zephyr/drivers/flash/flash_andes_qspi.c
Wei-Tai Lee b69aea9f89 drivers: flash: add Andes qspi-nor driver
Add flash driver for Andes qspi.

Signed-off-by: Wei-Tai Lee <wtlee@andestech.com>
2023-08-03 10:28:02 +02:00

966 lines
25 KiB
C

/*
* Copyright (c) 2023 Andes Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT andestech_qspi_nor
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/logging/log.h>
#include "flash_andes_qspi.h"
#include "spi_nor.h"
#include "jesd216.h"
#include "flash_priv.h"
LOG_MODULE_REGISTER(flash_andes, CONFIG_FLASH_LOG_LEVEL);
/* Indicates that an access command includes bytes for the address.
* If not provided the opcode is not followed by address bytes.
*/
#define ANDES_ACCESS_ADDRESSED BIT(0)
/* Indicates that an access command is performing a write. If not
* provided access is a read.
*/
#define ANDES_ACCESS_WRITE BIT(7)
#define flash_andes_qspi_cmd_read(dev, opcode, dest, length) \
flash_andes_qspi_access(dev, opcode, 0, 0, dest, length)
#define flash_andes_qspi_cmd_addr_read(dev, opcode, addr, dest, length) \
flash_andes_qspi_access(dev, opcode, ANDES_ACCESS_ADDRESSED, addr, \
dest, length)
#define flash_andes_qspi_cmd_write(dev, opcode) \
flash_andes_qspi_access(dev, opcode, ANDES_ACCESS_WRITE, 0, NULL, 0)
#define flash_andes_qspi_cmd_addr_write(dev, opcode, addr, src, length) \
flash_andes_qspi_access(dev, opcode, \
ANDES_ACCESS_WRITE | ANDES_ACCESS_ADDRESSED, \
addr, (void *)src, length)
typedef void (*flash_andes_qspi_config_func_t)(void);
struct flash_andes_qspi_config {
flash_andes_qspi_config_func_t cfg_func;
uint32_t base;
uint32_t irq_num;
struct flash_parameters parameters;
bool xip;
#if defined(CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE)
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
uint32_t flash_size;
uint8_t bfp_len;
const struct jesd216_bfp *bfp;
#ifdef CONFIG_FLASH_PAGE_LAYOUT
struct flash_pages_layout layout;
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE */
};
struct flash_andes_qspi_data {
struct k_sem sem;
struct k_sem device_sync_sem;
uint32_t tx_fifo_size;
uint32_t rx_fifo_size;
uint8_t *tx_buf;
uint8_t *rx_buf;
uint32_t tx_len;
uint32_t rx_len;
uint32_t tx_ptr; /* write pointer */
uint32_t rx_ptr; /* read pointer */
struct jesd216_erase_type erase_types[JESD216_NUM_ERASE_TYPES];
uint16_t page_size;
#ifdef CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME
uint32_t flash_size;
#ifdef CONFIG_FLASH_PAGE_LAYOUT
struct flash_pages_layout layout;
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
#endif
};
static int flash_andes_qspi_write_protection_set(const struct device *dev,
bool write_protect);
/* Get pointer to array of supported erase types. */
static inline const struct jesd216_erase_type *
dev_erase_types(const struct device *dev)
{
const struct flash_andes_qspi_data *dev_data = dev->data;
return dev_data->erase_types;
}
/* Get the size of the flash device. */
static inline uint32_t dev_flash_size(const struct device *dev)
{
#ifdef CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME
const struct flash_andes_qspi_data *dev_data = dev->data;
return dev_data->flash_size;
#else /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
const struct flash_andes_qspi_config *config = dev->config;
return config->flash_size;
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
}
/* Get the flash device page size. */
static inline uint16_t dev_page_size(const struct device *dev)
{
const struct flash_andes_qspi_data *dev_data = dev->data;
return dev_data->page_size;
}
/*
* @brief Send an SPI command
*
* @param dev Device struct
* @param opcode The command to send
* @param access flags that determine how the command is constructed.
