zephyr/drivers/ethernet/eth_xmc4xxx.c
Jukka Rissanen c5dc6542fd drivers: ethernet: xmc4xxx: Remove VLAN code as it is no longer needed
The VLAN packets are prepared in Ethernet L2 so no need to have
special handling in the driver.

Signed-off-by: Jukka Rissanen <jukka.rissanen@nordicsemi.no>
2024-03-28 09:41:38 +00:00

1132 lines
32 KiB
C

/* XMC4XXX Ethernet controller
*
* Copyright (c) 2023 SLB
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT infineon_xmc4xxx_ethernet
#include "eth.h"
#include <stdint.h>
#include <soc.h>
#include <zephyr/device.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/ptp_clock.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/gptp.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/phy.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/slist.h>
#include <zephyr/sys/util.h>
#include <ethernet/eth_stats.h>
#include <xmc_eth_mac.h>
#include <xmc_scu.h>
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(eth_xmc4xxx);
#define NUM_TX_DMA_DESCRIPTORS CONFIG_ETH_XMC4XXX_NUM_TX_DMA_DESCRIPTORS
#define NUM_RX_DMA_DESCRIPTORS CONFIG_ETH_XMC4XXX_NUM_RX_DMA_DESCRIPTORS
#define ETH_NODE DT_NODELABEL(eth)
#define PHY_NODE DT_PHANDLE_BY_IDX(ETH_NODE, phy, 0)
#define INFINEON_OUI_B0 0x00
#define INFINEON_OUI_B1 0x03
#define INFINEON_OUI_B2 0x19
#define MODULO_INC_TX(val) {(val) = (++(val) < NUM_TX_DMA_DESCRIPTORS) ? (val) : 0; }
#define MODULO_INC_RX(val) {(val) = (++(val) < NUM_RX_DMA_DESCRIPTORS) ? (val) : 0; }
#define IS_OWNED_BY_DMA_TX(desc) (((desc)->status & ETH_MAC_DMA_TDES0_OWN) != 0)
#define IS_OWNED_BY_DMA_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_OWN) != 0)
#define IS_START_OF_FRAME_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_FS) != 0)
#define IS_END_OF_FRAME_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_LS) != 0)
#define IS_TIMESTAMP_AVAILABLE_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_TSA) != 0)
#define IS_TIMESTAMP_AVAILABLE_TX(desc) (((desc)->status & ETH_MAC_DMA_TDES0_TTSS) != 0)
#define TOTAL_FRAME_LENGTH(desc) (FIELD_GET(ETH_MAC_DMA_RDES0_FL, (desc)->status) - 4)
#define ETH_STATUS_ERROR_TRANSMIT_EVENTS \
(XMC_ETH_MAC_EVENT_BUS_ERROR | XMC_ETH_MAC_EVENT_TRANSMIT_JABBER_TIMEOUT | \
XMC_ETH_MAC_EVENT_TRANSMIT_UNDERFLOW | XMC_ETH_MAC_EVENT_TRANSMIT_PROCESS_STOPPED)
#define ETH_STATUS_ERROR_RECEIVE_EVENTS \
(XMC_ETH_MAC_EVENT_BUS_ERROR | XMC_ETH_MAC_EVENT_RECEIVE_OVERFLOW)
#define ETH_STATUS_ALL_EVENTS \
(ETH_STATUS_ERROR_TRANSMIT_EVENTS | ETH_STATUS_ERROR_RECEIVE_EVENTS | \
XMC_ETH_MAC_EVENT_RECEIVE | XMC_ETH_MAC_EVENT_TRANSMIT | ETH_INTERRUPT_ENABLE_NIE_Msk | \
ETH_INTERRUPT_ENABLE_AIE_Msk)
#define ETH_MAC_DISABLE_MMC_INTERRUPT_MSK 0x03ffffffu
#define ETH_MAC_DISABLE_MMC_IPC_RECEIVE_INTERRUPT_MSK 0x3fff3fffu
#define ETH_STATUS_CLEARABLE_BITS 0x1e7ffu
#define ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK BIT(14)
#define ETH_RESET_TIMEOUT_USEC 200000u
#define ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC 100000u
#define ETH_LINK_SPEED_10M 0
#define ETH_LINK_SPEED_100M 1
#define ETH_LINK_DUPLEX_HALF 0
#define ETH_LINK_DUPLEX_FULL 1
#define ETH_PTP_CLOCK_FREQUENCY 50000000
#define ETH_PTP_RATE_ADJUST_RATIO_MIN 0.9
#define ETH_PTP_RATE_ADJUST_RATIO_MAX 1.1
struct eth_xmc4xxx_data {
struct net_if *iface;
uint8_t mac_addr[6];
struct k_sem tx_desc_sem;
bool link_up;
#if defined(CONFIG_NET_STATISTICS_ETHERNET)
struct net_stats_eth stats;
#endif
bool tx_frames_flushed;
uint16_t dma_desc_tx_head;
uint16_t dma_desc_rx_tail;
sys_slist_t tx_frame_list;
struct net_buf *rx_frag_list[NUM_RX_DMA_DESCRIPTORS];
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
const struct device *ptp_clock;
#endif
};
struct eth_xmc4xxx_config {
ETH_GLOBAL_TypeDef *regs;
const struct device *phy_dev;
void (*irq_config_func)(void);
const struct pinctrl_dev_config *pcfg;
const uint8_t phy_connection_type;
