7795558ad5
For the flash driver, the base address is the MCU internal flash address (usually 0x8000000). This PR gets the that address from the device tree node "st,stm32-nv-flash" instead of relying on the CONFIG_FLASH_BASE_ADDRESS which might differ when building for another flash memory. Signed-off-by: Francois Ramu <francois.ramu@st.com>
241 lines
6.1 KiB
C
241 lines
6.1 KiB
C
/*
|
|
* Copyright (c) 2019 Philippe Retornaz <philippe@shapescale.com>
|
|
* Copyright (c) 2017 Linaro Limited
|
|
* Copyright (c) 2017 BayLibre, SAS
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define LOG_DOMAIN flash_stm32g0
|
|
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(LOG_DOMAIN);
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/device.h>
|
|
#include <string.h>
|
|
#include <zephyr/drivers/flash.h>
|
|
#include <zephyr/init.h>
|
|
#include <soc.h>
|
|
|
|
#include "flash_stm32.h"
|
|
|
|
|
|
/* FLASH_DBANK_SUPPORT is defined in the HAL for all G0Bx and G0C1 SoCs,
|
|
* while only those with 256KiB and 512KiB Flash have two banks.
|
|
*/
|
|
#if defined(FLASH_DBANK_SUPPORT) && (CONFIG_FLASH_SIZE > (128))
|
|
#define STM32G0_DBANK_SUPPORT
|
|
#endif
|
|
|
|
#if defined(STM32G0_DBANK_SUPPORT)
|
|
#define STM32G0_BANK_COUNT 2
|
|
#define STM32G0_BANK2_START_PAGE_NR 256
|
|
#else
|
|
#define STM32G0_BANK_COUNT 1
|
|
#endif
|
|
|
|
#define STM32G0_FLASH_SIZE (FLASH_SIZE)
|
|
#define STM32G0_FLASH_PAGE_SIZE (FLASH_PAGE_SIZE)
|
|
#define STM32G0_PAGES_PER_BANK \
|
|
((STM32G0_FLASH_SIZE / STM32G0_FLASH_PAGE_SIZE) / STM32G0_BANK_COUNT)
|
|
|
|
static inline void flush_cache(FLASH_TypeDef *regs)
|
|
{
|
|
if (regs->ACR & FLASH_ACR_ICEN) {
|
|
regs->ACR &= ~FLASH_ACR_ICEN;
|
|
/* Datasheet: ICRST: Instruction cache reset :
|
|
* This bit can be written only when the instruction cache
|
|
* is disabled
|
|
*/
|
|
regs->ACR |= FLASH_ACR_ICRST;
|
|
regs->ACR &= ~FLASH_ACR_ICRST;
|
|
regs->ACR |= FLASH_ACR_ICEN;
|
|
}
|
|
}
|
|
|
|
static int write_dword(const struct device *dev, off_t offset, uint64_t val)
|
|
{
|
|
volatile uint32_t *flash = (uint32_t *)(offset + FLASH_STM32_BASE_ADDRESS);
|
|
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
|
|
uint32_t tmp;
|
|
int rc;
|
|
|
|
/* if the control register is locked, do not fail silently */
|
|
if (regs->CR & FLASH_CR_LOCK) {
|
|
return -EIO;
|
|
}
|
|
|
|
/* Check that no Flash main memory operation is ongoing */
|
|
rc = flash_stm32_wait_flash_idle(dev);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
/* Check if this double word is erased and value isn't 0.
|
|
*
|
|
* It is allowed to write only zeros over an already written dword
|
|
* See 3.3.8 in reference manual.
|
|
*/
|
|
if ((flash[0] != 0xFFFFFFFFUL ||
|
|
flash[1] != 0xFFFFFFFFUL) && val != 0UL) {
|
|
LOG_ERR("Word at offs %ld not erased", (long)offset);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Set the PG bit */
|
|
regs->CR |= FLASH_CR_PG;
|
|
|
|
/* Flush the register write */
|
|
tmp = regs->CR;
|
|
|
|
/* Perform the data write operation at the desired memory address */
|
|
flash[0] = (uint32_t)val;
|
|
flash[1] = (uint32_t)(val >> 32);
|
|
|
|
/* Wait until the BSY bit is cleared */
|
|
rc = flash_stm32_wait_flash_idle(dev);
|
|
|
|
/* Clear the PG bit */
|
|
regs->CR &= (~FLASH_CR_PG);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int erase_page(const struct device *dev, unsigned int offset)
|
|
{
|
|
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
|
|
uint32_t tmp;
|
|
int rc;
|
|
int page;
|
|
|
|
/* if the control register is locked, do not fail silently */
|
|
if (regs->CR & FLASH_CR_LOCK) {
|
|
return -EIO;
|
|
}
|
|
|
|
/* Check that no Flash memory operation is ongoing */
|
|
rc = flash_stm32_wait_flash_idle(dev);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* If an erase operation in Flash memory also concerns data
|
|
* in the instruction cache, the user has to ensure that these data
|
|
* are rewritten before they are accessed during code execution.
