zephyr/kernel/microkernel/k_queue.c
Inaky Perez-Gonzalez 8ddf82cf70 First commit
Signed-off-by:  <inaky.perez-gonzalez@intel.com>
2015-04-10 16:44:37 -07:00

352 lines
7.9 KiB
C

/* FIFO kernel services */
/*
* Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <microkernel/k_struct.h>
#include <minik.h>
#include <string.h>
#include <toolchain.h>
#include <sections.h>
/*******************************************************************************
*
* K_enqrpl - finish performing an incomplete FIFO enqueue request
*
* RETURNS: N/A
*/
void K_enqrpl(struct k_args *A)
{
if (A->Time.timer)
FREETIMER(A->Time.timer);
if (unlikely(A->Comm == ENQ_TMO)) {
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
} else
A->Time.rcode = RC_OK;
reset_state_bit(A->Ctxt.proc, TF_ENQU);
}
/*******************************************************************************
*
* K_enqreq - perform a FIFO enqueue request
*
* RETURNS: N/A
*/
void K_enqreq(struct k_args *A)
{
struct k_args *W;
struct que_struct *Q;
int Qid, n, w;
char *p, *q; /* Ski char->uint32_t ??? */
Qid = A->Args.q1.queue;
Q = K_QueList + OBJ_INDEX(Qid);
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
q = A->Args.q1.data;
n = Q->Nused;
if (n < Q->Nelms) {
W = Q->Waiters;
if (W) {
Q->Waiters = W->Forw;
p = W->Args.q1.data;
k_memcpy(p, q, w);
#ifndef LITE
if (W->Time.timer) {
force_timeout(W);
W->Comm = DEQ_RPL;
} else {
#endif
W->Time.rcode = RC_OK;
reset_state_bit(W->Ctxt.proc, TF_DEQU);
}
#ifndef LITE
}
#endif
else {
p = Q->Enqp;
k_memcpy(p, q, w);
p = (char *)((int)p + w);
if (p == Q->Endp)
Q->Enqp = Q->Base;
else
Q->Enqp = p;
Q->Nused = ++n;
#ifdef CONFIG_OBJECT_MONITOR
if (Q->Hmark < n)
Q->Hmark = n;
#endif
}
A->Time.rcode = RC_OK;
#ifdef CONFIG_OBJECT_MONITOR
Q->Count++;
#endif
} else {
if (likely(A->Time.ticks != TICKS_NONE)) {
A->Ctxt.proc = K_Task;
A->Prio = K_Task->Prio;
set_state_bit(K_Task, TF_ENQU);
INSERT_ELM(Q->Waiters, A);
#ifndef LITE
if (A->Time.ticks == TICKS_UNLIMITED)
A->Time.timer = NULL;
else {
A->Comm = ENQ_TMO;
enlist_timeout(A);
}
#endif
} else {
A->Time.rcode = RC_FAIL;
}
}
}
/*******************************************************************************
*
* _task_fifo_put - FIFO enqueue request
*
* This routine puts an entry at the end of the FIFO queue.
