zephyr/subsys/usb/usb_c/usbc_pe_common.c
Michał Barnaś 6fc22462a3 usbc: add sleep prevention in places that may require it
Add sleep prevention in crucial USB-C stack functions to make
state transitions faster and to send responses faster.

Signed-off-by: Michał Barnaś <mb@semihalf.com>
2023-10-23 10:33:38 +02:00

1412 lines
36 KiB
C

/*
* Copyright (c) 2022 The Chromium OS Authors
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/smf.h>
#include <zephyr/usb_c/usbc.h>
#include <zephyr/drivers/usb_c/usbc_pd.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(usbc_stack, CONFIG_USBC_STACK_LOG_LEVEL);
#include "usbc_stack.h"
#include "usbc_pe_common_internal.h"
#include "usbc_pe_snk_states_internal.h"
#include "usbc_pe_src_states_internal.h"
static const struct smf_state pe_states[PE_STATE_COUNT];
/**
* @brief Handle common DPM requests
*
* @retval true if request was handled, else false
*/
bool common_dpm_requests(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
if (pe->dpm_request > REQUEST_TC_END) {
atomic_set_bit(pe->flags, PE_FLAGS_DPM_INITIATED_AMS);
if (pe->dpm_request == REQUEST_PE_DR_SWAP) {
pe_set_state(dev, PE_DRS_SEND_SWAP);
return true;
} else if (pe->dpm_request == REQUEST_PE_SOFT_RESET_SEND) {
pe_set_state(dev, PE_SEND_SOFT_RESET);
return true;
}
}
return false;
}
/**
* @brief Initializes the PE state machine and enters the PE_SUSPEND state.
*/
void pe_subsys_init(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Save the port device object so states can access it */
pe->dev = dev;
/* Initialize the state machine */
smf_set_initial(SMF_CTX(pe), &pe_states[PE_SUSPEND]);
}
/**
* @brief Starts the Policy Engine layer
*/
void pe_start(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
data->pe_enabled = true;
}
/**
* @brief Suspend the Policy Engine layer
*/
void pe_suspend(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
data->pe_enabled = false;
/*
* While we are paused, exit all states
* and wait until initialized again.
*/
pe_set_state(dev, PE_SUSPEND);
}
/**
* @brief Initialize the Policy Engine layer
*/
static void pe_init(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Clear all flags */
atomic_clear(pe->flags);
/* Initialize common timers */
usbc_timer_init(&pe->pd_t_sender_response, PD_T_NO_RESPONSE_MAX_MS);
usbc_timer_init(&pe->pd_t_chunking_not_supported, PD_T_CHUNKING_NOT_SUPPORTED_NOM_MS);
/* Initialize common counters */
pe->hard_reset_counter = 0;
#ifdef CONFIG_USBC_CSM_SINK_ONLY
pe_snk_init(dev);
#else
pe_src_init(dev);
#endif
}
/**
* @brief Tests if the Policy Engine layer is running
*/
bool pe_is_running(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
return data->pe_sm_state == SM_RUN;
}
/**
* @brief Run the Policy Engine layer
*/
void pe_run(const struct device *dev, const int32_t dpm_request)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
switch (data->pe_sm_state) {
case SM_PAUSED:
if (data->pe_enabled == false) {
break;
}
/* fall through */
case SM_INIT:
pe_init(dev);
data->pe_sm_state = SM_RUN;
/* fall through */
case SM_RUN:
if (data->pe_enabled == false) {
data->pe_sm_state = SM_PAUSED;
break;
}
if (prl_is_running(dev) == false) {
break;
}
/* Get any DPM Requests */
pe->dpm_request = dpm_request;
/*
* 8.3.3.3.8 PE_SNK_Hard_Reset State
* The Policy Engine Shall transition to the PE_SNK_Hard_Reset
* state from any state when:
* - Hard Reset request from Device Policy Manager
*/
if (dpm_request == REQUEST_PE_HARD_RESET_SEND) {
pe_set_state(dev, PE_SNK_HARD_RESET);
}
/* Run state machine */
smf_run_state(SMF_CTX(pe));
break;
}
}
/**
* @brief Sets Data Role
*/
void pe_set_data_role(const struct device *dev, enum tc_data_role dr)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Update data role */
pe->data_role = dr;
/* Notify TCPC of role update */
tcpc_set_roles(data->tcpc, pe->power_role, pe->data_role);
}
/**
* @brief Gets the current data role
*/
enum tc_data_role pe_get_data_role(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
return data->pe->data_role;
}
/**
* @brief Gets the current power role
*/
enum tc_power_role pe_get_power_role(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
return data->pe->power_role;
}
/**
* @brief Gets the current cable plug role
*/
enum tc_cable_plug pe_get_cable_plug(const struct device *dev)
{
return PD_PLUG_FROM_DFP_UFP;
}
/**
* @brief Informs the Policy Engine that a soft reset was received.