XMC_ETH_MAC_PORT_CTRL_t port_ctrl;
};
struct eth_xmc4xxx_tx_frame {
sys_snode_t node;
struct net_pkt *pkt;
uint16_t tail_index;
uint16_t head_index;
};
K_MEM_SLAB_DEFINE_STATIC(tx_frame_slab, sizeof(struct eth_xmc4xxx_tx_frame),
CONFIG_ETH_XMC4XXX_TX_FRAME_POOL_SIZE, 4);
static XMC_ETH_MAC_DMA_DESC_t __aligned(4) tx_dma_desc[NUM_TX_DMA_DESCRIPTORS];
static XMC_ETH_MAC_DMA_DESC_t __aligned(4) rx_dma_desc[NUM_RX_DMA_DESCRIPTORS];
static inline struct net_if *get_iface(struct eth_xmc4xxx_data *ctx)
{
return ctx->iface;
}
static void eth_xmc4xxx_tx_dma_descriptors_init(const struct device *dev)
{
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
memset(tx_dma_desc, 0, sizeof(tx_dma_desc));
dev_cfg->regs->TRANSMIT_DESCRIPTOR_LIST_ADDRESS = (uint32_t)&tx_dma_desc[0];
/* chain the descriptors */
for (int i = 0; i < NUM_TX_DMA_DESCRIPTORS - 1; i++) {
XMC_ETH_MAC_DMA_DESC_t *dma_desc = &tx_dma_desc[i];
dma_desc->buffer2 = (volatile uint32_t)&tx_dma_desc[i + 1];
}
/* TER: transmit end of ring - it is the last descriptor in ring */
tx_dma_desc[NUM_TX_DMA_DESCRIPTORS - 1].status |= ETH_MAC_DMA_TDES0_TER;
tx_dma_desc[NUM_TX_DMA_DESCRIPTORS - 1].buffer2 = (volatile uint32_t)&tx_dma_desc[0];
}
static void eth_xmc4xxx_flush_rx(const struct device *dev)
{
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
struct eth_xmc4xxx_data *dev_data = dev->data;
dev_cfg->regs->OPERATION_MODE &= ~ETH_OPERATION_MODE_SR_Msk;
for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
rx_dma_desc[i].status = ETH_MAC_DMA_RDES0_OWN;
}
dev_cfg->regs->OPERATION_MODE |= ETH_OPERATION_MODE_SR_Msk;
dev_data->dma_desc_rx_tail = 0;
}
static void eth_xmc4xxx_flush_tx(const struct device *dev)
{
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
struct eth_xmc4xxx_data *dev_data = dev->data;
sys_snode_t *node;
LOG_DBG("Flushing tx frames");
if (dev_data->tx_frames_flushed) {
return;
}
dev_cfg->regs->OPERATION_MODE &= ~ETH_OPERATION_MODE_ST_Msk;
node = sys_slist_get(&dev_data->tx_frame_list);
while (node) {
struct eth_xmc4xxx_tx_frame *tx_frame = SYS_SLIST_CONTAINER(node, tx_frame, node);
net_pkt_unref(tx_frame->pkt);
k_mem_slab_free(&tx_frame_slab, (void *)tx_frame);
node = sys_slist_get(&dev_data->tx_frame_list);
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.errors.tx++;
dev_data->stats.error_details.tx_aborted_errors++;
#endif
}
k_sem_reset(&dev_data->tx_desc_sem);
eth_xmc4xxx_tx_dma_descriptors_init(dev);
dev_cfg->regs->OPERATION_MODE |= ETH_OPERATION_MODE_ST_Msk;
dev_data->dma_desc_tx_head = 0;
dev_data->tx_frames_flushed = true;
for (int i = 0; i < NUM_TX_DMA_DESCRIPTORS; i++) {
k_sem_give(&dev_data->tx_desc_sem);
}
}
static inline void eth_xmc4xxx_trigger_dma_tx(ETH_GLOBAL_TypeDef *regs)
{
regs->STATUS = ETH_STATUS_TPS_Msk;
regs->TRANSMIT_POLL_DEMAND = 0;
}
static inline void eth_xmc4xxx_trigger_dma_rx(ETH_GLOBAL_TypeDef *regs)
{
regs->STATUS = ETH_STATUS_RU_Msk;
regs->RECEIVE_POLL_DEMAND = 0U;
}
static int eth_xmc4xxx_send(const struct device *dev, struct net_pkt *pkt)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
struct net_buf *frag;
uint8_t *frag_data;
uint16_t frag_len;
int ret = 0;
XMC_ETH_MAC_DMA_DESC_t *dma_desc = NULL;
struct eth_xmc4xxx_tx_frame *tx_frame;
int num_frags = 0;
bool first_descriptor = false;
frag = pkt->frags;
while (frag) {
num_frags++;
frag = frag->frags;
}
if (num_frags > NUM_TX_DMA_DESCRIPTORS) {
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.error_details.tx_dma_failed++;
#endif
LOG_DBG("Number of fragments exceeds total descriptors. Dropping packet");
return -ENOMEM;
}
/* All available frames buffered inside the driver. Apply back pressure in the driver. */
while (tx_frame_slab.info.num_used == CONFIG_ETH_XMC4XXX_TX_FRAME_POOL_SIZE) {
eth_xmc4xxx_trigger_dma_tx(dev_cfg->regs);
k_yield();
}
