zephyr/scripts/dts/gen_defines.py
Yong Cong Sin 450a66fa36 gen_defines: output the interrupt level of a node
Currently it is tedious to know the level of an interrupt for
a node in C. One would have to go through a very complex and
error prone macros to check if there's a parent interrupt
controller & if the controller has an interrupt number and thus
not a pseudo interrupt controller like the one found in
`rv32m1`. The level of a node is required to encode the
Zephyr's multi-level interrupt number

Since it is easier to do it in the `gen_defines` script, let's
do the heavy lifting there so that we can introduce new DT
macros to get the interrupt level very easily later.

Signed-off-by: Yong Cong Sin <ycsin@meta.com>
2024-01-23 06:48:16 -05:00

1104 lines
41 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2019 - 2020 Nordic Semiconductor ASA
# Copyright (c) 2019 Linaro Limited
# SPDX-License-Identifier: BSD-3-Clause
# This script uses edtlib to generate a header file from a devicetree
# (.dts) file. Information from binding files in YAML format is used
# as well.
#
# Bindings are files that describe devicetree nodes. Devicetree nodes are
# usually mapped to bindings via their 'compatible = "..."' property.
#
# See Zephyr's Devicetree user guide for details.
#
# Note: Do not access private (_-prefixed) identifiers from edtlib here (and
# also note that edtlib is not meant to expose the dtlib API directly).
# Instead, think of what API you need, and add it as a public documented API in
# edtlib. This will keep this script simple.
import argparse
from collections import defaultdict
import logging
import os
import pathlib
import pickle
import re
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'python-devicetree',
'src'))
from devicetree import edtlib
class LogFormatter(logging.Formatter):
'''A log formatter that prints the level name in lower case,
for compatibility with earlier versions of edtlib.'''
def __init__(self):
super().__init__(fmt='%(levelnamelower)s: %(message)s')
def format(self, record):
record.levelnamelower = record.levelname.lower()
return super().format(record)
def main():
global header_file
global flash_area_num
args = parse_args()
setup_edtlib_logging()
vendor_prefixes = {}
for prefixes_file in args.vendor_prefixes:
vendor_prefixes.update(edtlib.load_vendor_prefixes_txt(prefixes_file))
try:
edt = edtlib.EDT(args.dts, args.bindings_dirs,
# Suppress this warning if it's suppressed in dtc
warn_reg_unit_address_mismatch=
"-Wno-simple_bus_reg" not in args.dtc_flags,
default_prop_types=True,
infer_binding_for_paths=["/zephyr,user"],
werror=args.edtlib_Werror,
vendor_prefixes=vendor_prefixes)
except edtlib.EDTError as e:
sys.exit(f"devicetree error: {e}")
flash_area_num = 0
# Save merged DTS source, as a debugging aid
with open(args.dts_out, "w", encoding="utf-8") as f:
print(edt.dts_source, file=f)
# The raw index into edt.compat2nodes[compat] is used for node
# instance numbering within a compatible.
#
# As a way to satisfy people's intuitions about instance numbers,
# though, we sort this list so enabled instances come first.
#
# This might look like a hack, but it keeps drivers and
# applications which don't use instance numbers carefully working
# as expected, since e.g. instance number 0 is always the
# singleton instance if there's just one enabled node of a
# particular compatible.
#
# This doesn't violate any devicetree.h API guarantees about
# instance ordering, since we make no promises that instance
# numbers are stable across builds.
for compat, nodes in edt.compat2nodes.items():
edt.compat2nodes[compat] = sorted(
nodes, key=lambda node: 0 if node.status == "okay" else 1)
# Create the generated header.
with open(args.header_out, "w", encoding="utf-8") as header_file:
write_top_comment(edt)
write_utils()
# populate all z_path_id first so any children references will
# work correctly.
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
node.z_path_id = node_z_path_id(node)
# Check to see if we have duplicate "zephyr,memory-region" property values.
regions = dict()
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
if 'zephyr,memory-region' in node.props:
region = node.props['zephyr,memory-region'].val
if region in regions:
sys.exit(f"ERROR: Duplicate 'zephyr,memory-region' ({region}) properties "
f"between {regions[region].path} and {node.path}")
regions[region] = node
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
write_node_comment(node)
out_comment("Node's full path:")
out_dt_define(f"{node.z_path_id}_PATH", f'"{escape(node.path)}"')
out_comment("Node's name with unit-address:")
out_dt_define(f"{node.z_path_id}_FULL_NAME",
f'"{escape(node.name)}"')
if node.parent is not None:
out_comment(f"Node parent ({node.parent.path}) identifier:")
out_dt_define(f"{node.z_path_id}_PARENT",
f"DT_{node.parent.z_path_id}")
out_comment(f"Node's index in its parent's list of children:")
out_dt_define(f"{node.z_path_id}_CHILD_IDX",
node.parent.child_index(node))
write_children(node)
write_dep_info(node)
write_idents_and_existence(node)
write_bus(node)
write_special_props(node)
write_vanilla_props(node)
write_chosen(edt)
write_global_macros(edt)
if args.edt_pickle_out:
write_pickled_edt(edt, args.edt_pickle_out)
def setup_edtlib_logging():