*/
void pe_got_soft_reset(const struct device *dev)
{
/*
* The PE_SRC_Soft_Reset state Shall be entered from any state when a
* Soft_Reset Message is received from the Protocol Layer.
*/
pe_set_state(dev, PE_SOFT_RESET);
}
/**
* @brief Informs the Policy Engine that a message was successfully sent
*/
void pe_message_sent(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
atomic_set_bit(pe->flags, PE_FLAGS_TX_COMPLETE);
}
/**
* @brief See section 8.3.3.4.1.1 PE_SRC_Send_Soft_Reset State:
*
* The PE_Send_Soft_Reset state shall be entered from
* any state when
* * A Protocol Error is detected by Protocol Layer during a
* Non-Interruptible AMS or
* * A message has not been sent after retries or
* * When not in an explicit contract and
* * Protocol Errors occurred on SOP during an Interruptible AMS or
* * Protocol Errors occurred on SOP during any AMS where the first
* Message in the sequence has not yet been sent i.e. an unexpected
* Message is received instead of the expected GoodCRC Message
* response.
*/
static bool pe_soft_reset_is_required(const struct device *dev, const enum pd_packet_type type)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Protocol Error not on SOP */
if (type != PD_PACKET_SOP) {
return false;
}
if (atomic_test_bit(pe->flags, PE_FLAGS_EXPLICIT_CONTRACT)) {
/*
* If the first Message in an AMS has been passed to the
* Protocol Layer by the Policy Engine but has not yet been sent
* when the Protocol Error occurs, the Policy Engine Shall Not
* issue a Soft Reset
*/
if (!atomic_test_bit(pe->flags, PE_FLAGS_FIRST_MSG_SENT)) {
return false;
}
/*
* If the Protocol Error occurs during an Interruptible AMS then
* the Policy Engine Shall Not issue a Soft Reset
*/
if (atomic_test_bit(pe->flags, PE_FLAGS_INTERRUPTIBLE_AMS)) {
return false;
}
}
return true;
}
/**
* @brief Informs the Policy Engine of an error.
*/
void pe_report_error(const struct device *dev, const enum pe_error e,
const enum pd_packet_type type)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/*
* Generate Hard Reset if Protocol Error occurred
* while in PE_Send_Soft_Reset state.
*/
if (pe_get_state(dev) == PE_SEND_SOFT_RESET ||
pe_get_state(dev) == PE_SOFT_RESET) {
atomic_set_bit(pe->flags, PE_FLAGS_PROTOCOL_ERROR);
return;
}
/* Transmit error */
if (e == ERR_XMIT) {
atomic_set_bit(pe->flags, PE_FLAGS_MSG_XMIT_ERROR);
}
/* All error types besides transmit errors are Protocol Errors. */
else if (pe_soft_reset_is_required(dev, type)) {
policy_notify(dev, PROTOCOL_ERROR);
pe_send_soft_reset(dev, type);
}
/*
* Transition to PE_Snk_Ready by a Protocol
* Error during an Interruptible AMS.
*/
else {
pe_set_state(dev, PE_SNK_READY);
}
}
/**
* @brief Informs the Policy Engine of a discard.
*/
void pe_report_discard(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/*
* Clear local AMS indicator as our AMS message was discarded, and flag
* the discard for the PE
*/
pe_dpm_end_ams(dev);
atomic_set_bit(pe->flags, PE_FLAGS_MSG_DISCARDED);
}
/**
* @brief Called by the Protocol Layer to informs the Policy Engine
* that a message has been received.
*/
void pe_message_received(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
atomic_set_bit(pe->flags, PE_FLAGS_MSG_RECEIVED);
/* Allow the PE to be executed once more and respond faster for the received message */
usbc_bypass_next_sleep(dev);
}
/**
* @brief Informs the Policy Engine that a hard reset was received.
*/
void pe_got_hard_reset(const struct device *dev)
{
pe_set_state(dev, PE_SNK_TRANSITION_TO_DEFAULT);
}
/**
* @brief Informs the Policy Engine that a hard reset was sent.
*/
void pe_hard_reset_sent(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
atomic_clear_bit(pe->flags, PE_FLAGS_HARD_RESET_PENDING);
}
/**
* @brief Indicates if an explicit contract is in place
*/
bool pe_is_explicit_contract(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
return atomic_test_bit(pe->flags, PE_FLAGS_EXPLICIT_CONTRACT);
}
/**
* @brief Return true if the PE is is within an atomic messaging sequence
* that it initiated with a SOP* port partner.