ret = k_mem_slab_alloc(&tx_frame_slab, (void **)&tx_frame, K_NO_WAIT);
__ASSERT_NO_MSG(ret == 0);
net_pkt_ref(pkt);
dev_data->tx_frames_flushed = false;
first_descriptor = true;
tx_frame->pkt = pkt;
tx_frame->tail_index = dev_data->dma_desc_tx_head;
frag = pkt->frags;
while (frag) {
ret = k_sem_take(&dev_data->tx_desc_sem, K_FOREVER);
/* isr may call k_sem_reset() */
if (ret < 0 || dev_data->tx_frames_flushed) {
k_mem_slab_free(&tx_frame_slab, (void **)&tx_frame);
net_pkt_unref(pkt);
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.error_details.tx_aborted_errors++;
#endif
LOG_DBG("Dropping frame. Buffered Tx frames were flushed in ISR.");
return -EIO;
}
unsigned int key = irq_lock();
/* Critical section for dma_desc_tx_head and tx_dma_desc. Isr may */
/* reinitialize the descriptors and set dma_desc_tx_head to 0 */
dma_desc = &tx_dma_desc[dev_data->dma_desc_tx_head];
frag_data = frag->data;
frag_len = frag->len;
dma_desc->buffer1 = (volatile uint32_t)frag_data;
dma_desc->length = frag_len;
/* give ownership of descriptor back to dma and set checksum offload */
/* TCH we are using a circular list */
dma_desc->status = ETH_MAC_DMA_TDES0_CIC | ETH_MAC_DMA_TDES0_TCH;
if (!first_descriptor) {
/* Delay giving ownership of first frag to DMA. Prevents race condition */
/* where second other frags are not ready */
dma_desc->status |= ETH_MAC_DMA_TDES0_OWN;
} else {
dma_desc->status |= ETH_MAC_DMA_TDES0_FS;
#if defined(CONFIG_NET_GPTP)
struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
if (ntohs(hdr->type) == NET_ETH_PTYPE_PTP) {
dma_desc->status |= ETH_MAC_DMA_TDES0_TTSE;
}
#endif
}
first_descriptor = false;
tx_frame->head_index = dev_data->dma_desc_tx_head;
MODULO_INC_TX(dev_data->dma_desc_tx_head);
irq_unlock(key);
frag = frag->frags;
}
if (dev_data->tx_frames_flushed) {
k_mem_slab_free(&tx_frame_slab, (void **)&tx_frame);
net_pkt_unref(pkt);
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.error_details.tx_aborted_errors++;
#endif
LOG_DBG("Dropping frame. Buffered Tx frames were flushed in ISR.");
return -EIO;
}
unsigned int key = irq_lock();
/* label last dma descriptor as last segment and trigger interrupt on last segment */
dma_desc->status |= ETH_MAC_DMA_TDES0_IC | ETH_MAC_DMA_TDES0_LS;
/* Finally give ownership of first frag to DMA. After this point the DMA engine */
/* may transfer the whole frame from RAM to Ethernet */
tx_dma_desc[tx_frame->tail_index].status |= ETH_MAC_DMA_TDES0_OWN;
sys_slist_append(&dev_data->tx_frame_list, &tx_frame->node);
eth_xmc4xxx_trigger_dma_tx(dev_cfg->regs);
irq_unlock(key);
return 0;
}
static struct net_pkt *eth_xmc4xxx_rx_pkt(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
struct net_pkt *pkt = NULL;
struct net_buf *new_frag;
bool eof_found = false;
uint16_t tail;
XMC_ETH_MAC_DMA_DESC_t *dma_desc;
int num_frags = 0;
uint16_t frame_end_index;
struct net_buf *frag, *last_frag = NULL;
tail = dev_data->dma_desc_rx_tail;
dma_desc = &rx_dma_desc[tail];
if (IS_OWNED_BY_DMA_RX(dma_desc)) {
return NULL;
}
if (!IS_START_OF_FRAME_RX(dma_desc)) {
/* handle this error - missing SOF packet? */
eth_xmc4xxx_flush_rx(dev);
return NULL;
}
while (!IS_OWNED_BY_DMA_RX(dma_desc)) {
eof_found = IS_END_OF_FRAME_RX(dma_desc);
num_frags++;
if (eof_found) {
break;
}
MODULO_INC_RX(tail);
if (tail == dev_data->dma_desc_rx_tail) {
/* wrapped */
break;
}
dma_desc = &rx_dma_desc[tail];
}
if (!eof_found) {
return NULL;
}
frame_end_index = tail;
pkt = net_pkt_rx_alloc(K_NO_WAIT);
if (pkt == NULL) {
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.errors.rx++;
dev_data->stats.error_details.rx_no_buffer_count++;
#endif
LOG_DBG("Net packet allocation error");
/* continue because we still need to read out the packet */
}
tail = dev_data->dma_desc_rx_tail;
dma_desc = &rx_dma_desc[tail];
for (;;) {
if (pkt != NULL) {
uint16_t frag_len = CONFIG_NET_BUF_DATA_SIZE;