# The edtlib module emits logs using the standard 'logging' module.
# Configure it so that warnings and above are printed to stderr,
# using the LogFormatter class defined above to format each message.
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(LogFormatter())
logger = logging.getLogger('edtlib')
logger.setLevel(logging.WARNING)
logger.addHandler(handler)
def node_z_path_id(node):
# Return the node specific bit of the node's path identifier:
#
# - the root node's path "/" has path identifier "N"
# - "/foo" has "N_S_foo"
# - "/foo/bar" has "N_S_foo_S_bar"
# - "/foo/bar@123" has "N_S_foo_S_bar_123"
#
# This is used throughout this file to generate macros related to
# the node.
components = ["N"]
if node.parent is not None:
components.extend(f"S_{str2ident(component)}" for component in
node.path.split("/")[1:])
return "_".join(components)
def parse_args():
# Returns parsed command-line arguments
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument("--dts", required=True, help="DTS file")
parser.add_argument("--dtc-flags",
help="'dtc' devicetree compiler flags, some of which "
"might be respected here")
parser.add_argument("--bindings-dirs", nargs='+', required=True,
help="directory with bindings in YAML format, "
"we allow multiple")
parser.add_argument("--header-out", required=True,
help="path to write header to")
parser.add_argument("--dts-out", required=True,
help="path to write merged DTS source code to (e.g. "
"as a debugging aid)")
parser.add_argument("--edt-pickle-out",
help="path to write pickled edtlib.EDT object to")
parser.add_argument("--vendor-prefixes", action='append', default=[],
help="vendor-prefixes.txt path; used for validation; "
"may be given multiple times")
parser.add_argument("--edtlib-Werror", action="store_true",
help="if set, edtlib-specific warnings become errors. "
"(this does not apply to warnings shared "
"with dtc.)")
return parser.parse_args()
def write_top_comment(edt):
# Writes an overview comment with misc. info at the top of the header and
# configuration file
s = f"""\
Generated by gen_defines.py
DTS input file:
{edt.dts_path}
Directories with bindings:
{", ".join(map(relativize, edt.bindings_dirs))}
Node dependency ordering (ordinal and path):
"""
for scc in edt.scc_order:
if len(scc) > 1:
err("cycle in devicetree involving "
+ ", ".join(node.path for node in scc))
s += f" {scc[0].dep_ordinal:<3} {scc[0].path}\n"
s += """
Definitions derived from these nodes in dependency order are next,
followed by /chosen nodes.
"""
out_comment(s, blank_before=False)
def write_utils():
# Writes utility macros
out_comment("Used to remove brackets from around a single argument")
out_define("DT_DEBRACKET_INTERNAL(...)", "__VA_ARGS__")
def write_node_comment(node):
# Writes a comment describing 'node' to the header and configuration file
s = f"""\
Devicetree node: {node.path}
Node identifier: DT_{node.z_path_id}
"""
if node.matching_compat:
if node.binding_path:
s += f"""
Binding (compatible = {node.matching_compat}):
{relativize(node.binding_path)}
"""
else:
s += f"""
Binding (compatible = {node.matching_compat}):
No yaml (bindings inferred from properties)
"""
if node.description:
# We used to put descriptions in the generated file, but
# devicetree bindings now have pages in the HTML
# documentation. Let users who are accustomed to digging
# around in the generated file where to find the descriptions
# now.
#
# Keeping them here would mean that the descriptions
# themselves couldn't contain C multi-line comments, which is
# inconvenient when we want to do things like quote snippets
# of .dtsi files within the descriptions, or otherwise
# include the string "*/".
s += ("\n(Descriptions have moved to the Devicetree Bindings Index\n"
"in the documentation.)\n")
out_comment(s)
def relativize(path):
# If 'path' is within $ZEPHYR_BASE, returns it relative to $ZEPHYR_BASE,
# with a "$ZEPHYR_BASE/..." hint at the start of the string. Otherwise,
# returns 'path' unchanged.
zbase = os.getenv("ZEPHYR_BASE")
if zbase is None:
return path
try:
return str("$ZEPHYR_BASE" / pathlib.Path(path).relative_to(zbase))
except ValueError:
# Not within ZEPHYR_BASE
return path
def write_idents_and_existence(node):