* @param addr The address to send
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success
*/
static int flash_andes_qspi_access(const struct device *const dev,
uint8_t opcode, uint8_t access, off_t addr,
void *data, size_t length)
{
struct flash_andes_qspi_data *dev_data = dev->data;
const struct flash_andes_qspi_config *config = dev->config;
uint32_t base = config->base;
bool is_addressed = (access & ANDES_ACCESS_ADDRESSED) != 0U;
bool is_write = (access & ANDES_ACCESS_WRITE) != 0U;
int ret = 0;
uint32_t tctrl, int_msk;
/* Command phase enable */
tctrl = TCTRL_CMD_EN_MSK;
if (is_addressed) {
/* Enable and set ADDR len */
sys_write32((sys_read32(QSPI_TFMAT(base)) |
(0x2 << TFMAT_ADDR_LEN_OFFSET)), QSPI_TFMAT(base));
sys_write32(addr, QSPI_ADDR(base));
/* Address phase enable */
tctrl |= TCTRL_ADDR_EN_MSK;
}
if (length == 0) {
if ((opcode == FLASH_ANDES_CMD_4PP) ||
(opcode == FLASH_ANDES_CMD_4READ)) {
goto exit;
}
tctrl |= TRNS_MODE_NONE_DATA;
int_msk = IEN_END_MSK;
} else if (is_write) {
dev_data->tx_ptr = 0;
dev_data->tx_buf = (uint8_t *)data;
dev_data->tx_len = length;
tctrl |= (TRNS_MODE_WRITE_ONLY |
((length - 1) << TCTRL_WR_TCNT_OFFSET));
int_msk = IEN_TX_FIFO_MSK | IEN_END_MSK;
} else {
dev_data->rx_ptr = 0;
dev_data->rx_buf = (uint8_t *)data;
tctrl |= (TRNS_MODE_READ_ONLY |
((length - 1) << TCTRL_RD_TCNT_OFFSET));
int_msk = IEN_RX_FIFO_MSK | IEN_END_MSK;
}
switch (opcode) {
case FLASH_ANDES_CMD_4PP:
tctrl = ((tctrl & ~TCTRL_TRNS_MODE_MSK) |
DUAL_IO_MODE |
TCTRL_ADDR_FMT_MSK |
TCTRL_ADDR_EN_MSK |
TRNS_MODE_WRITE_ONLY);
break;
case FLASH_ANDES_CMD_4READ:
tctrl = ((tctrl & ~TCTRL_TRNS_MODE_MSK) |
DUAL_IO_MODE |
TCTRL_ADDR_FMT_MSK |
TCTRL_ADDR_EN_MSK |
TRNS_MODE_DUMMY_READ |
DUMMY_CNT_3);
break;
case JESD216_CMD_READ_SFDP:
tctrl = ((tctrl & ~TCTRL_TRNS_MODE_MSK) |
TCTRL_ADDR_EN_MSK |
TRNS_MODE_DUMMY_READ);
break;
default:
break;
}
sys_write32(tctrl, QSPI_TCTRL(base));
/* Enable TX/RX FIFO interrupts */
sys_write32(int_msk, QSPI_INTEN(base));
/* write CMD register to send command*/
sys_write32(opcode, QSPI_CMD(base));
k_sem_take(&dev_data->device_sync_sem, K_FOREVER);
exit:
return ret;
}
/* Everything necessary to acquire owning access to the device. */
static void acquire_device(const struct device *dev)
{
struct flash_andes_qspi_data *dev_data = dev->data;
k_sem_take(&dev_data->sem, K_FOREVER);
}
/* Everything necessary to release access to the device. */
static void release_device(const struct device *dev)
{
struct flash_andes_qspi_data *dev_data = dev->data;
k_sem_give(&dev_data->sem);
}
/**
* @brief Wait until the flash is ready
*
* @param dev The device structure
* @return 0 on success, negative errno code otherwise
*/
static int flash_andes_qspi_wait_until_ready(const struct device *dev)
{
int ret;
uint8_t reg;
do {
ret = flash_andes_qspi_cmd_read(dev,
FLASH_ANDES_CMD_RDSR, &reg, 1);
} while (!ret && (reg & FLASH_ANDES_WIP_BIT));
return ret;
}
#if defined(CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME) || \
defined(CONFIG_FLASH_JESD216_API)
/*
* @brief Read content from the SFDP hierarchy
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
* @param addr The address to send
* @param data The buffer to store or read the value
* @param length The size of the buffer
* @return 0 on success, negative errno code otherwise
*/
static int read_sfdp(const struct device *const dev,
off_t addr, void *data, size_t length)
{
/* READ_SFDP requires a 24-bit address followed by a single
* byte for a wait state. This is effected by using 32-bit
* address by shifting the 24-bit address up 8 bits.