frag = dev_data->rx_frag_list[tail];
if (tail == frame_end_index) {
frag_len = TOTAL_FRAME_LENGTH(dma_desc) -
CONFIG_NET_BUF_DATA_SIZE * (num_frags - 1);
if (IS_TIMESTAMP_AVAILABLE_RX(dma_desc)) {
struct net_ptp_time timestamp = {
.second = dma_desc->time_stamp_seconds,
.nanosecond = dma_desc->time_stamp_nanoseconds};
net_pkt_set_timestamp(pkt, &timestamp);
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
}
}
new_frag = net_pkt_get_frag(pkt, CONFIG_NET_BUF_DATA_SIZE, K_NO_WAIT);
if (new_frag == NULL) {
#ifdef CONFIG_NET_STATISTICS_ETHERNET
dev_data->stats.errors.rx++;
dev_data->stats.error_details.rx_buf_alloc_failed++;
#endif
LOG_DBG("Frag allocation error. Increase CONFIG_NET_BUF_RX_COUNT.");
net_pkt_unref(pkt);
pkt = NULL;
} else {
net_buf_add(frag, frag_len);
if (!last_frag) {
net_pkt_frag_insert(pkt, frag);
} else {
net_buf_frag_insert(last_frag, frag);
}
last_frag = frag;
frag = new_frag;
dev_data->rx_frag_list[tail] = frag;
}
}
dma_desc->buffer1 = (uint32_t)dev_data->rx_frag_list[tail]->data;
dma_desc->length = dev_data->rx_frag_list[tail]->size |
ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK;
dma_desc->status = ETH_MAC_DMA_RDES0_OWN;
if (tail == frame_end_index) {
break;
}
MODULO_INC_RX(tail);
dma_desc = &rx_dma_desc[tail];
}
MODULO_INC_RX(tail);
dev_data->dma_desc_rx_tail = tail;
eth_xmc4xxx_trigger_dma_rx(dev_cfg->regs);
return pkt;
}
static void eth_xmc4xxx_handle_rx(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
struct net_pkt *pkt = NULL;
for (;;) {
pkt = eth_xmc4xxx_rx_pkt(dev);
if (!pkt) {
return;
}
if (net_recv_data(get_iface(dev_data), pkt) < 0) {
eth_stats_update_errors_rx(get_iface(dev_data));
net_pkt_unref(pkt);
}
}
}
static void eth_xmc4xxx_handle_tx(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
sys_snode_t *node = sys_slist_peek_head(&dev_data->tx_frame_list);
while (node) {
struct eth_xmc4xxx_tx_frame *tx_frame = SYS_SLIST_CONTAINER(node, tx_frame, node);
bool owned_by_mcu = true;
uint8_t index;
int num_descriptors;
if (tx_frame->head_index >= tx_frame->tail_index) {
num_descriptors = tx_frame->head_index - tx_frame->tail_index + 1;
} else {
num_descriptors = tx_frame->head_index + NUM_TX_DMA_DESCRIPTORS -
tx_frame->tail_index + 1;
}
index = tx_frame->tail_index;
for (int i = 0; i < num_descriptors; i++) {
if (IS_OWNED_BY_DMA_TX(&tx_dma_desc[index])) {
owned_by_mcu = false;
break;
}
MODULO_INC_TX(index);
}
if (owned_by_mcu) {
#if defined(CONFIG_NET_GPTP)
XMC_ETH_MAC_DMA_DESC_t *dma_desc = &tx_dma_desc[tx_frame->head_index];
if (IS_TIMESTAMP_AVAILABLE_TX(dma_desc)) {
struct net_pkt *pkt = tx_frame->pkt;
if (atomic_get(&pkt->atomic_ref) > 1) {
struct net_ptp_time timestamp = {
.second = dma_desc->time_stamp_seconds,
.nanosecond = dma_desc->time_stamp_nanoseconds};
net_pkt_set_timestamp(pkt, &timestamp);
net_if_add_tx_timestamp(pkt);
}
}
#endif
for (int i = 0; i < num_descriptors; i++) {
k_sem_give(&dev_data->tx_desc_sem);
}
sys_slist_get(&dev_data->tx_frame_list);
net_pkt_unref(tx_frame->pkt);
k_mem_slab_free(&tx_frame_slab, (void *)tx_frame);
node = sys_slist_peek_head(&dev_data->tx_frame_list);
} else {
node = NULL;
}
}
}
static void eth_xmc4xxx_isr(const struct device *dev)
{
uint32_t lock;
uint32_t status;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
lock = irq_lock();
status = dev_cfg->regs->STATUS;
if ((status & XMC_ETH_MAC_EVENT_RECEIVE) != 0) {
eth_xmc4xxx_handle_rx(dev);
}
if ((status & XMC_ETH_MAC_EVENT_TRANSMIT) != 0) {
eth_xmc4xxx_handle_tx(dev);
}
if ((status & ETH_STATUS_ERROR_TRANSMIT_EVENTS) != 0) {
LOG_ERR("Transmit error event [0x%x]", status);
eth_xmc4xxx_flush_tx(dev);
}
if ((status & ETH_STATUS_ERROR_RECEIVE_EVENTS) != 0) {
LOG_ERR("Receive error event [0x%x]", status);
eth_xmc4xxx_flush_rx(dev);
}
dev_cfg->regs->STATUS = status & ETH_STATUS_CLEARABLE_BITS;
irq_unlock(lock);
}