# Writes macros related to the node's aliases, labels, etc.,
# as well as existence flags.
# Aliases
idents = [f"N_ALIAS_{str2ident(alias)}" for alias in node.aliases]
# Instances
for compat in node.compats:
instance_no = node.edt.compat2nodes[compat].index(node)
idents.append(f"N_INST_{instance_no}_{str2ident(compat)}")
# Node labels
idents.extend(f"N_NODELABEL_{str2ident(label)}" for label in node.labels)
out_comment("Existence and alternate IDs:")
out_dt_define(node.z_path_id + "_EXISTS", 1)
# Only determine maxlen if we have any idents
if idents:
maxlen = max(len("DT_" + ident) for ident in idents)
for ident in idents:
out_dt_define(ident, "DT_" + node.z_path_id, width=maxlen)
def write_bus(node):
# Macros about the node's bus controller, if there is one
bus = node.bus_node
if not bus:
return
out_comment(f"Bus info (controller: '{bus.path}', type: '{node.on_buses}')")
for one_bus in node.on_buses:
out_dt_define(f"{node.z_path_id}_BUS_{str2ident(one_bus)}", 1)
out_dt_define(f"{node.z_path_id}_BUS", f"DT_{bus.z_path_id}")
def write_special_props(node):
# Writes required macros for special case properties, when the
# data cannot otherwise be obtained from write_vanilla_props()
# results
# Macros that are special to the devicetree specification
out_comment("Macros for properties that are special in the specification:")
write_regs(node)
write_ranges(node)
write_interrupts(node)
write_compatibles(node)
write_status(node)
# Macros that are special to bindings inherited from Linux, which
# we can't capture with the current bindings language.
write_pinctrls(node)
write_fixed_partitions(node)
write_gpio_hogs(node)
def write_ranges(node):
# ranges property: edtlib knows the right #address-cells and
# #size-cells of parent and child, and can therefore pack the
# child & parent addresses and sizes correctly
idx_vals = []
path_id = node.z_path_id
if node.ranges is not None:
idx_vals.append((f"{path_id}_RANGES_NUM", len(node.ranges)))
for i,range in enumerate(node.ranges):
idx_vals.append((f"{path_id}_RANGES_IDX_{i}_EXISTS", 1))
if "pcie" in node.buses:
idx_vals.append((f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_FLAGS_EXISTS", 1))
idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_FLAGS"
idx_value = range.child_bus_addr >> ((range.child_bus_cells - 1) * 32)
idx_vals.append((idx_macro,
f"{idx_value} /* {hex(idx_value)} */"))
if range.child_bus_addr is not None:
idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_ADDRESS"
if "pcie" in node.buses:
idx_value = range.child_bus_addr & ((1 << (range.child_bus_cells - 1) * 32) - 1)
else:
idx_value = range.child_bus_addr
idx_vals.append((idx_macro,
f"{idx_value} /* {hex(idx_value)} */"))
if range.parent_bus_addr is not None:
idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_PARENT_BUS_ADDRESS"
idx_vals.append((idx_macro,
f"{range.parent_bus_addr} /* {hex(range.parent_bus_addr)} */"))
if range.length is not None:
idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_LENGTH"
idx_vals.append((idx_macro,
f"{range.length} /* {hex(range.length)} */"))
for macro, val in idx_vals:
out_dt_define(macro, val)
out_dt_define(f"{path_id}_FOREACH_RANGE(fn)",
" ".join(f"fn(DT_{path_id}, {i})" for i,range in enumerate(node.ranges)))
def write_regs(node):
# reg property: edtlib knows the right #address-cells and
# #size-cells, and can therefore pack the register base addresses
# and sizes correctly
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.regs is not None:
idx_vals.append((f"{path_id}_REG_NUM", len(node.regs)))
for i, reg in enumerate(node.regs):
idx_vals.append((f"{path_id}_REG_IDX_{i}_EXISTS", 1))
if reg.addr is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_ADDRESS"
idx_vals.append((idx_macro,
f"{reg.addr} /* {hex(reg.addr)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_ADDRESS"
name_vals.append((name_macro, f"DT_{idx_macro}"))
if reg.size is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_SIZE"
idx_vals.append((idx_macro,
f"{reg.size} /* {hex(reg.size)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_SIZE"
name_vals.append((name_macro, f"DT_{idx_macro}"))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_interrupts(node):