*/
return flash_andes_qspi_access(dev, JESD216_CMD_READ_SFDP,
ANDES_ACCESS_ADDRESSED,
addr, data, length);
}
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
/**
* @brief Write the status register.
*
* @note The device must be externally acquired before invoking this
* function.
*
* @param dev Device struct
* @param sr The new value of the status register
*
* @return 0 on success or a negative error code.
*/
static int flash_andes_qspi_wrsr(const struct device *dev,
uint8_t sr)
{
int ret = flash_andes_qspi_cmd_write(dev, FLASH_ANDES_CMD_WREN);
if (ret == 0) {
ret = flash_andes_qspi_access(dev, FLASH_ANDES_CMD_WRSR,
ANDES_ACCESS_WRITE, 0, &sr,
sizeof(sr));
flash_andes_qspi_wait_until_ready(dev);
}
return ret;
}
static int flash_andes_qspi_read(const struct device *dev,
off_t addr, void *dest, size_t size)
{
const size_t flash_size = dev_flash_size(dev);
int ret;
/* should be between 0 and flash size */
if ((addr < 0 || addr >= flash_size || ((flash_size - addr) < size))) {
return -EINVAL;
}
if (size == 0) {
return 0;
}
acquire_device(dev);
ret = flash_andes_qspi_cmd_addr_read(dev,
FLASH_ANDES_CMD_4READ, addr, dest, size);
release_device(dev);
return ret;
}
static int flash_andes_qspi_write(const struct device *dev, off_t addr,
const void *src, size_t size)
{
const size_t flash_size = dev_flash_size(dev);
const uint16_t page_size = dev_page_size(dev);
size_t to_write = size;
int ret = 0;
/* should be between 0 and flash size */
if ((addr < 0 || addr >= flash_size || ((flash_size - addr) < size))) {
return -EINVAL;
}
if (size == 0) {
return 0;
}
acquire_device(dev);
ret = flash_andes_qspi_write_protection_set(dev, false);
if (ret != 0) {
goto out;
}
do {
/* Get the adequate size to send*/
to_write = MIN(page_size - (addr % page_size), size);
ret = flash_andes_qspi_cmd_addr_write(dev,
FLASH_ANDES_CMD_4PP, addr, src, to_write);
if (ret != 0) {
break;
}
size -= to_write;
src = (const uint8_t *)src + to_write;
addr += to_write;
flash_andes_qspi_wait_until_ready(dev);
} while (size > 0);
int ret2 = flash_andes_qspi_write_protection_set(dev, true);
if (!ret) {
ret = ret2;
}
out:
release_device(dev);
return ret;
}
static int flash_andes_qspi_erase(const struct device *dev,
off_t addr, size_t size)
{
const size_t flash_size = dev_flash_size(dev);
int ret = 0;
/* erase area must be subregion of device */
if ((addr < 0 || addr >= flash_size || ((flash_size - addr) < size))) {
return -EINVAL;
}
if (size == 0) {
return 0;
}
/* address must be sector-aligned */
if (!SPI_NOR_IS_SECTOR_ALIGNED(addr)) {
return -EINVAL;
}
/* size must be a multiple of sectors */
if ((size % SPI_NOR_SECTOR_SIZE) != 0) {
return -EINVAL;
}
acquire_device(dev);
ret = flash_andes_qspi_write_protection_set(dev, false);
if (ret != 0) {
goto out;
}
if (size == flash_size) {
/* chip erase */
flash_andes_qspi_cmd_write(dev, FLASH_ANDES_CMD_CE);
size -= flash_size;
flash_andes_qspi_wait_until_ready(dev);
}
while (size > 0) {
const struct jesd216_erase_type *erase_types =
dev_erase_types(dev);
const struct jesd216_erase_type *bet = NULL;
for (uint8_t ei = 0; ei < JESD216_NUM_ERASE_TYPES; ++ei) {
const struct jesd216_erase_type *etp =
&erase_types[ei];
if ((etp->exp != 0) &&
SPI_NOR_IS_ALIGNED(addr, etp->exp) &&
SPI_NOR_IS_ALIGNED(size, etp->exp) &&
((bet == NULL) || (etp->exp > bet->exp))) {
bet = etp;
}
}
if (bet != NULL) {
flash_andes_qspi_cmd_addr_write(dev, bet->cmd,
addr, NULL, 0);
addr += BIT(bet->exp);
size -= BIT(bet->exp);
} else {
LOG_DBG("Can't erase %zu at 0x%lx",
size, (long)addr);
ret = -EINVAL;
break;
}
flash_andes_qspi_wait_until_ready(dev);
}
int ret2 = flash_andes_qspi_write_protection_set(dev, true);
if (!ret) {
ret = ret2;
}
out:
release_device(dev);
return ret;
}
static int flash_andes_qspi_write_protection_set(const struct device *dev,
bool write_protect)
{
return flash_andes_qspi_cmd_write(dev, (write_protect) ?