static inline void eth_xmc4xxx_enable_tx(ETH_GLOBAL_TypeDef *regs)
{
regs->OPERATION_MODE |= ETH_OPERATION_MODE_ST_Msk;
regs->MAC_CONFIGURATION |= ETH_MAC_CONFIGURATION_TE_Msk;
}
static inline void eth_xmc4xxx_enable_rx(ETH_GLOBAL_TypeDef *regs)
{
regs->OPERATION_MODE |= ETH_OPERATION_MODE_SR_Msk;
regs->MAC_CONFIGURATION |= ETH_MAC_CONFIGURATION_RE_Msk;
}
static inline void eth_xmc4xxx_set_link(ETH_GLOBAL_TypeDef *regs, struct phy_link_state *state)
{
uint32_t reg = regs->MAC_CONFIGURATION;
uint32_t val;
reg &= ~(ETH_MAC_CONFIGURATION_DM_Msk | ETH_MAC_CONFIGURATION_FES_Msk);
val = PHY_LINK_IS_FULL_DUPLEX(state->speed) ? ETH_LINK_DUPLEX_FULL :
ETH_LINK_DUPLEX_HALF;
reg |= FIELD_PREP(ETH_MAC_CONFIGURATION_DM_Msk, val);
val = PHY_LINK_IS_SPEED_100M(state->speed) ? ETH_LINK_SPEED_100M :
ETH_LINK_SPEED_10M;
reg |= FIELD_PREP(ETH_MAC_CONFIGURATION_FES_Msk, val);
regs->MAC_CONFIGURATION = reg;
}
static void phy_link_state_changed(const struct device *phy_dev, struct phy_link_state *state,
void *user_data)
{
struct device *dev = user_data;
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
bool is_up = state->is_up;
if (is_up && !dev_data->link_up) {
LOG_INF("Link up");
dev_data->link_up = true;
net_eth_carrier_on(dev_data->iface);
eth_xmc4xxx_set_link(dev_cfg->regs, state);
} else if (!is_up && dev_data->link_up) {
LOG_INF("Link down");
dev_data->link_up = false;
net_eth_carrier_off(dev_data->iface);
}
}
static void eth_xmc4xxx_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
dev_data->iface = iface;
net_if_set_link_addr(iface, dev_data->mac_addr, sizeof(dev_data->mac_addr),
NET_LINK_ETHERNET);
ethernet_init(iface);
dev_cfg->irq_config_func();
/* Do not start the interface until PHY link is up */
net_if_carrier_off(iface);
phy_link_callback_set(dev_cfg->phy_dev, &phy_link_state_changed, (void *)dev);
dev_cfg->regs->INTERRUPT_ENABLE |= ETH_STATUS_ALL_EVENTS;
eth_xmc4xxx_enable_tx(dev_cfg->regs);
eth_xmc4xxx_enable_rx(dev_cfg->regs);
}
#if defined(CONFIG_NET_STATISTICS_ETHERNET)
static struct net_stats_eth *eth_xmc4xxx_stats(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
return &dev_data->stats;
}
#endif
static inline void eth_xmc4xxx_free_rx_bufs(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
if (dev_data->rx_frag_list[i]) {
net_buf_unref(dev_data->rx_frag_list[i]);
dev_data->rx_frag_list[i] = NULL;
}
}
}
static int eth_xmc4xxx_rx_dma_descriptors_init(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
dev_cfg->regs->RECEIVE_DESCRIPTOR_LIST_ADDRESS = (uint32_t)&rx_dma_desc[0];
for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS - 1; i++) {
XMC_ETH_MAC_DMA_DESC_t *dma_desc = &rx_dma_desc[i];
dma_desc->buffer2 = (volatile uint32_t)&rx_dma_desc[i + 1];
}
rx_dma_desc[NUM_RX_DMA_DESCRIPTORS - 1].status |= ETH_MAC_DMA_TDES0_TER;
rx_dma_desc[NUM_RX_DMA_DESCRIPTORS - 1].buffer2 = (volatile uint32_t)&rx_dma_desc[0];
for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
XMC_ETH_MAC_DMA_DESC_t *dma_desc = &rx_dma_desc[i];
struct net_buf *rx_buf = net_pkt_get_reserve_rx_data(CONFIG_NET_BUF_DATA_SIZE,
K_NO_WAIT);
if (rx_buf == NULL) {
eth_xmc4xxx_free_rx_bufs(dev);
LOG_ERR("Failed to reserve data net buffers");
return -ENOBUFS;
}
dev_data->rx_frag_list[i] = rx_buf;
dma_desc->buffer1 = (uint32_t)rx_buf->data;
dma_desc->length = rx_buf->size | ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK;
dma_desc->status = ETH_MAC_DMA_RDES0_OWN;
}
return 0;
}
static inline int eth_xmc4xxx_reset(const struct device *dev)
{
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
dev_cfg->regs->BUS_MODE |= ETH_BUS_MODE_SWR_Msk;
/* reset may fail if the clocks are not properly setup */
if (!WAIT_FOR((dev_cfg->regs->BUS_MODE & ETH_BUS_MODE_SWR_Msk) == 0,
ETH_RESET_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
return 0;
}
static inline void eth_xmc4xxx_set_mac_address(ETH_GLOBAL_TypeDef *regs, uint8_t *const addr)