# interrupts property: we have some hard-coded logic for interrupt
# mapping here.
#
# TODO: can we push map_arm_gic_irq_type() out of Python and into C with
# macro magic in devicetree.h?
def map_arm_gic_irq_type(irq, irq_num):
# Maps ARM GIC IRQ (type)+(index) combo to linear IRQ number
if "type" not in irq.data:
err(f"Expected binding for {irq.controller!r} to have 'type' in "
"interrupt-cells")
irq_type = irq.data["type"]
if irq_type == 0: # GIC_SPI
return irq_num + 32
if irq_type == 1: # GIC_PPI
return irq_num + 16
err(f"Invalid interrupt type specified for {irq!r}")
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.interrupts is not None:
idx_vals.append((f"{path_id}_IRQ_NUM", len(node.interrupts)))
for i, irq in enumerate(node.interrupts):
for cell_name, cell_value in irq.data.items():
name = str2ident(cell_name)
if cell_name == "irq":
if "arm,gic" in irq.controller.compats:
cell_value = map_arm_gic_irq_type(irq, cell_value)
idx_vals.append((f"{path_id}_IRQ_IDX_{i}_EXISTS", 1))
idx_macro = f"{path_id}_IRQ_IDX_{i}_VAL_{name}"
idx_vals.append((idx_macro, cell_value))
idx_vals.append((idx_macro + "_EXISTS", 1))
if irq.name:
name_macro = \
f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_VAL_{name}"
name_vals.append((name_macro, f"DT_{idx_macro}"))
name_vals.append((name_macro + "_EXISTS", 1))
idx_controller_macro = f"{path_id}_IRQ_IDX_{i}_CONTROLLER"
idx_controller_path = f"DT_{irq.controller.z_path_id}"
idx_vals.append((idx_controller_macro, idx_controller_path))
if irq.name:
name_controller_macro = f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_CONTROLLER"
name_vals.append((name_controller_macro, f"DT_{idx_controller_macro}"))
# Interrupt controller info
irqs = []
while node.interrupts is not None and len(node.interrupts) > 0:
irq = node.interrupts[0]
irqs.append(irq)
if node == irq.controller:
break
node = irq.controller
idx_vals.append((f"{path_id}_IRQ_LEVEL", len(irqs)))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_compatibles(node):
# Writes a macro for each of the node's compatibles. We don't care
# about whether edtlib / Zephyr's binding language recognizes
# them. The compatibles the node provides are what is important.
for i, compat in enumerate(node.compats):
out_dt_define(
f"{node.z_path_id}_COMPAT_MATCHES_{str2ident(compat)}", 1)
if node.edt.compat2vendor[compat]:
out_dt_define(f"{node.z_path_id}_COMPAT_VENDOR_IDX_{i}_EXISTS", 1)
out_dt_define(f"{node.z_path_id}_COMPAT_VENDOR_IDX_{i}",
quote_str(node.edt.compat2vendor[compat]))
if node.edt.compat2model[compat]:
out_dt_define(f"{node.z_path_id}_COMPAT_MODEL_IDX_{i}_EXISTS", 1)
out_dt_define(f"{node.z_path_id}_COMPAT_MODEL_IDX_{i}",
quote_str(node.edt.compat2model[compat]))
def write_children(node):
# Writes helper macros for dealing with node's children.
out_comment("Helper macros for child nodes of this node.")
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD(fn)",
" ".join(f"fn(DT_{child.z_path_id})" for child in
node.children.values()))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_SEP(fn, sep)",
" DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id})"
for child in node.children.values()))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_VARGS(fn, ...)",
" ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)"
for child in node.children.values()))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_SEP_VARGS(fn, sep, ...)",
" DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)"
for child in node.children.values()))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY(fn)",
" ".join(f"fn(DT_{child.z_path_id})"
for child in node.children.values() if child.status == "okay"))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_SEP(fn, sep)",
" DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id})"
for child in node.children.values() if child.status == "okay"))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_VARGS(fn, ...)",
" ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)"
for child in node.children.values() if child.status == "okay"))
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS(fn, sep, ...)",
" DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)"
for child in node.children.values() if child.status == "okay"))
def write_status(node):
out_dt_define(f"{node.z_path_id}_STATUS_{str2ident(node.status)}", 1)
def write_pinctrls(node):
# Write special macros for pinctrl-<index> and pinctrl-names properties.
out_comment("Pin control (pinctrl-<i>, pinctrl-names) properties:")
out_dt_define(f"{node.z_path_id}_PINCTRL_NUM", len(node.pinctrls))
if not node.pinctrls:
return
for pc_idx, pinctrl in enumerate(node.pinctrls):
out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_EXISTS", 1)
if not pinctrl.name:
continue
name = pinctrl.name_as_token
# Below we rely on the fact that edtlib ensures the
# pinctrl-<pc_idx> properties are contiguous, start from 0,
# and contain only phandles.
out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_TOKEN", name)
out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_UPPER_TOKEN", name.upper())
out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_EXISTS", 1)
out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_IDX", pc_idx)
for idx, ph in enumerate(pinctrl.conf_nodes):
out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_IDX_{idx}_PH",
f"DT_{ph.z_path_id}")
def write_fixed_partitions(node):
# Macros for child nodes of each fixed-partitions node.
if not (node.parent and "fixed-partitions" in node.parent.compats):
return
global flash_area_num
out_comment("fixed-partitions identifier:")
out_dt_define(f"{node.z_path_id}_PARTITION_ID", flash_area_num)
flash_area_num += 1
def write_gpio_hogs(node):
# Write special macros for gpio-hog node properties.
macro = f"{node.z_path_id}_GPIO_HOGS"
macro2val = {}
for i, entry in enumerate(node.gpio_hogs):
macro2val.update(controller_and_data_macros(entry, i, macro))
if macro2val:
out_comment("GPIO hog properties:")
out_dt_define(f"{macro}_EXISTS", 1)
out_dt_define(f"{macro}_NUM", len(node.gpio_hogs))
for macro, val in macro2val.items():
out_dt_define(macro, val)
def write_vanilla_props(node):
# Writes macros for any and all properties defined in the
# "properties" section of the binding for the node.
#
# This does generate macros for special properties as well, like
# regs, etc. Just let that be rather than bothering to add
# never-ending amounts of special case code here to skip special
# properties. This function's macros can't conflict with
# write_special_props() macros, because they're in different
# namespaces. Special cases aren't special enough to break the rules.
macro2val = {}
for prop_name, prop in node.props.items():
prop_id = str2ident(prop_name)
macro = f"{node.z_path_id}_P_{prop_id}"
val = prop2value(prop)
if val is not None:
# DT_N_<node-id>_P_<prop-id>
macro2val[macro] = val
if prop.spec.type == 'string':
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_UNQUOTED
macro2val[macro + "_STRING_UNQUOTED"] = prop.val
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_TOKEN
macro2val[macro + "_STRING_TOKEN"] = prop.val_as_token
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_UPPER_TOKEN
macro2val[macro + "_STRING_UPPER_TOKEN"] = prop.val_as_token.upper()
# DT_N_<node-id>_P_<prop-id>_IDX_0:
# DT_N_<node-id>_P_<prop-id>_IDX_0_EXISTS:
# Allows treating the string like a degenerate case of a
# string-array of length 1.
macro2val[macro + "_IDX_0"] = quote_str(prop.val)
macro2val[macro + "_IDX_0_EXISTS"] = 1
if prop.enum_index is not None:
# DT_N_<node-id>_P_<prop-id>_ENUM_IDX
macro2val[macro + "_ENUM_IDX"] = prop.enum_index
spec = prop.spec
if spec.enum_tokenizable:
as_token = prop.val_as_token
# DT_N_<node-id>_P_<prop-id>_ENUM_VAL_<val>_EXISTS 1
macro2val[macro + f"_ENUM_VAL_{as_token}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_ENUM_TOKEN
macro2val[macro + "_ENUM_TOKEN"] = as_token
if spec.enum_upper_tokenizable:
# DT_N_<node-id>_P_<prop-id>_ENUM_UPPER_TOKEN
macro2val[macro + "_ENUM_UPPER_TOKEN"] = as_token.upper()
else:
# DT_N_<node-id>_P_<prop-id>_ENUM_VAL_<val>_EXISTS 1
macro2val[macro + f"_ENUM_VAL_{prop.val}_EXISTS"] = 1
if "phandle" in prop.type:
macro2val.update(phandle_macros(prop, macro))
elif "array" in prop.type:
for i, subval in enumerate(prop.val):
# DT_N_<node-id>_P_<prop-id>_IDX_<i>
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
if isinstance(subval, str):
macro2val[macro + f"_IDX_{i}"] = quote_str(subval)
subval_as_token = edtlib.str_as_token(subval)
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_UNQUOTED
macro2val[macro + f"_IDX_{i}_STRING_UNQUOTED"] = subval
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_TOKEN
macro2val[macro + f"_IDX_{i}_STRING_TOKEN"] = subval_as_token
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_STRING_UPPER_TOKEN
macro2val[macro + f"_IDX_{i}_STRING_UPPER_TOKEN"] = subval_as_token.upper()