*/
bool pe_dpm_initiated_ams(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
return atomic_test_bit(pe->flags, PE_FLAGS_DPM_INITIATED_AMS);
}
/**
* @brief End and atomic messaging sequence
*/
void pe_dpm_end_ams(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
atomic_clear_bit(pe->flags, PE_FLAGS_DPM_INITIATED_AMS);
}
/**
* @brief First message in AMS has been sent
*/
void pe_first_msg_sent(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
atomic_set_bit(pe->flags, PE_FLAGS_FIRST_MSG_SENT);
}
/** Private Policy Engine Layer API below */
/**
* @brief Sets a Policy Engine state
*/
void pe_set_state(const struct device *dev, const enum usbc_pe_state state)
{
struct usbc_port_data *data = dev->data;
__ASSERT(state < ARRAY_SIZE(pe_states), "invalid pe_state %d", state);
smf_set_state(SMF_CTX(data->pe), &pe_states[state]);
/* Allow the PE to execute logic from the new state without additional delay */
usbc_bypass_next_sleep(dev);
}
/**
* @brief Get the Policy Engine's current state
*/
enum usbc_pe_state pe_get_state(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
return data->pe->ctx.current - &pe_states[0];
}
/**
* @brief Get the Policy Engine's previous state
*/
enum usbc_pe_state pe_get_last_state(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
return data->pe->ctx.previous - &pe_states[0];
}
/**
* @brief Send a soft reset message
*/
void pe_send_soft_reset(const struct device *dev, const enum pd_packet_type type)
{
struct usbc_port_data *data = dev->data;
data->pe->soft_reset_sop = type;
pe_set_state(dev, PE_SEND_SOFT_RESET);
}
/**
* @brief Send a Power Delivery Data Message
*/
void pe_send_data_msg(const struct device *dev, const enum pd_packet_type type,
const enum pd_data_msg_type msg)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Clear any previous TX status before sending a new message */
atomic_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE);
prl_send_data_msg(dev, type, msg);
}
/**
* @brief Send a Power Delivery Control Message
*/
void pe_send_ctrl_msg(const struct device *dev, const enum pd_packet_type type,
const enum pd_ctrl_msg_type msg)
{
struct usbc_port_data *data = dev->data;
struct policy_engine *pe = data->pe;
/* Clear any previous TX status before sending a new message */
atomic_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE);
prl_send_ctrl_msg(dev, type, msg);
}
/**
* @brief Request desired voltage from source.
*/
void pe_send_request_msg(const struct device *dev, const uint32_t rdo)
{
struct usbc_port_data *data = dev->data;
struct protocol_layer_tx_t *prl_tx = data->prl_tx;
struct pd_msg *msg = &prl_tx->emsg;
uint8_t rdo_bytes[4];
msg->len = sizeof(rdo);
sys_put_le32(rdo, rdo_bytes);
memcpy(msg->data, rdo_bytes, msg->len);
pe_send_data_msg(dev, PD_PACKET_SOP, PD_DATA_REQUEST);
}
/**
* @brief Transitions state after receiving an extended message.
*/
void extended_message_not_supported(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
uint32_t *payload = (uint32_t *)prl_rx->emsg.data;
union pd_ext_header ext_header;
ext_header.raw_value = *payload;
if (ext_header.chunked && ext_header.data_size > PD_MAX_EXTENDED_MSG_CHUNK_LEN) {
pe_set_state(dev, PE_CHUNK_RECEIVED);
} else {
pe_set_state(dev, PE_SEND_NOT_SUPPORTED);
}
}
/**
* @brief Check if a specific control message was received
*/
bool received_control_message(const struct device *dev, const union pd_header header,
const enum pd_ctrl_msg_type mt)
{
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
if (prl_rx->emsg.len == 0 && header.message_type == mt && header.extended == 0) {
return true;
}
return false;
}
/**
* @brief Check if a specific data message was received
*/
bool received_data_message(const struct device *dev, const union pd_header header,
const enum pd_data_msg_type mt)
{
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
if (prl_rx->emsg.len > 0 && header.message_type == mt && header.extended == 0) {
return true;
}
return false;
}
/**
* @brief Check a DPM policy
*/
bool policy_check(const struct device *dev, const enum usbc_policy_check_t pc)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_check) {
return data->policy_cb_check(dev, pc);
} else {
return false;
}
}
/**
* @brief Notify the DPM of a policy change
*/
void policy_notify(const struct device *dev, const enum usbc_policy_notify_t notify)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_notify) {
data->policy_cb_notify(dev, notify);
}
}
/**
* @brief Notify the DPM of a WAIT message reception
*/
bool policy_wait_notify(const struct device *dev, const enum usbc_policy_wait_t notify)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_wait_notify) {
return data->policy_cb_wait_notify(dev, notify);
}
return false;
}
#ifdef CONFIG_USBC_CSM_SINK_ONLY
/**
* @brief Get a Request Data Object from the DPM
*/
uint32_t policy_get_request_data_object(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