{
regs->MAC_ADDRESS0_HIGH = addr[4] | (addr[5] << 8);
regs->MAC_ADDRESS0_LOW = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24);
}
static inline void eth_xmc4xxx_mask_unused_interrupts(ETH_GLOBAL_TypeDef *regs)
{
/* Disable Mac Management Counter (MMC) interrupt events */
regs->MMC_TRANSMIT_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_INTERRUPT_MSK;
regs->MMC_RECEIVE_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_INTERRUPT_MSK;
/* IPC - Receive IP checksum checker */
regs->MMC_IPC_RECEIVE_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_IPC_RECEIVE_INTERRUPT_MSK;
/* Disable PMT and timestamp interrupt events */
regs->INTERRUPT_MASK = ETH_INTERRUPT_MASK_PMTIM_Msk | ETH_INTERRUPT_MASK_TSIM_Msk;
}
static inline int eth_xmc4xxx_init_timestamp_control_reg(ETH_GLOBAL_TypeDef *regs)
{
#if defined(CONFIG_NET_GPTP)
regs->TIMESTAMP_CONTROL = ETH_TIMESTAMP_CONTROL_TSENA_Msk |
ETH_TIMESTAMP_CONTROL_TSENALL_Msk;
#endif
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
/* use fine control */
regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSCFUPDT_Msk |
ETH_TIMESTAMP_CONTROL_TSCTRLSSR_Msk;
/* make ptp run at 50MHz - implies 20ns increment for each increment of the */
/* sub_second_register */
regs->SUB_SECOND_INCREMENT = 20;
/* f_out = f_cpu * K / 2^32, where K = TIMESTAMP_ADDEND. Target F_out = 50MHz */
/* Therefore, K = ceil(f_out * 2^32 / f_cpu) */
uint32_t f_cpu = XMC_SCU_CLOCK_GetSystemClockFrequency();
uint32_t K = (BIT64(32) * ETH_PTP_CLOCK_FREQUENCY + f_cpu / 2) / f_cpu;
regs->TIMESTAMP_ADDEND = K;
/* Addend register update */
regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSADDREG_Msk;
if (!WAIT_FOR((regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSADDREG_Msk) == 0,
ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSINIT_Msk;
if (!WAIT_FOR((regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSINIT_Msk) == 0,
ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
#endif
return 0;
}
static int eth_xmc4xxx_init(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
XMC_ETH_MAC_PORT_CTRL_t port_ctrl;
int ret;
sys_slist_init(&dev_data->tx_frame_list);
k_sem_init(&dev_data->tx_desc_sem, NUM_TX_DMA_DESCRIPTORS,
NUM_TX_DMA_DESCRIPTORS);
if (!device_is_ready(dev_cfg->phy_dev)) {
LOG_ERR("Phy device not ready");
return -ENODEV;
}
/* get the port control initialized by MDIO driver */
port_ctrl.raw = ETH0_CON->CON;
port_ctrl.raw |= dev_cfg->port_ctrl.raw;
XMC_ETH_MAC_Disable(NULL);
ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
XMC_ETH_MAC_SetPortControl(NULL, port_ctrl);
XMC_ETH_MAC_Enable(NULL);
ret = eth_xmc4xxx_reset(dev);
if (ret != 0) {
LOG_ERR("Error resetting ethernet [%d]", ret);
return ret;
}
/* Initialize MAC configuration */
/* enable checksum offload */
dev_cfg->regs->MAC_CONFIGURATION = ETH_MAC_CONFIGURATION_IPC_Msk;
/* disable jumbo frames */
dev_cfg->regs->MAC_CONFIGURATION &= ~ETH_MAC_CONFIGURATION_JE_Msk;
/* Initialize Filter registers - disable zero quanta pause*/
dev_cfg->regs->FLOW_CONTROL = ETH_FLOW_CONTROL_DZPQ_Msk;
/* rsf - receive store and forward */
/* tsf - transmit store and forward */
dev_cfg->regs->OPERATION_MODE = ETH_OPERATION_MODE_RSF_Msk | ETH_OPERATION_MODE_TSF_Msk |
ETH_OPERATION_MODE_OSF_Msk;
/* Increase enhanced descriptor to 8 WORDS, required when the Advanced */
/* Time-Stamp feature or Full IPC Offload Engine is enabled */
dev_cfg->regs->BUS_MODE = ETH_BUS_MODE_ATDS_Msk | ETH_BUS_MODE_AAL_Msk |
ETH_BUS_MODE_FB_Msk | (0x20 << ETH_BUS_MODE_PBL_Pos);
eth_xmc4xxx_tx_dma_descriptors_init(dev);
ret = eth_xmc4xxx_rx_dma_descriptors_init(dev);
if (ret != 0) {
return ret;
}
/* Clear interrupts */
dev_cfg->regs->STATUS = ETH_STATUS_CLEARABLE_BITS;
eth_xmc4xxx_mask_unused_interrupts(dev_cfg->regs);
#if !DT_INST_NODE_HAS_PROP(0, local_mac_address)