|
|
*/
|
|
flush_cache(regs);
|
|
|
|
tmp = regs->CR;
|
|
page = offset / STM32G0_FLASH_PAGE_SIZE;
|
|
|
|
#if defined(STM32G0_DBANK_SUPPORT)
|
|
bool swap_enabled = (regs->OPTR & FLASH_OPTR_nSWAP_BANK) == 0;
|
|
|
|
/* big page-nr w/o swap or small page-nr w/ swap indicate bank2 */
|
|
if ((page >= STM32G0_PAGES_PER_BANK) != swap_enabled) {
|
|
page = (page % STM32G0_PAGES_PER_BANK) + STM32G0_BANK2_START_PAGE_NR;
|
|
tmp |= FLASH_CR_BKER;
|
|
LOG_DBG("Erase page %d on bank 2", page);
|
|
} else {
|
|
page = page % STM32G0_PAGES_PER_BANK;
|
|
tmp &= ~FLASH_CR_BKER;
|
|
LOG_DBG("Erase page %d on bank 1", page);
|
|
}
|
|
#endif
|
|
|
|
/* Set the PER bit and select the page you wish to erase */
|
|
tmp |= FLASH_CR_PER;
|
|
tmp &= ~FLASH_CR_PNB_Msk;
|
|
tmp |= ((page << FLASH_CR_PNB_Pos) & FLASH_CR_PNB_Msk);
|
|
|
|
/* Set the STRT bit and write the reg */
|
|
tmp |= FLASH_CR_STRT;
|
|
regs->CR = tmp;
|
|
|
|
/* Wait for the BSY bit */
|
|
rc = flash_stm32_wait_flash_idle(dev);
|
|
|
|
regs->CR &= ~FLASH_CR_PER;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int flash_stm32_block_erase_loop(const struct device *dev,
|
|
unsigned int offset,
|
|
unsigned int len)
|
|
{
|
|
unsigned int addr = offset;
|
|
int rc = 0;
|
|
|
|
for (; addr <= offset + len - 1 ; addr += STM32G0_FLASH_PAGE_SIZE) {
|
|
rc = erase_page(dev, addr);
|
|
if (rc < 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
|
|
const void *data, unsigned int len)
|
|
{
|
|
int i, rc = 0;
|
|
|
|
for (i = 0; i < len; i += 8, offset += 8) {
|
|
rc = write_dword(dev, offset,
|
|
UNALIGNED_GET((const uint64_t *) data + (i >> 3)));
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The address space is always continuous, even though a subset of G0 SoCs has
|
|
* two flash banks.
|
|
* Only the "physical" flash page-NRs are not continuous on those SoCs.
|
|
* As a result the page numbers used in the zephyr flash api differs
|
|
* from the "physical" flash page number.
|
|
* The first is equal to the address offset divided by the page size, while
|
|
* "physical" pages are numbered starting with 0 on bank1 and 256 on bank2.
|
|
* As a result only a single homogeneous flash page layout needs to be defined.
|
|
*/
|
|
void flash_stm32_page_layout(const struct device *dev,
|
|
const struct flash_pages_layout **layout,
|
|
size_t *layout_size)
|
|
{
|
|
static struct flash_pages_layout stm32g0_flash_layout = {
|
|
.pages_count = 0,
|
|
.pages_size = 0,
|
|
};
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if (stm32g0_flash_layout.pages_count == 0) {
|
|
stm32g0_flash_layout.pages_count =
|
|
STM32G0_FLASH_SIZE / STM32G0_FLASH_PAGE_SIZE;
|
|
stm32g0_flash_layout.pages_size = STM32G0_FLASH_PAGE_SIZE;
|
|
}
|
|
|
|
*layout = &stm32g0_flash_layout;
|
|
*layout_size = 1;
|
|
}
|
|
|
|
/* Override weak function */
|
|
int flash_stm32_check_configuration(void)
|
|
{
|
|
#if defined(STM32G0_DBANK_SUPPORT) && (CONFIG_FLASH_SIZE == 256)
|
|
/* Single bank mode not supported on dual bank SoCs with 256kiB flash */
|
|
if ((FLASH->OPTR & FLASH_OPTR_DUAL_BANK) == 0) {
|
|
LOG_ERR("Single bank configuration not supported by the driver");
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|