12b2ee54e3
Timer "drivers" do not use the device model infrastructure, they are singletons with a SYS_INIT call. This means they do not have to include device.h but init.h. Things worked because device.h includes init.h. Signed-off-by: Gerard Marull-Paretas <gerard@teslabs.com>
246 lines
6.2 KiB
C
246 lines
6.2 KiB
C
/*
|
|
* Copyright (c) 2018-2023 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/devicetree.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
/* andestech,machine-timer */
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(andestech_machine_timer)
|
|
#define DT_DRV_COMPAT andestech_machine_timer
|
|
|
|
#define MTIME_REG DT_INST_REG_ADDR(0)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
/* neorv32-machine-timer */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(neorv32_machine_timer)
|
|
#define DT_DRV_COMPAT neorv32_machine_timer
|
|
|
|
#define MTIME_REG DT_INST_REG_ADDR(0)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
/* nuclei,systimer */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(nuclei_systimer)
|
|
#define DT_DRV_COMPAT nuclei_systimer
|
|
|
|
#define MTIME_REG DT_INST_REG_ADDR(0)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
|
|
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
|
|
/* sifive,clint0 */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(sifive_clint0)
|
|
#define DT_DRV_COMPAT sifive_clint0
|
|
|
|
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0xbff8U)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x4000U)
|
|
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
|
|
/* telink,machine-timer */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(telink_machine_timer)
|
|
#define DT_DRV_COMPAT telink_machine_timer
|
|
|
|
#define MTIME_REG DT_INST_REG_ADDR(0)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
/* lowrisc,machine-timer */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(lowrisc_machine_timer)
|
|
#define DT_DRV_COMPAT lowrisc_machine_timer
|
|
|
|
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0x110)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x118)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
/* niosv-machine-timer */
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(niosv_machine_timer)
|
|
#define DT_DRV_COMPAT niosv_machine_timer
|
|
|
|
#define MTIMECMP_REG DT_INST_REG_ADDR(0)
|
|
#define MTIME_REG (DT_INST_REG_ADDR(0) + 8)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
/* scr,machine-timer*/
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(scr_machine_timer)
|
|
#define DT_DRV_COMPAT scr_machine_timer
|
|
#define MTIMER_HAS_DIVIDER
|
|
|
|
#define MTIMEDIV_REG (DT_INST_REG_ADDR_U64(0) + 4)
|
|
#define MTIME_REG (DT_INST_REG_ADDR_U64(0) + 8)
|
|
#define MTIMECMP_REG (DT_INST_REG_ADDR_U64(0) + 16)
|
|
#define TIMER_IRQN DT_INST_IRQN(0)
|
|
#endif
|
|
|
|
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
|
|
/* the unsigned long cast limits divisions to native CPU register width */
|
|
#define cycle_diff_t unsigned long
|
|
|
|
static struct k_spinlock lock;
|
|
static uint64_t last_count;
|
|
static uint64_t last_ticks;
|
|
static uint32_t last_elapsed;
|
|
|
|
#if defined(CONFIG_TEST)
|
|
const int32_t z_sys_timer_irq_for_test = TIMER_IRQN;
|
|
#endif
|
|
|
|
static uintptr_t get_hart_mtimecmp(void)
|
|
{
|
|
return MTIMECMP_REG + (arch_proc_id() * 8);
|
|
}
|
|
|
|
static void set_mtimecmp(uint64_t time)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
*(volatile uint64_t *)get_hart_mtimecmp() = time;
|
|
#else
|
|
volatile uint32_t *r = (uint32_t *)get_hart_mtimecmp();
|
|
|
|
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
|
|
* but are NOT internally latched for multiword transfers. So
|
|
* we have to be careful about sequencing to avoid triggering
|
|
* spurious interrupts: always set the high word to a max
|
|
* value first.
|
|
*/
|
|
r[1] = 0xffffffff;
|
|
r[0] = (uint32_t)time;
|
|
r[1] = (uint32_t)(time >> 32);
|
|
#endif
|
|
}
|
|
|
|
static void set_divider(void)
|
|
{
|
|
#ifdef MTIMER_HAS_DIVIDER
|
|
*(volatile uint32_t *)MTIMEDIV_REG =
|
|
CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
|
|
#endif
|
|
}
|
|
|
|
static uint64_t mtime(void)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
return *(volatile uint64_t *)MTIME_REG;
|
|
#else
|
|
volatile uint32_t *r = (uint32_t *)MTIME_REG;
|
|
uint32_t lo, hi;
|
|
|
|
/* Likewise, must guard against rollover when reading */
|
|
do {
|
|
hi = r[1];
|
|
lo = r[0];
|
|
} while (r[1] != hi);
|
|
|
|
return (((uint64_t)hi) << 32) | lo;
|
|
#endif
|
|
}
|
|
|
|
static void timer_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
uint64_t now = mtime();
|
|
uint64_t dcycles = now - last_count;
|
|
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
|
|
|
|
last_count += (cycle_diff_t)dticks * CYC_PER_TICK;
|
|
last_ticks += dticks;
|
|
last_elapsed = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
uint64_t next = last_count + CYC_PER_TICK;
|
|
|
|
set_mtimecmp(next);
|
|
}
|
|
|
|
k_spin_unlock(&lock, key);
|
|
sys_clock_announce(dticks);
|
|
}
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
if (ticks == K_TICKS_FOREVER) {
|
|
set_mtimecmp(UINT64_MAX);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clamp the max period length to a number of cycles that can fit
|
|
* in half the range of a cycle_diff_t for native width divisions
|
|
* to be usable elsewhere. Also clamp it to half the range of an
|
|
* int32_t as this is the type used for elapsed tick announcements.
|
|
* The half range gives us extra room to cope with the unavoidable IRQ
|
|
* servicing latency. The compiler should optimize away the least
|
|
* restrictive of those tests automatically.
|
|
*/
|
|
ticks = CLAMP(ticks, 0, (cycle_diff_t)-1 / 2 / CYC_PER_TICK);
|
|
ticks = CLAMP(ticks, 0, INT32_MAX / 2);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
uint64_t cyc = (last_ticks + last_elapsed + ticks) * CYC_PER_TICK;
|
|
|
|
set_mtimecmp(cyc);
|
|
k_spin_unlock(&lock, key);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
uint64_t now = mtime();
|
|
uint64_t dcycles = now - last_count;
|
|
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
|
|
|
|
last_elapsed = dticks;
|
|
k_spin_unlock(&lock, key);
|
|
return dticks;
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
return ((uint32_t)mtime()) << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
|
|
}
|
|
|
|
uint64_t sys_clock_cycle_get_64(void)
|
|
{
|
|
return mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
|
|
}
|
|
|
|
static int sys_clock_driver_init(void)
|
|
{
|
|
|
|
set_divider();
|
|
|
|
IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0);
|
|
last_ticks = mtime() / CYC_PER_TICK;
|
|
last_count = last_ticks * CYC_PER_TICK;
|
|
set_mtimecmp(last_count + CYC_PER_TICK);
|
|
irq_enable(TIMER_IRQN);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void smp_timer_init(void)
|
|
{
|
|
set_mtimecmp(last_count + CYC_PER_TICK);
|
|
irq_enable(TIMER_IRQN);
|
|
}
|
|
#endif
|
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|