gen_random_mac(dev_data->mac_addr, INFINEON_OUI_B0, INFINEON_OUI_B1, INFINEON_OUI_B2);
#endif
eth_xmc4xxx_set_mac_address(dev_cfg->regs, dev_data->mac_addr);
uint32_t reg = dev_cfg->regs->MAC_FRAME_FILTER;
/* enable reception of broadcast frames */
reg &= ~ETH_MAC_FRAME_FILTER_DBF_Msk;
/* pass all multicast frames */
reg |= ETH_MAC_FRAME_FILTER_PM_Msk;
dev_cfg->regs->MAC_FRAME_FILTER = reg;
return eth_xmc4xxx_init_timestamp_control_reg(dev_cfg->regs);
}
static enum ethernet_hw_caps eth_xmc4xxx_capabilities(const struct device *dev)
{
ARG_UNUSED(dev);
enum ethernet_hw_caps caps = ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T |
ETHERNET_HW_TX_CHKSUM_OFFLOAD | ETHERNET_HW_RX_CHKSUM_OFFLOAD;
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
caps |= ETHERNET_PTP;
#endif
#if defined(CONFIG_NET_VLAN)
caps |= ETHERNET_HW_VLAN;
#endif
return caps;
}
static int eth_xmc4xxx_set_config(const struct device *dev, enum ethernet_config_type type,
const struct ethernet_config *config)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
switch (type) {
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
memcpy(dev_data->mac_addr, config->mac_address.addr, sizeof(dev_data->mac_addr));
LOG_INF("%s MAC set to %02x:%02x:%02x:%02x:%02x:%02x", dev->name,
dev_data->mac_addr[0], dev_data->mac_addr[1], dev_data->mac_addr[2],
dev_data->mac_addr[3], dev_data->mac_addr[4], dev_data->mac_addr[5]);
eth_xmc4xxx_set_mac_address(dev_cfg->regs, dev_data->mac_addr);
net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
sizeof(dev_data->mac_addr), NET_LINK_ETHERNET);
return 0;
default:
break;
}
return -ENOTSUP;
}
static void eth_xmc4xxx_irq_config(void)
{
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), eth_xmc4xxx_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
static const struct device *eth_xmc4xxx_get_ptp_clock(const struct device *dev)
{
struct eth_xmc4xxx_data *dev_data = dev->data;
return dev_data->ptp_clock;
}
#endif
#if defined(CONFIG_ETH_XMC4XXX_VLAN_HW_FILTER)
int eth_xmc4xxx_vlan_setup(const struct device *dev, struct net_if *iface, uint16_t tag,
bool enable)
{
ARG_UNUSED(iface);
const struct eth_xmc4xxx_config *dev_cfg = dev->config;
LOG_INF("Configuring vlan %d", tag);
if (enable) {
dev_cfg->regs->VLAN_TAG = FIELD_PREP(ETH_VLAN_TAG_VL_Msk, tag) |
ETH_VLAN_TAG_ETV_Msk |
ETH_VLAN_TAG_ESVL_Msk;
dev_cfg->regs->MAC_FRAME_FILTER |= ETH_MAC_FRAME_FILTER_VTFE_Msk;
} else {
dev_cfg->regs->VLAN_TAG = 0;
dev_cfg->regs->MAC_FRAME_FILTER &= ~ETH_MAC_FRAME_FILTER_VTFE_Msk;
}
return 0;
}
#endif
static const struct ethernet_api eth_xmc4xxx_api = {
.iface_api.init = eth_xmc4xxx_iface_init,
.send = eth_xmc4xxx_send,
.set_config = eth_xmc4xxx_set_config,
.get_capabilities = eth_xmc4xxx_capabilities,
#if defined(CONFIG_NET_STATISTICS_ETHERNET)
.get_stats = eth_xmc4xxx_stats,
#endif
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
.get_ptp_clock = eth_xmc4xxx_get_ptp_clock,
#endif
#if defined(CONFIG_ETH_XMC4XXX_VLAN_HW_FILTER)
.vlan_setup = eth_xmc4xxx_vlan_setup,
#endif
};
PINCTRL_DT_INST_DEFINE(0);
static struct eth_xmc4xxx_config eth_xmc4xxx_config = {
.regs = (ETH_GLOBAL_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(0)),
.irq_config_func = eth_xmc4xxx_irq_config,
.phy_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, phy_handle)),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.port_ctrl = {
.rxd0 = DT_INST_ENUM_IDX(0, rxd0_port_ctrl),
.rxd1 = DT_INST_ENUM_IDX(0, rxd1_port_ctrl),
.rxd2 = DT_INST_ENUM_IDX_OR(0, rxd2_port_ctrl, 0),
.rxd3 = DT_INST_ENUM_IDX_OR(0, rxd3_port_ctrl, 0),
.clk_rmii = DT_INST_ENUM_IDX(0, rmii_rx_clk_port_ctrl),
.crs_dv = DT_INST_ENUM_IDX(0, crs_rx_dv_port_ctrl),
.crs = DT_INST_ENUM_IDX_OR(0, crs_port_ctrl, 0),
.rxer = DT_INST_ENUM_IDX(0, rxer_port_ctrl),
.col = DT_INST_ENUM_IDX_OR(0, col_port_ctrl, 0),