/* This callback must be implemented */
__ASSERT(data->policy_cb_get_rdo != NULL, "Callback pointer should not be NULL");
return data->policy_cb_get_rdo(dev);
}
/**
* @brief Send the received source caps to the DPM
*/
void policy_set_src_cap(const struct device *dev, const uint32_t *pdos, const int num_pdos)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_set_src_cap) {
data->policy_cb_set_src_cap(dev, pdos, num_pdos);
}
}
/**
* @brief Check if the sink is a default level
*/
bool policy_is_snk_at_default(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_is_snk_at_default) {
return data->policy_cb_is_snk_at_default(dev);
}
return true;
}
/**
* @brief Get sink caps from the DPM
*/
void policy_get_snk_cap(const struct device *dev, uint32_t **pdos, int *num_pdos)
{
struct usbc_port_data *data = dev->data;
/* This callback must be implemented */
__ASSERT(data->policy_cb_get_snk_cap != NULL, "Callback pointer should not be NULL");
data->policy_cb_get_snk_cap(dev, pdos, num_pdos);
}
#else /* CONFIG_USBC_CSM_SOURCE_ONLY */
/**
* @brief Send the received sink caps to the DPM
*/
void policy_set_port_partner_snk_cap(const struct device *dev,
const uint32_t *pdos,
const int num_pdos)
{
struct usbc_port_data *data = dev->data;
if (data->policy_cb_set_port_partner_snk_cap) {
data->policy_cb_set_port_partner_snk_cap(dev, pdos, num_pdos);
}
}
/**
* @brief Check if Sink Request can be met by DPM
*/
enum usbc_snk_req_reply_t policy_check_sink_request(const struct device *dev,
const uint32_t request_msg)
{
struct usbc_port_data *data = dev->data;
/* This callback must be implemented */
__ASSERT(data->policy_cb_check_sink_request != NULL,
"Callback pointer should not be NULL");
return data->policy_cb_check_sink_request(dev, request_msg);
}
/**
* @brief Check if the present contract is still valid
*/
bool policy_present_contract_is_valid(const struct device *dev,
const uint32_t present_contract)
{
struct usbc_port_data *data = dev->data;
/* This callback must be implemented */
__ASSERT(data->policy_present_contract_is_valid != NULL,
"Callback pointer should not be NULL");
return data->policy_present_contract_is_valid(dev, present_contract);
}
/**
* @brief Check if the power supply is ready
*/
bool policy_is_ps_ready(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
/* This callback must be implemented */
__ASSERT(data->policy_is_ps_ready != NULL,
"Callback pointer should not be NULL");
return data->policy_is_ps_ready(dev);
}
/**
* @brief Ask the DPM to change the Source Caps.
* Returns true if source caps have been updated, else false
*/
bool policy_change_src_caps(const struct device *dev)
{
struct usbc_port_data *data = dev->data;
if (data->policy_change_src_caps == NULL) {
return false;
}
return data->policy_change_src_caps(dev);
}
#endif /* CONFIG_USBC_CSM_SINK_ONLY */
/**
* @brief PE_DRS_Evaluate_Swap Entry state
*/
static void pe_drs_evaluate_swap_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
/* Get evaluation of Data Role Swap request from Device Policy Manager */
if (policy_check(dev, (pe->data_role == TC_ROLE_UFP) ? CHECK_DATA_ROLE_SWAP_TO_DFP
: CHECK_DATA_ROLE_SWAP_TO_UFP)) {
/*
* PE_DRS_DFP_UFP_Accept_Swap and PE_DRS_UFP_DFP_Accept_Swap
* State embedded here
*/
/* Send Accept message */
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_ACCEPT);
} else {
/*
* PE_DRS_DFP_UFP_Reject_Swap and PE_DRS_UFP_DFP_Reject_Swap
* State embedded here
*/
/* Send Reject message */
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_REJECT);
}
}
/**
* @brief PE_DRS_Evaluate_Swap Run state
*/
static void pe_drs_evaluate_swap_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
struct usbc_port_data *data = dev->data;
struct protocol_layer_tx_t *prl_tx = data->prl_tx;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE)) {
/* Only update data roles if last message sent was Accept */
if (prl_tx->msg_type == PD_CTRL_ACCEPT) {
/* Update Data Role */
pe_set_data_role(dev, (pe->data_role == TC_ROLE_UFP)
? TC_ROLE_DFP : TC_ROLE_UFP);
/* Inform Device Policy Manager of Data Role Change */
policy_notify(dev, (pe->data_role == TC_ROLE_UFP) ? DATA_ROLE_IS_UFP
: DATA_ROLE_IS_DFP);
}
pe_set_state(dev, PE_SNK_READY);
} else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_DISCARDED)) {
/*
* Inform Device Policy Manager that the message was
* discarded
*/
policy_notify(dev, MSG_DISCARDED);
pe_send_soft_reset(dev, prl_rx->emsg.type);
}
}
/**
* @brief PE_DRS_Send_Swap Entry state
* NOTE: 8.3.3.18.1.5 PE_DRS_DFP_UFP_Send_Swap State
* 8.3.3.18.2.5 PE_DRS_UFP_DFP_Send_Swap State
*/
static void pe_drs_send_swap_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
/* Send Swap DR message */
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_DR_SWAP);
}
/**
* @brief PE_DRS_Send_Swap Run state
* NOTE: Sender Response Timer is handled in super state.