else:
macro2val[macro + f"_IDX_{i}"] = subval
macro2val[macro + f"_IDX_{i}_EXISTS"] = 1
plen = prop_len(prop)
if plen is not None:
# DT_N_<node-id>_P_<prop-id>_FOREACH_PROP_ELEM
macro2val[f"{macro}_FOREACH_PROP_ELEM(fn)"] = \
' \\\n\t'.join(
f'fn(DT_{node.z_path_id}, {prop_id}, {i})'
for i in range(plen))
# DT_N_<node-id>_P_<prop-id>_FOREACH_PROP_ELEM_SEP
macro2val[f"{macro}_FOREACH_PROP_ELEM_SEP(fn, sep)"] = \
' DT_DEBRACKET_INTERNAL sep \\\n\t'.join(
f'fn(DT_{node.z_path_id}, {prop_id}, {i})'
for i in range(plen))
# DT_N_<node-id>_P_<prop-id>_FOREACH_PROP_ELEM_VARGS
macro2val[f"{macro}_FOREACH_PROP_ELEM_VARGS(fn, ...)"] = \
' \\\n\t'.join(
f'fn(DT_{node.z_path_id}, {prop_id}, {i}, __VA_ARGS__)'
for i in range(plen))
# DT_N_<node-id>_P_<prop-id>_FOREACH_PROP_ELEM_SEP_VARGS
macro2val[f"{macro}_FOREACH_PROP_ELEM_SEP_VARGS(fn, sep, ...)"] = \
' DT_DEBRACKET_INTERNAL sep \\\n\t'.join(
f'fn(DT_{node.z_path_id}, {prop_id}, {i}, __VA_ARGS__)'
for i in range(plen))
# DT_N_<node-id>_P_<prop-id>_LEN
macro2val[macro + "_LEN"] = plen
# DT_N_<node-id>_P_<prop-id>_EXISTS
macro2val[f"{macro}_EXISTS"] = 1
if macro2val:
out_comment("Generic property macros:")
for macro, val in macro2val.items():
out_dt_define(macro, val)
else:
out_comment("(No generic property macros)")
def write_dep_info(node):
# Write dependency-related information about the node.
def fmt_dep_list(dep_list):
if dep_list:
# Sort the list by dependency ordinal for predictability.
sorted_list = sorted(dep_list, key=lambda node: node.dep_ordinal)
return "\\\n\t" + \
" \\\n\t".join(f"{n.dep_ordinal}, /* {n.path} */"
for n in sorted_list)
else:
return "/* nothing */"
out_comment("Node's dependency ordinal:")
out_dt_define(f"{node.z_path_id}_ORD", node.dep_ordinal)
out_dt_define(f"{node.z_path_id}_ORD_STR_SORTABLE", f"{node.dep_ordinal:0>5}")
out_comment("Ordinals for what this node depends on directly:")
out_dt_define(f"{node.z_path_id}_REQUIRES_ORDS",
fmt_dep_list(node.depends_on))
out_comment("Ordinals for what depends directly on this node:")
out_dt_define(f"{node.z_path_id}_SUPPORTS_ORDS",
fmt_dep_list(node.required_by))
def prop2value(prop):
# Gets the macro value for property 'prop', if there is
# a single well-defined C rvalue that it can be represented as.
# Returns None if there isn't one.
if prop.type == "string":
return quote_str(prop.val)
if prop.type == "int":
return prop.val
if prop.type == "boolean":
return 1 if prop.val else 0
if prop.type in ["array", "uint8-array"]:
return list2init(f"{val} /* {hex(val)} */" for val in prop.val)
if prop.type == "string-array":
return list2init(quote_str(val) for val in prop.val)
# phandle, phandles, phandle-array, path, compound: nothing
return None
def prop_len(prop):
# Returns the property's length if and only if we should generate
# a _LEN macro for the property. Otherwise, returns None.
#
# The set of types handled here coincides with the allowable types
# that can be used with DT_PROP_LEN(). If you change this set,
# make sure to update the doxygen string for that macro, and make
# sure that DT_FOREACH_PROP_ELEM() works for the new types too.
#
# This deliberately excludes ranges, dma-ranges, reg and interrupts.
# While they have array type, their lengths as arrays are
# basically nonsense semantically due to #address-cells and
# #size-cells for "reg", #interrupt-cells for "interrupts"
# and #address-cells, #size-cells and the #address-cells from the
# parent node for "ranges" and "dma-ranges".
#
# We have special purpose macros for the number of register blocks
# / interrupt specifiers. Excluding them from this list means
# DT_PROP_LEN(node_id, ...) fails fast at the devicetree.h layer
# with a build error. This forces users to switch to the right
# macros.
if prop.type in ["phandle", "string"]:
# phandle is treated as a phandles of length 1.
# string is treated as a string-array of length 1.
return 1
if (prop.type in ["array", "uint8-array", "string-array",
"phandles", "phandle-array"] and
prop.name not in ["ranges", "dma-ranges", "reg", "interrupts"]):
return len(prop.val)
return None
def phandle_macros(prop, macro):
