|
|
if (ret != NULL) {
|
|
(void)memset(ret, 0, bounds);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void k_thread_system_pool_assign(struct k_thread *thread)
|
|
{
|
|
thread->resource_pool = _HEAP_MEM_POOL;
|
|
}
|
|
#endif
|
|
|
|
void *z_thread_malloc(size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (_current->resource_pool != NULL) {
|
|
ret = k_mem_pool_malloc(_current->resource_pool, size);
|
|
} else {
|
|
ret = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|