*/
static void pe_drs_send_swap_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
union pd_header header;
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_RECEIVED)) {
header = prl_rx->emsg.header;
if (received_control_message(dev, header, PD_CTRL_REJECT)) {
/*
* Inform Device Policy Manager that Data Role Swap
* was Rejected
*/
policy_notify(dev, MSG_REJECTED_RECEIVED);
} else if (received_control_message(dev, header, PD_CTRL_WAIT)) {
/*
* Inform Device Policy Manager that Data Role Swap
* needs to Wait
*/
if (policy_wait_notify(dev, WAIT_DATA_ROLE_SWAP)) {
atomic_set_bit(pe->flags, PE_FLAGS_WAIT_DATA_ROLE_SWAP);
usbc_timer_start(&pe->pd_t_wait_to_resend);
}
} else if (received_control_message(dev, header, PD_CTRL_ACCEPT)) {
/* Update Data Role */
pe->data_role = (pe->data_role == TC_ROLE_UFP) ? TC_ROLE_DFP : TC_ROLE_UFP;
/* Notify TCPC of role update */
tcpc_set_roles(data->tcpc, pe->power_role, pe->data_role);
/* Inform Device Policy Manager of Data Role Change */
policy_notify(dev, (pe->data_role == TC_ROLE_UFP) ? DATA_ROLE_IS_UFP
: DATA_ROLE_IS_DFP);
} else {
/*
* A Protocol Error during a Data Role Swap when the
* DFP/UFP roles are changing shall directly trigger
* a Type-C Error Recovery.
*/
usbc_request(dev, REQUEST_TC_ERROR_RECOVERY);
return;
}
/* return to ready state */
pe_set_state(dev, PE_SNK_READY);
return;
} else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_DISCARDED)) {
/*
* Inform Device Policy Manager that the message
* was discarded
*/
policy_notify(dev, MSG_DISCARDED);
pe_set_state(dev, PE_SNK_READY);
return;
}
}
/**
* PE_Get_Sink_Cap Entry state
* @brief 8.3.3.18.7.1 PE_DR_SRC_Get_Source_Cap State
* @brief 8.3.3.18.9.1 PE_DR_SNK_Get_Sink_Cap State
*/
void pe_get_sink_cap_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
/*
* On entry to the PE_DR_SNK_Get_Sink_Cap state the Policy Engine
* Shall send a Get_Sink_Cap Message and initialize and run the
* SenderResponseTimer.
*/
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_GET_SINK_CAP);
/* Initialize Submachine */
pe->submachine = SM_WAIT_FOR_TX;
}
/**
* @brief PE_Get_Sink_Cap Run state
* NOTE: Sender Response Timer is handled in super state.
*/
void pe_get_sink_cap_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
union pd_header header;
switch (pe->submachine) {
case SM_WAIT_FOR_TX:
if (!atomic_test_and_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE)) {
break;
}
pe->submachine = SM_WAIT_FOR_RX;
/* fall through */
case SM_WAIT_FOR_RX:
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_RECEIVED)) {
header = prl_rx->emsg.header;
if (prl_rx->emsg.type == PD_PACKET_SOP) {
if (received_data_message(dev, header, PD_DATA_SINK_CAP)) {
#ifdef CONFIG_USBC_CSM_SOURCE_ONLY
uint32_t *pdos = (uint32_t *)prl_rx->emsg.data;
uint32_t num_pdos =
PD_CONVERT_BYTES_TO_PD_HEADER_COUNT(prl_rx->emsg.len);
policy_set_port_partner_snk_cap(dev, pdos, num_pdos);
pe_set_state(dev, PE_SRC_READY);
#else
pe_set_state(dev, PE_SNK_READY);
#endif
return;
} else if (received_control_message(dev, header, PD_CTRL_REJECT) ||
received_control_message(dev,
header, PD_CTRL_NOT_SUPPORTED)) {
#ifdef CONFIG_USBC_CSM_SOURCE_ONLY
pe_set_state(dev, PE_SRC_READY);
#else
pe_set_state(dev, PE_SNK_READY);
#endif
return;
}
/* Unexpected messages fall through to soft reset */
}
pe_send_soft_reset(dev, PD_PACKET_SOP);
return;
}
/*
* Inform Device Policy Manager that the message
* was discarded
*/
else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_DISCARDED)) {
policy_notify(dev, MSG_DISCARDED);
pe_set_state(dev, PE_SNK_READY);
return;
}
}
}
static void pe_suspend_entry(void *obj)
{
LOG_INF("PE_SUSPEND");
}
static void pe_suspend_run(void *obj)
{
/* DO NOTHING */
}
/**
* @brief The PE_SOFT_RESET state has two embedded states
* that handle sending an accept message.