.clk_tx = DT_INST_ENUM_IDX_OR(0, tx_clk_port_ctrl, 0),
.mode = DT_INST_ENUM_IDX_OR(0, phy_connection_type, 0),
}
};
static struct eth_xmc4xxx_data eth_xmc4xxx_data = {
.mac_addr = DT_INST_PROP_OR(0, local_mac_address, {0}),
};
ETH_NET_DEVICE_DT_INST_DEFINE(0, eth_xmc4xxx_init, NULL, &eth_xmc4xxx_data, &eth_xmc4xxx_config,
CONFIG_ETH_INIT_PRIORITY, &eth_xmc4xxx_api, NET_ETH_MTU);
#if defined(CONFIG_PTP_CLOCK_XMC4XXX)
struct ptp_context {
const struct device *eth_dev;
};
static struct ptp_context ptp_xmc4xxx_context_0;
static int eth_xmc4xxx_ptp_clock_set(const struct device *dev, struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
dev_cfg->regs->SYSTEM_TIME_NANOSECONDS_UPDATE = tm->nanosecond;
dev_cfg->regs->SYSTEM_TIME_SECONDS_UPDATE = tm->second;
dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSINIT_Msk;
if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSINIT_Msk) == 0,
ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
return 0;
}
static int eth_xmc4xxx_ptp_clock_get(const struct device *dev, struct net_ptp_time *tm)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
uint32_t nanosecond_0 = dev_cfg->regs->SYSTEM_TIME_NANOSECONDS;
uint32_t second_0 = dev_cfg->regs->SYSTEM_TIME_SECONDS;
uint32_t nanosecond_1 = dev_cfg->regs->SYSTEM_TIME_NANOSECONDS;
uint32_t second_1 = dev_cfg->regs->SYSTEM_TIME_SECONDS;
/* check that there is no roll over while we read the timestamp. If roll over happens */
/* just choose the later value */
if (second_0 == second_1) {
tm->second = second_0;
tm->nanosecond = nanosecond_0;
} else {
tm->second = second_1;
tm->nanosecond = nanosecond_1;
}
return 0;
}
static int eth_xmc4xxx_ptp_clock_adjust(const struct device *dev, int increment)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
uint32_t increment_tmp;
if ((increment <= -(int)NSEC_PER_SEC) || (increment >= (int)NSEC_PER_SEC)) {
return -EINVAL;
}
if (increment < 0) {
increment_tmp = -increment;
increment_tmp |= ETH_SYSTEM_TIME_NANOSECONDS_UPDATE_ADDSUB_Msk;
} else {
increment_tmp = increment;
}
dev_cfg->regs->SYSTEM_TIME_NANOSECONDS_UPDATE = increment_tmp;
dev_cfg->regs->SYSTEM_TIME_SECONDS_UPDATE = 0;
dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSUPDT_Msk;
if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSUPDT_Msk) == 0,
ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
return 0;
}
static int eth_xmc4xxx_ptp_clock_rate_adjust(const struct device *dev, double ratio)
{
struct ptp_context *ptp_context = dev->data;
const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
uint64_t K = dev_cfg->regs->TIMESTAMP_ADDEND;
if (ratio < ETH_PTP_RATE_ADJUST_RATIO_MIN || ratio > ETH_PTP_RATE_ADJUST_RATIO_MAX) {
return -EINVAL;
}
/* f_out = f_cpu * K / 2^32, where K = TIMESTAMP_ADDEND. Target F_out = 50MHz */
K = K * ratio + 0.5;
if (K > UINT32_MAX) {
return -EINVAL;
}
dev_cfg->regs->TIMESTAMP_ADDEND = K;
/* Addend register update */
dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSADDREG_Msk;
if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSADDREG_Msk) == 0,
ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
return -ETIMEDOUT;
}
return 0;
}
static const struct ptp_clock_driver_api ptp_api_xmc4xxx = {
.set = eth_xmc4xxx_ptp_clock_set,
.get = eth_xmc4xxx_ptp_clock_get,
.adjust = eth_xmc4xxx_ptp_clock_adjust,
.rate_adjust = eth_xmc4xxx_ptp_clock_rate_adjust,
};
static int ptp_clock_xmc4xxx_init(const struct device *port)
{
const struct device *const eth_dev = DEVICE_DT_INST_GET(0);
struct eth_xmc4xxx_data *dev_data = eth_dev->data;
struct ptp_context *ptp_context = port->data;
dev_data->ptp_clock = port;
ptp_context->eth_dev = eth_dev;
return 0;
}
DEVICE_DEFINE(xmc4xxx_ptp_clock_0, PTP_CLOCK_NAME, ptp_clock_xmc4xxx_init, NULL,
&ptp_xmc4xxx_context_0, NULL, POST_KERNEL, CONFIG_PTP_CLOCK_INIT_PRIORITY,
&ptp_api_xmc4xxx);
#endif /* CONFIG_PTP_CLOCK_XMC4XXX */