FLASH_ANDES_CMD_WRDI : FLASH_ANDES_CMD_WREN);
}
#if defined(CONFIG_FLASH_JESD216_API)
static int flash_andes_qspi_sfdp_read(const struct device *dev, off_t addr,
void *dest, size_t size)
{
acquire_device(dev);
int ret = read_sfdp(dev, addr, dest, size);
release_device(dev);
return ret;
}
#endif /* CONFIG_FLASH_JESD216_API */
static int flash_andes_qspi_read_jedec_id(const struct device *dev,
uint8_t *id)
{
if (id == NULL) {
return -EINVAL;
}
acquire_device(dev);
int ret = flash_andes_qspi_cmd_read(dev, FLASH_ANDES_CMD_RDID, id, 3);
release_device(dev);
return ret;
}
static int spi_nor_process_bfp(const struct device *dev,
const struct jesd216_param_header *php,
const struct jesd216_bfp *bfp)
{
struct flash_andes_qspi_data *dev_data = dev->data;
struct jesd216_erase_type *etp = dev_data->erase_types;
const size_t flash_size = jesd216_bfp_density(bfp) / 8U;
LOG_DBG("%s: %u MiBy flash", dev->name, (uint32_t)(flash_size >> 20));
/* Copy over the erase types, preserving their order. (The
* Sector Map Parameter table references them by index.)
*/
memset(dev_data->erase_types, 0, sizeof(dev_data->erase_types));
for (uint8_t ti = 1; ti <= ARRAY_SIZE(dev_data->erase_types); ++ti) {
if (jesd216_bfp_erase(bfp, ti, etp) == 0) {
LOG_DBG("Erase %u with %02x",
(uint32_t)BIT(etp->exp), etp->cmd);
}
++etp;
}
dev_data->page_size = jesd216_bfp_page_size(php, bfp);
#ifdef CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME
dev_data->flash_size = flash_size;
#else /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
if (flash_size != dev_flash_size(dev)) {
LOG_ERR("BFP flash size mismatch with devicetree");
return -EINVAL;
}
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
return 0;
}
static int spi_nor_process_sfdp(const struct device *dev)
{
int ret;
#if defined(CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME)
const uint8_t decl_nph = 2;
union {
/* We only process BFP so use one parameter block */
uint8_t raw[JESD216_SFDP_SIZE(decl_nph)];
struct jesd216_sfdp_header sfdp;
} u;
const struct jesd216_sfdp_header *hp = &u.sfdp;
ret = read_sfdp(dev, 0, u.raw, sizeof(u.raw));
if (ret != 0) {
LOG_ERR("SFDP read failed: %d", ret);
return ret;
}
uint32_t magic = jesd216_sfdp_magic(hp);
if (magic != JESD216_SFDP_MAGIC) {
LOG_ERR("SFDP magic %08x invalid", magic);
return -EINVAL;
}
LOG_DBG("%s: SFDP v %u.%u AP %x with %u PH", dev->name,
hp->rev_major, hp->rev_minor, hp->access, 1 + hp->nph);
const struct jesd216_param_header *php = hp->phdr;
const struct jesd216_param_header *phpe =
php + MIN(decl_nph, 1 + hp->nph);
while (php != phpe) {
uint16_t id = jesd216_param_id(php);
LOG_DBG("PH%zu: %04x rev %u.%u: %u DW @ %x",
(php - hp->phdr), id, php->rev_major, php->rev_minor,
php->len_dw, jesd216_param_addr(php));
if (id == JESD216_SFDP_PARAM_ID_BFP) {
union {
uint32_t dw[MIN(php->len_dw, 20)];
struct jesd216_bfp bfp;
} u;
const struct jesd216_bfp *bfp = &u.bfp;
ret = read_sfdp(dev,
jesd216_param_addr(php), u.dw, sizeof(u.dw));
if (ret != 0) {
break;
}
ret = spi_nor_process_bfp(dev, php, bfp);
if (ret != 0) {
break;
}
}
++php;
}
#elif defined(CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE)
/* For devicetree we need to synthesize a parameter header and
* process the stored BFP data as if we had read it.