*/
enum pe_soft_reset_submachine_states {
/* Send Accept message sub state */
PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG,
/* Wait for Accept message to be sent or an error sub state */
PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG_COMPLETE
};
/**
* @brief 8.3.3.4.2.2 PE_SNK_Soft_Reset State
*/
static void pe_soft_reset_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
/* Reset the protocol layer */
prl_reset(dev);
/* Initialize PE Submachine */
pe->submachine = PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG;
}
static void pe_soft_reset_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
if (!prl_is_running(dev)) {
return;
}
switch (pe->submachine) {
case PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG:
/* Send Accept message to SOP */
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_ACCEPT);
/* Move to next substate */
pe->submachine = PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG_COMPLETE;
break;
case PE_SOFT_RESET_RUN_SEND_ACCEPT_MSG_COMPLETE:
/*
* The Policy Engine Shall transition to the
* PE_SRC_Send_Capabilities state when:
* 1: Accept message sent to SOP
*/
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE)) {
pe_set_state(dev, PE_SNK_WAIT_FOR_CAPABILITIES);
} else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_PROTOCOL_ERROR)) {
/*
* The Policy Engine Shall transition to the
* PE_SRC_Hard_Reset state when:
* 1: Protocol Layer indicates that a
* transmission error has occurred.
*/
pe_set_state(dev, PE_SNK_HARD_RESET);
}
break;
}
}
/**
* @brief PE_Send_Soft_Reset Entry State
* NOTE: Sender Response Timer is handled in super state.
*/
static void pe_send_soft_reset_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
LOG_INF("PE_SNK_Send_Soft_Reset");
/* Reset Protocol Layer */
prl_reset(dev);
atomic_set_bit(pe->flags, PE_FLAGS_SEND_SOFT_RESET);
}
/**
* @brief PE_Send_Soft_Reset Run State
*/
static void pe_send_soft_reset_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
struct usbc_port_data *data = dev->data;
struct protocol_layer_rx_t *prl_rx = data->prl_rx;
union pd_header header;
if (prl_is_running(dev) == false) {
return;
}
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_SEND_SOFT_RESET)) {
/* Send Soft Reset message */
pe_send_ctrl_msg(dev, pe->soft_reset_sop, PD_CTRL_SOFT_RESET);
return;
}
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_DISCARDED)) {
/* Inform Device Policy Manager that the message was discarded */
policy_notify(dev, MSG_DISCARDED);
pe_set_state(dev, PE_SNK_READY);
} else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_MSG_RECEIVED)) {
/*
* The Policy Engine Shall transition to the PE_SNK_Wait_for_Capabilities
* state when:
* 1: An Accept Message has been received on SOP
*/
header = prl_rx->emsg.header;
if (received_control_message(dev, header, PD_CTRL_ACCEPT)) {
pe_set_state(dev, PE_SNK_WAIT_FOR_CAPABILITIES);
}
} else if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_PROTOCOL_ERROR)) {
/*
* The Policy Engine Shall transition to the PE_SNK_Hard_Reset state when:
* 1: A SenderResponseTimer timeout occurs (Handled in Super State)
* 2: Or the Protocol Layer indicates that a transmission error has occurred
*/
pe_set_state(dev, PE_SNK_HARD_RESET);
}
}
/**
* @brief 8.3.3.6.2.1 PE_SNK_Send_Not_Supported State
*/
static void pe_send_not_supported_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
LOG_INF("PE_Not_Supported");
/* Notify the Device Policy Manager of unsupported message reception */
policy_notify(dev, MSG_NOT_SUPPORTED_RECEIVED);
/* Request the Protocol Layer to send a Not_Supported or Reject Message. */
if (prl_get_rev(dev, PD_PACKET_SOP) > PD_REV20) {
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_NOT_SUPPORTED);
} else {
pe_send_ctrl_msg(dev, PD_PACKET_SOP, PD_CTRL_REJECT);
}
}
static void pe_send_not_supported_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
if (atomic_test_bit(pe->flags, PE_FLAGS_TX_COMPLETE) ||
atomic_test_bit(pe->flags, PE_FLAGS_MSG_DISCARDED)) {
atomic_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE);
atomic_clear_bit(pe->flags, PE_FLAGS_MSG_DISCARDED);
pe_set_state(dev, PE_SNK_READY);
}
}
/**
* @brief 8.3.3.6.2.3 PE_SNK_Chunk_Received State
*/
static void pe_chunk_received_entry(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
LOG_INF("PE_SNK_Chunk_Received");
/*
* On entry to the PE_SNK_Chunk_Received state, the Policy Engine
* Shall initialize and run the ChunkingNotSupportedTimer.