*
* RETURNS: RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively
*/
int _task_fifo_put(kfifo_t queue, /* FIFO queue */
void *data, /* ptr to data to add to queue */
int32_t time /* maximum number of ticks to wait */
)
{
struct k_args A;
A.Comm = ENQ_REQ;
A.Time.ticks = time;
A.Args.q1.data = (char *)data;
A.Args.q1.queue = queue;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}
/*******************************************************************************
*
* K_deqrpl - finish performing an incomplete FIFO dequeue request
*
* RETURNS: N/A
*/
void K_deqrpl(struct k_args *A)
{
if (A->Time.timer)
FREETIMER(A->Time.timer);
if (unlikely(A->Comm == DEQ_TMO)) {
REMOVE_ELM(A);
A->Time.rcode = RC_TIME;
} else {
A->Time.rcode = RC_OK;
}
reset_state_bit(A->Ctxt.proc, TF_DEQU);
}
/*******************************************************************************
*
* K_deqreq - perform FIFO dequeue request
*
* RETURNS: N/A
*/
void K_deqreq(struct k_args *A)
{
struct k_args *W;
struct que_struct *Q;
int Qid, n, w;
char *p, *q; /* idem */
Qid = A->Args.q1.queue;
Q = K_QueList + OBJ_INDEX(Qid);
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
p = A->Args.q1.data;
n = Q->Nused;
if (n) {
q = Q->Deqp;
k_memcpy(p, q, w);
q = (char *)((int)q + w);
if (q == Q->Endp)
Q->Deqp = Q->Base;
else
Q->Deqp = q;
A->Time.rcode = RC_OK;
W = Q->Waiters;
if (W) {
Q->Waiters = W->Forw;
p = Q->Enqp;
q = W->Args.q1.data;
w = OCTET_TO_SIZEOFUNIT(Q->Esize);
k_memcpy(p, q, w);
p = (char *)((int)p + w);
if (p == Q->Endp)
Q->Enqp = Q->Base;
else
Q->Enqp = p;
#ifndef LITE
if (W->Time.timer) {
force_timeout(W);
W->Comm = ENQ_RPL;
} else {
#endif
W->Time.rcode = RC_OK;
reset_state_bit(W->Ctxt.proc, TF_ENQU);
#ifndef LITE
}
#endif
#ifdef CONFIG_OBJECT_MONITOR
Q->Count++;
#endif
} else
Q->Nused = --n;
} else {
if (likely(A->Time.ticks != TICKS_NONE)) {
A->Ctxt.proc = K_Task;
A->Prio = K_Task->Prio;
set_state_bit(K_Task, TF_DEQU);
INSERT_ELM(Q->Waiters, A);
#ifndef LITE
if (A->Time.ticks == TICKS_UNLIMITED)
A->Time.timer = NULL;
else {
A->Comm = DEQ_TMO;
enlist_timeout(A);
}
#endif
} else {
A->Time.rcode = RC_FAIL;
}
}
}
/*******************************************************************************
*
* _task_fifo_get - FIFO dequeue request
*
* This routine tries to read a data element from the FIFO.
*
* If the FIFO is not empty, the oldest entry is removed and copied to the
* address provided by the caller.
*
* RETURNS: RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively
*/
int _task_fifo_get(kfifo_t queue, /* FIFO queue */
void *data, /* where to store FIFO entry */
int32_t time /* maximum number of ticks to wait */
)
{
struct k_args A;
A.Comm = DEQ_REQ;
A.Time.ticks = time;
A.Args.q1.data = (char *)data;
A.Args.q1.queue = queue;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}
/*******************************************************************************
*
* K_queue - perform miscellaneous FIFO request
*
* RETURNS: N/A
*/
void K_queue(struct k_args *A)
{
struct que_struct *Q;
int Qid;
Qid = A->Args.q1.queue;
Q = K_QueList + OBJ_INDEX(Qid);
if (A->Args.q1.size) {
if (Q->Nused) {
struct k_args *X;
while ((X = Q->Waiters)) {
Q->Waiters = X->Forw;
#ifndef LITE
if (likely(X->Time.timer)) {
force_timeout(X);
X->Comm = ENQ_RPL;
} else {
#endif
X->Time.rcode = RC_FAIL;
reset_state_bit(X->Ctxt.proc, TF_ENQU);
#ifndef LITE
}
#endif
}
}
Q->Nused = 0;
Q->Enqp = Q->Deqp = Q->Base;
A->Time.rcode = RC_OK;
} else
A->Time.rcode = Q->Nused;
}
/*******************************************************************************
*
* _task_fifo_ioctl - miscellaneous FIFO request
*
* Depending upon the chosen operation, this routine will ...
* 1. <op> = 0 : query the number of FIFO entries
* 2. <op> = 1 : purge the FIFO of its entries
*
* RETURNS: # of FIFO entries on query; RC_OK on purge
*/
int _task_fifo_ioctl(kfifo_t queue, /* FIFO queue */
int op /* 0: status query; 1: purge */
)
{
struct k_args A;
A.Comm = QUEUE;
A.Args.q1.queue = queue;
A.Args.q1.size = op;
KERNEL_ENTRY(&A);
return A.Time.rcode;
}