# Returns a dict of macros for phandle or phandles property 'prop'.
#
# The 'macro' argument is the N_<node-id>_P_<prop-id> bit.
#
# These are currently special because we can't serialize their
# values without using label properties, which we're trying to get
# away from needing in Zephyr. (Label properties are great for
# humans, but have drawbacks for code size and boot time.)
#
# The names look a bit weird to make it easier for devicetree.h
# to use the same macros for phandle, phandles, and phandle-array.
ret = {}
if prop.type == "phandle":
# A phandle is treated as a phandles with fixed length 1.
ret[f"{macro}"] = f"DT_{prop.val.z_path_id}"
ret[f"{macro}_IDX_0"] = f"DT_{prop.val.z_path_id}"
ret[f"{macro}_IDX_0_PH"] = f"DT_{prop.val.z_path_id}"
ret[f"{macro}_IDX_0_EXISTS"] = 1
elif prop.type == "phandles":
for i, node in enumerate(prop.val):
ret[f"{macro}_IDX_{i}"] = f"DT_{node.z_path_id}"
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{node.z_path_id}"
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
elif prop.type == "phandle-array":
for i, entry in enumerate(prop.val):
if entry is None:
# Unspecified element. The phandle-array at this index
# does not point at a ControllerAndData value, but
# subsequent indices in the array may.
ret[f"{macro}_IDX_{i}_EXISTS"] = 0
continue
ret.update(controller_and_data_macros(entry, i, macro))
return ret
def controller_and_data_macros(entry, i, macro):
# Helper procedure used by phandle_macros().
#
# Its purpose is to write the "controller" (i.e. label property of
# the phandle's node) and associated data macros for a
# ControllerAndData.
ret = {}
data = entry.data
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_PH
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_VAL_<VAL>
for cell, val in data.items():
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}"] = val
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}_EXISTS"] = 1
if not entry.name:
return ret
name = str2ident(entry.name)
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_NAME
ret[f"{macro}_IDX_{i}_NAME"] = quote_str(entry.name)
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_PH
ret[f"{macro}_NAME_{name}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_EXISTS
ret[f"{macro}_NAME_{name}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_VAL_<VAL>
for cell, val in data.items():
cell_ident = str2ident(cell)
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}"] = \
f"DT_{macro}_IDX_{i}_VAL_{cell_ident}"
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}_EXISTS"] = 1
return ret
def write_chosen(edt):
# Tree-wide information such as chosen nodes is printed here.
out_comment("Chosen nodes\n")
chosen = {}
for name, node in edt.chosen_nodes.items():
chosen[f"DT_CHOSEN_{str2ident(name)}"] = f"DT_{node.z_path_id}"
chosen[f"DT_CHOSEN_{str2ident(name)}_EXISTS"] = 1
max_len = max(map(len, chosen), default=0)
for macro, value in chosen.items():
out_define(macro, value, width=max_len)
def write_global_macros(edt):
# Global or tree-wide information, such as number of instances
# with status "okay" for each compatible, is printed here.
out_comment("Macros for iterating over all nodes and enabled nodes")
out_dt_define("FOREACH_HELPER(fn)",
" ".join(f"fn(DT_{node.z_path_id})" for node in edt.nodes))
out_dt_define("FOREACH_OKAY_HELPER(fn)",
" ".join(f"fn(DT_{node.z_path_id})" for node in edt.nodes
if node.status == "okay"))
out_dt_define("FOREACH_VARGS_HELPER(fn, ...)",
" ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)" for node in edt.nodes))
out_dt_define("FOREACH_OKAY_VARGS_HELPER(fn, ...)",
" ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)" for node in edt.nodes
if node.status == "okay"))
n_okay_macros = {}
for_each_macros = {}
compat2buses = defaultdict(list) # just for "okay" nodes
for compat, okay_nodes in edt.compat2okay.items():
for node in okay_nodes:
buses = node.on_buses
for bus in buses:
if bus is not None and bus not in compat2buses[compat]:
compat2buses[compat].append(bus)
ident = str2ident(compat)
n_okay_macros[f"DT_N_INST_{ident}_NUM_OKAY"] = len(okay_nodes)
# Helpers for non-INST for-each macros that take node
# identifiers as arguments.
for_each_macros[f"DT_FOREACH_OKAY_{ident}(fn)"] = \
" ".join(f"fn(DT_{node.z_path_id})"
for node in okay_nodes)
for_each_macros[f"DT_FOREACH_OKAY_VARGS_{ident}(fn, ...)"] = \
" ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)"
for node in okay_nodes)