*/
usbc_timer_start(&pe->pd_t_chunking_not_supported);
}
/**
* @brief PE_Chunk_Received Run State
*/
static void pe_chunk_received_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
/*
* The Policy Engine Shall transition to PE_SNK_Send_Not_Supported
* when:
* 1: The ChunkingNotSupportedTimer has timed out.
*/
if (usbc_timer_expired(&pe->pd_t_chunking_not_supported)) {
pe_set_state(dev, PE_SEND_NOT_SUPPORTED);
}
}
/*
* @brief Super State for any message that requires
* Sender Response Timer functionality
*/
static void pe_sender_response_run(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
const struct device *dev = pe->dev;
enum usbc_pe_state current_state = pe_get_state(dev);
/* Start the Sender Response Timer after the message is sent */
if (atomic_test_and_clear_bit(pe->flags, PE_FLAGS_TX_COMPLETE)) {
/* Start Sender Response Timer */
usbc_timer_start(&pe->pd_t_sender_response);
}
/* Check if the Sender Response Timer has expired */
if (usbc_timer_expired(&pe->pd_t_sender_response)) {
/*
* Handle Sender Response Timeouts
*/
switch (current_state) {
#if CONFIG_USBC_CSM_SINK_ONLY
/* Sink states */
case PE_SNK_SELECT_CAPABILITY:
pe_set_state(dev, PE_SNK_HARD_RESET);
break;
case PE_SNK_GET_SOURCE_CAP:
pe_set_state(dev, PE_SNK_READY);
break;
#else
/* Source states */
case PE_SRC_DISCOVERY:
/*
* The Policy Engine Shall go to the PE_SRC_Disabled state when:
* 1) The Port Partners have not been PD Connected
* 2) And the NoResponseTimer times out
* 3) And the HardResetCounter > nHardResetCount.
*/
if ((atomic_test_bit(pe->flags, PE_FLAGS_HAS_BEEN_PD_CONNECTED) == false)
&& pe->hard_reset_counter > PD_N_HARD_RESET_COUNT) {
pe_set_state(dev, PE_SUSPEND);
}
break;
case PE_SRC_SEND_CAPABILITIES:
/*
* The Policy Engine Shall go to the ErrorRecovery state when:
* 1) The Port Partners have previously been PD Connected
* 2) And the NoResponseTimer times out
* 3) And the HardResetCounter > nHardResetCount
*/
if (atomic_test_bit(pe->flags, PE_FLAGS_HAS_BEEN_PD_CONNECTED)
&& pe->hard_reset_counter > PD_N_HARD_RESET_COUNT) {
usbc_request(dev, REQUEST_TC_ERROR_RECOVERY);
}
/*
* The Policy Engine Shall transition to the PE_SRC_Hard_Reset
* state when:
* 1) The SenderResponseTimer times out
*/
else {
pe_set_state(dev, PE_SRC_HARD_RESET);
}
break;
case PE_GET_SINK_CAP:
pe_send_soft_reset(dev, PD_PACKET_SOP);
break;
#endif
/*
* Common states:
* Could transition to a Sink or Source states,
* depending on the current Data Role
*/
case PE_SEND_SOFT_RESET:
pe_set_state(dev, PE_SNK_HARD_RESET);
break;
case PE_DRS_SEND_SWAP:
pe_set_state(dev, PE_SNK_READY);
break;
/* This should not happen. Implementation error */
default:
LOG_INF("Unhandled Sender Response Timeout State!");
}
}
}
static void pe_sender_response_exit(void *obj)
{
struct policy_engine *pe = (struct policy_engine *)obj;
/* Stop Sender Response Timer */
usbc_timer_stop(&pe->pd_t_sender_response);
}
/**
* @brief Policy engine State table
*/
static const struct smf_state pe_states[PE_STATE_COUNT] = {
/* PE Super States */
[PE_SENDER_RESPONSE_PARENT] = SMF_CREATE_STATE(
NULL,
pe_sender_response_run,
pe_sender_response_exit,
NULL),
#ifdef CONFIG_USBC_CSM_SOURCE_ONLY
[PE_SRC_HARD_RESET_PARENT] = SMF_CREATE_STATE(
pe_src_hard_reset_parent_entry,
pe_src_hard_reset_parent_run,
pe_src_hard_reset_parent_exit,
NULL),
#endif
#ifdef CONFIG_USBC_CSM_SINK_ONLY
[PE_SNK_STARTUP] = SMF_CREATE_STATE(
pe_snk_startup_entry,
pe_snk_startup_run,
NULL,
NULL),