*/
const struct flash_andes_qspi_config *config = dev->config;
struct jesd216_param_header bfp_hdr = {
.len_dw = config->bfp_len,
};
ret = spi_nor_process_bfp(dev, &bfp_hdr, cfg->bfp);
#else
#error Unhandled SFDP choice
#endif
return ret;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static int setup_pages_layout(const struct device *dev)
{
int ret = 0;
#if defined(CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME)
struct flash_andes_qspi_data *dev_data = dev->data;
const size_t flash_size = dev_flash_size(dev);
const uint32_t layout_page_size =
CONFIG_FLASH_ANDES_QSPI_LAYOUT_PAGE_SIZE;
uint8_t exponent = 0;
/* Find the smallest erase size. */
for (size_t i = 0; i < ARRAY_SIZE(dev_data->erase_types); ++i) {
const struct jesd216_erase_type *etp =
&dev_data->erase_types[i];
if ((etp->cmd != 0) &&
((exponent == 0) || (etp->exp < exponent))) {
exponent = etp->exp;
}
}
if (exponent == 0) {
return -ENOTSUP;
}
uint32_t erase_size = BIT(exponent);
/* Error if layout page size is not a multiple of smallest
* erase size.
*/
if ((layout_page_size % erase_size) != 0) {
LOG_ERR("layout page %u not compatible with erase size %u",
layout_page_size, erase_size);
return -EINVAL;
}
/* Warn but accept layout page sizes that leave inaccessible
* space.
*/
if ((flash_size % layout_page_size) != 0) {
LOG_WRN("layout page %u wastes space with device size %zu",
layout_page_size, flash_size);
}
dev_data->layout.pages_size = layout_page_size;
dev_data->layout.pages_count = flash_size / layout_page_size;
LOG_DBG("layout %zu x %zu By pages", dev_data->layout.pages_count,
dev_data->layout.pages_size);
#elif defined(CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE)
const struct flash_andes_qspi_config *config = dev->config;
const struct flash_pages_layout *layout = &config->layout;
const size_t flash_size = dev_flash_size(dev);
size_t layout_size = layout->pages_size * layout->pages_count;
if (!SPI_NOR_IS_SECTOR_ALIGNED(layout->pages_size)) {
LOG_ERR("ANDES_QSPI_FLASH_LAYOUT_PAGE_SIZE must be "
"multiple of 4096");
return -EINVAL;
}
if (flash_size != layout_size) {
LOG_ERR("device size %zu mismatch %zu * %zu By pages",
flash_size, layout->pages_count, layout->pages_size);
return -EINVAL;
}
#else /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
#error Unhandled SFDP choice
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
return ret;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static int qspi_andes_configure(const struct device *dev)
{
const struct flash_andes_qspi_config *config = dev->config;
uint32_t base = config->base;
/* Setting the divisor value to 0xff indicates the SCLK
* frequency should be the same as the spi_clock frequency.