# Helpers for INST versions of for-each macros, which take
# instance numbers. We emit separate helpers for these because
# avoiding an intermediate node_id --> instance number
# conversion in the preprocessor helps to keep the macro
# expansions simpler. That hopefully eases debugging.
for_each_macros[f"DT_FOREACH_OKAY_INST_{ident}(fn)"] = \
" ".join(f"fn({edt.compat2nodes[compat].index(node)})"
for node in okay_nodes)
for_each_macros[f"DT_FOREACH_OKAY_INST_VARGS_{ident}(fn, ...)"] = \
" ".join(f"fn({edt.compat2nodes[compat].index(node)}, __VA_ARGS__)"
for node in okay_nodes)
for compat, nodes in edt.compat2nodes.items():
for node in nodes:
if compat == "fixed-partitions":
for child in node.children.values():
if "label" in child.props:
label = child.props["label"].val
macro = f"COMPAT_{str2ident(compat)}_LABEL_{str2ident(label)}"
val = f"DT_{child.z_path_id}"
out_dt_define(macro, val)
out_dt_define(macro + "_EXISTS", 1)
out_comment('Macros for compatibles with status "okay" nodes\n')
for compat, okay_nodes in edt.compat2okay.items():
if okay_nodes:
out_define(f"DT_COMPAT_HAS_OKAY_{str2ident(compat)}", 1)
out_comment('Macros for status "okay" instances of each compatible\n')
for macro, value in n_okay_macros.items():
out_define(macro, value)
for macro, value in for_each_macros.items():
out_define(macro, value)
out_comment('Bus information for status "okay" nodes of each compatible\n')
for compat, buses in compat2buses.items():
for bus in buses:
out_define(
f"DT_COMPAT_{str2ident(compat)}_BUS_{str2ident(bus)}", 1)
def str2ident(s):
# Converts 's' to a form suitable for (part of) an identifier
return re.sub('[-,.@/+]', '_', s.lower())
def list2init(l):
# Converts 'l', a Python list (or iterable), to a C array initializer
return "{" + ", ".join(l) + "}"
def out_dt_define(macro, val, width=None, deprecation_msg=None):
# Writes "#define DT_<macro> <val>" to the header file
#
# The macro will be left-justified to 'width' characters if that
# is specified, and the value will follow immediately after in
# that case. Otherwise, this function decides how to add
# whitespace between 'macro' and 'val'.
#
# If a 'deprecation_msg' string is passed, the generated identifiers will
# generate a warning if used, via __WARN(<deprecation_msg>)).
#
# Returns the full generated macro for 'macro', with leading "DT_".
ret = "DT_" + macro
out_define(ret, val, width=width, deprecation_msg=deprecation_msg)
return ret
def out_define(macro, val, width=None, deprecation_msg=None):
# Helper for out_dt_define(). Outputs "#define <macro> <val>",
# adds a deprecation message if given, and allocates whitespace
# unless told not to.
warn = fr' __WARN("{deprecation_msg}")' if deprecation_msg else ""
if width:
s = f"#define {macro.ljust(width)}{warn} {val}"
else:
s = f"#define {macro}{warn} {val}"
print(s, file=header_file)
def out_comment(s, blank_before=True):
# Writes 's' as a comment to the header and configuration file. 's' is
# allowed to have multiple lines. blank_before=True adds a blank line
# before the comment.
if blank_before:
print(file=header_file)
if "\n" in s:
# Format multi-line comments like
#
# /*
# * first line
# * second line
# *
# * empty line before this line
# */
res = ["/*"]
for line in s.splitlines():
# Avoid an extra space after '*' for empty lines. They turn red in
# Vim if space error checking is on, which is annoying.
res.append(" *" if not line.strip() else " * " + line)
res.append(" */")
print("\n".join(res), file=header_file)
else:
# Format single-line comments like
#
# /* foo bar */
print("/* " + s + " */", file=header_file)
def escape(s):
# Backslash-escapes any double quotes and backslashes in 's'
# \ must be escaped before " to avoid double escaping
return s.replace("\\", "\\\\").replace('"', '\\"')
def quote_str(s):
# Puts quotes around 's' and escapes any double quotes and
# backslashes within it
return f'"{escape(s)}"'
def write_pickled_edt(edt, out_file):
# Writes the edt object in pickle format to out_file.
with open(out_file, 'wb') as f:
# Pickle protocol version 4 is the default as of Python 3.8
# and was introduced in 3.4, so it is both available and
# recommended on all versions of Python that Zephyr supports
# (at time of writing, Python 3.6 was Zephyr's minimum
# version, and 3.8 the most recent CPython release).
#
# Using a common protocol version here will hopefully avoid
# reproducibility issues in different Python installations.
pickle.dump(edt, f, protocol=4)
def err(s):
raise Exception(s)
if __name__ == "__main__":
main()