[PE_SNK_DISCOVERY] = SMF_CREATE_STATE(
pe_snk_discovery_entry,
pe_snk_discovery_run,
NULL,
NULL),
[PE_SNK_WAIT_FOR_CAPABILITIES] = SMF_CREATE_STATE(
pe_snk_wait_for_capabilities_entry,
pe_snk_wait_for_capabilities_run,
pe_snk_wait_for_capabilities_exit,
NULL),
[PE_SNK_EVALUATE_CAPABILITY] = SMF_CREATE_STATE(
pe_snk_evaluate_capability_entry,
NULL,
NULL,
NULL),
[PE_SNK_SELECT_CAPABILITY] = SMF_CREATE_STATE(
pe_snk_select_capability_entry,
pe_snk_select_capability_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SNK_READY] = SMF_CREATE_STATE(
pe_snk_ready_entry,
pe_snk_ready_run,
pe_snk_ready_exit,
NULL),
[PE_SNK_HARD_RESET] = SMF_CREATE_STATE(
pe_snk_hard_reset_entry,
pe_snk_hard_reset_run,
NULL,
NULL),
[PE_SNK_TRANSITION_TO_DEFAULT] = SMF_CREATE_STATE(
pe_snk_transition_to_default_entry,
pe_snk_transition_to_default_run,
NULL,
NULL),
[PE_SNK_GIVE_SINK_CAP] = SMF_CREATE_STATE(
pe_snk_give_sink_cap_entry,
pe_snk_give_sink_cap_run,
NULL,
NULL),
[PE_SNK_GET_SOURCE_CAP] = SMF_CREATE_STATE(
pe_snk_get_source_cap_entry,
pe_snk_get_source_cap_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SNK_TRANSITION_SINK] = SMF_CREATE_STATE(
pe_snk_transition_sink_entry,
pe_snk_transition_sink_run,
pe_snk_transition_sink_exit,
NULL),
#else
[PE_SRC_STARTUP] = SMF_CREATE_STATE(
pe_src_startup_entry,
pe_src_startup_run,
NULL,
NULL),
[PE_SRC_DISCOVERY] = SMF_CREATE_STATE(
pe_src_discovery_entry,
pe_src_discovery_run,
pe_src_discovery_exit,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SRC_SEND_CAPABILITIES] = SMF_CREATE_STATE(
pe_src_send_capabilities_entry,
pe_src_send_capabilities_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SRC_NEGOTIATE_CAPABILITY] = SMF_CREATE_STATE(
pe_src_negotiate_capability_entry,
NULL,
NULL,
NULL),
[PE_SRC_CAPABILITY_RESPONSE] = SMF_CREATE_STATE(
pe_src_capability_response_entry,
pe_src_capability_response_run,
NULL,
NULL),
[PE_SRC_TRANSITION_SUPPLY] = SMF_CREATE_STATE(
pe_src_transition_supply_entry,
pe_src_transition_supply_run,
pe_src_transition_supply_exit,
NULL),
[PE_SRC_READY] = SMF_CREATE_STATE(
pe_src_ready_entry,
pe_src_ready_run,
pe_src_ready_exit,
NULL),
[PE_SRC_TRANSITION_TO_DEFAULT] = SMF_CREATE_STATE(
pe_src_transition_to_default_entry,
pe_src_transition_to_default_run,
pe_src_transition_to_default_exit,
NULL),
[PE_SRC_HARD_RESET_RECEIVED] = SMF_CREATE_STATE(
NULL,
NULL,
NULL,
&pe_states[PE_SRC_HARD_RESET_PARENT]),
[PE_SRC_HARD_RESET] = SMF_CREATE_STATE(
pe_src_hard_reset_entry,
NULL,
NULL,
&pe_states[PE_SRC_HARD_RESET_PARENT]),
#endif
[PE_GET_SINK_CAP] = SMF_CREATE_STATE(
pe_get_sink_cap_entry,
pe_get_sink_cap_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SEND_SOFT_RESET] = SMF_CREATE_STATE(
pe_send_soft_reset_entry,
pe_send_soft_reset_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_SOFT_RESET] = SMF_CREATE_STATE(
pe_soft_reset_entry,
pe_soft_reset_run,
NULL,
NULL),
[PE_SEND_NOT_SUPPORTED] = SMF_CREATE_STATE(
pe_send_not_supported_entry,
pe_send_not_supported_run,
NULL,
NULL),
[PE_DRS_EVALUATE_SWAP] = SMF_CREATE_STATE(
pe_drs_evaluate_swap_entry,
pe_drs_evaluate_swap_run,
NULL,
NULL),
[PE_DRS_SEND_SWAP] = SMF_CREATE_STATE(
pe_drs_send_swap_entry,
pe_drs_send_swap_run,
NULL,
&pe_states[PE_SENDER_RESPONSE_PARENT]),
[PE_CHUNK_RECEIVED] = SMF_CREATE_STATE(
pe_chunk_received_entry,
pe_chunk_received_run,
NULL,
NULL),
[PE_SUSPEND] = SMF_CREATE_STATE(
pe_suspend_entry,
pe_suspend_run,
NULL,
NULL),
};
BUILD_ASSERT(ARRAY_SIZE(pe_states) == PE_STATE_COUNT);