*/
sys_set_bits(QSPI_TIMIN(base), TIMIN_SCLK_DIV_MSK);
/* Set Master mode */
sys_clear_bits(QSPI_TFMAT(base), TFMAT_SLVMODE_MSK);
/* Disable data merge mode */
sys_clear_bits(QSPI_TFMAT(base), TFMAT_DATA_MERGE_MSK);
/* Set data length */
sys_clear_bits(QSPI_TFMAT(base), TFMAT_DATA_LEN_MSK);
sys_set_bits(QSPI_TFMAT(base), (7 << TFMAT_DATA_LEN_OFFSET));
/* Set TX/RX FIFO threshold */
sys_clear_bits(QSPI_CTRL(base), CTRL_TX_THRES_MSK);
sys_clear_bits(QSPI_CTRL(base), CTRL_RX_THRES_MSK);
sys_set_bits(QSPI_CTRL(base), TX_FIFO_THRESHOLD);
sys_set_bits(QSPI_CTRL(base), RX_FIFO_THRESHOLD);
return 0;
}
static void qspi_andes_irq_handler(const struct device *dev)
{
struct flash_andes_qspi_data *data = dev->data;
const struct flash_andes_qspi_config *config = dev->config;
uint32_t base = config->base;
uint32_t i, intr_status, spi_status;
uint32_t rx_data, cur_tx_fifo_num, cur_rx_fifo_num;
uint32_t tx_num = 0, tx_data = 0;
intr_status = sys_read32(QSPI_INTST(base));
if ((intr_status & INTST_TX_FIFO_INT_MSK) &&
!(intr_status & INTST_END_INT_MSK)) {
spi_status = sys_read32(QSPI_STAT(base));
cur_tx_fifo_num = GET_TX_NUM(base);
tx_num = data->tx_fifo_size - cur_tx_fifo_num;
if (tx_num > data->tx_len) {
tx_num = data->tx_len;
}
for (i = tx_num; i > 0; i--) {
tx_data = data->tx_buf[data->tx_ptr];
sys_write32(tx_data, QSPI_DATA(base));
data->tx_ptr++;
if (data->tx_ptr == data->tx_len) {
sys_clear_bits(QSPI_INTEN(base), IEN_TX_FIFO_MSK);
break;
}
}
sys_write32(INTST_TX_FIFO_INT_MSK, QSPI_INTST(base));
}
if (intr_status & INTST_RX_FIFO_INT_MSK) {
cur_rx_fifo_num = GET_RX_NUM(base);
for (i = cur_rx_fifo_num; i > 0; i--) {
rx_data = sys_read32(QSPI_DATA(base));
data->rx_buf[data->rx_ptr] = rx_data;
data->rx_ptr++;
if (data->rx_ptr == data->rx_len) {
sys_clear_bits(QSPI_INTEN(base), IEN_RX_FIFO_MSK);
break;
}
}
sys_write32(INTST_RX_FIFO_INT_MSK, QSPI_INTST(base));
}
if (intr_status & INTST_END_INT_MSK) {
/* Clear end interrupt */
sys_write32(INTST_END_INT_MSK, QSPI_INTST(base));
/* Disable all SPI interrupts */
sys_write32(0, QSPI_INTEN(base));
k_sem_give(&data->device_sync_sem);
}
}
/**
* @brief Initialize and configure the flash
*
* @param name The flash name
* @return 0 on success, negative errno code otherwise
*/
static int flash_andes_qspi_init(const struct device *dev)
{
const struct flash_andes_qspi_config *config = dev->config;
struct flash_andes_qspi_data *dev_data = dev->data;
uint32_t base = config->base;
uint8_t ret, reg = (0x1UL << 6);
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
/* we should not configure the device we are running on */
if (config->xip) {
return -EINVAL;
}
k_sem_init(&dev_data->sem, 1, 1);
k_sem_init(&dev_data->device_sync_sem, 0, 1);
/* Get the TX/RX FIFO size of this device */
dev_data->tx_fifo_size = TX_FIFO_SIZE(base);
dev_data->rx_fifo_size = RX_FIFO_SIZE(base);
config->cfg_func();
irq_enable(config->irq_num);
qspi_andes_configure(dev);
ret = flash_andes_qspi_read_jedec_id(dev, jedec_id);
if (ret != 0) {
LOG_ERR("JEDEC ID read failed: %d", ret);
return -ENODEV;
}
#ifndef CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME
if (memcmp(jedec_id, cfg->jedec_id, sizeof(jedec_id)) != 0) {
LOG_ERR("Device id %02x %02x %02x does not match config"
"%02x %02x %02x", jedec_id[0], jedec_id[1], jedec_id[2],
cfg->jedec_id[0], cfg->jedec_id[1], cfg->jedec_id[2]);
return -EINVAL;
}
#endif
ret = spi_nor_process_sfdp(dev);
if (ret != 0) {
LOG_ERR("SFDP read failed: %d", ret);
return -ENODEV;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
ret = setup_pages_layout(dev);
if (ret != 0) {
LOG_ERR("layout setup failed: %d", ret);
return -ENODEV;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
/* Set status register QE bit. */
flash_andes_qspi_wrsr(dev, reg);
return 0;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void flash_andes_qspi_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
#ifdef CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME
const struct flash_andes_qspi_data *dev_data = dev->data;
*layout = &dev_data->layout;
#else /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
const struct flash_andes_qspi_config *config = dev->config;
*layout = &config->layout;
#endif /* CONFIG_FLASH_ANDES_QSPI_SFDP_RUNTIME */
*layout_size = 1;
}
#endif
static const struct flash_parameters *
flash_andes_qspi_get_parameters(const struct device *dev)
{
const struct flash_andes_qspi_config *config = dev->config;
return &config->parameters;
}
static const struct flash_driver_api flash_andes_qspi_api = {
.read = flash_andes_qspi_read,
.write = flash_andes_qspi_write,
.erase = flash_andes_qspi_erase,
.get_parameters = flash_andes_qspi_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_andes_qspi_pages_layout,
#endif
#if defined(CONFIG_FLASH_JESD216_API)
.sfdp_read = flash_andes_qspi_sfdp_read,
.read_jedec_id = flash_andes_qspi_read_jedec_id,
#endif
};
#if (CONFIG_XIP)
#define QSPI_ROM_CFG_XIP(node_id) DT_SAME_NODE(node_id, DT_CHOSEN(zephyr_flash))
#else
#define QSPI_ROM_CFG_XIP(node_id) false
#endif
#define LAYOUT_PAGES_PROP(n) \
IF_ENABLED(CONFIG_FLASH_PAGE_LAYOUT, \
(.layout = { \
.pages_count = ((DT_INST_PROP(n, size) / 8) / \
CONFIG_FLASH_ANDES_QSPI_LAYOUT_PAGE_SIZE), \
.pages_size = \
CONFIG_FLASH_ANDES_QSPI_LAYOUT_PAGE_SIZE, \
}, \
))
#define ANDES_QSPI_SFDP_DEVICETREE_CONFIG(n) \
IF_ENABLED(CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE, \
( \
static const __aligned(4) uint8_t bfp_data_##n[] = \
DT_INST_PROP(n, sfdp_bfp); \
))
#define ANDES_QSPI_SFDP_DEVICETREE_PROP(n) \
IF_ENABLED(CONFIG_FLASH_ANDES_QSPI_SFDP_DEVICETREE, \
(.jedec_id = DT_INST_PROP(n, jedec_id), \
.flash_size = DT_INST_PROP(n, size) / 8, \
.bfp_len = sizeof(bfp_data_##n) / 4, \
.bfp = (const struct jesd216_bfp *)bfp_data_##n, \
LAYOUT_PAGES_PROP(n) \
))
#define FLASH_ANDES_QSPI_INIT(n) \
static struct flash_andes_qspi_data flash_andes_qspi_data_##n; \
ANDES_QSPI_SFDP_DEVICETREE_CONFIG(n) \
\
static void flash_andes_qspi_configure_##n(void); \
static const struct flash_andes_qspi_config \
flash_andes_qspi_config_##n = { \
.cfg_func = flash_andes_qspi_configure_##n, \
.base = DT_REG_ADDR(DT_INST_BUS(n)), \
.irq_num = DT_IRQN(DT_INST_BUS(n)), \
.parameters = { \
.write_block_size = 1, \
.erase_value = 0xff \
}, \
.xip = QSPI_ROM_CFG_XIP(DT_DRV_INST(n)), \
ANDES_QSPI_SFDP_DEVICETREE_PROP(n) \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&flash_andes_qspi_init, \
NULL, \
&flash_andes_qspi_data_##n, \
&flash_andes_qspi_config_##n, \
POST_KERNEL, \
CONFIG_FLASH_ANDES_QSPI_INIT_PRIORITY, \
&flash_andes_qspi_api); \
\
static void flash_andes_qspi_configure_##n(void) \
{ \
IRQ_CONNECT(DT_IRQN(DT_INST_BUS(n)), \
DT_IRQ(DT_INST_BUS(n), priority), \
qspi_andes_irq_handler, \
DEVICE_DT_INST_GET(n), \
0); \
} \
DT_INST_FOREACH_STATUS_OKAY(FLASH_ANDES_QSPI_INIT)