zephyr/drivers/audio/dmic_mcux.c
Daniel DeGrasse 6fbd76bef3 drivers: audio: dmic: add driver for NXP DMIC peripheral
Add driver for NXP DMIC peripheral. This peripheral is present on the
iMX RT5xx and iMX RT6xx parts, as well as some LPC SOCs. The following
features are supported:
- up to 2 simultaneous channels of L/R PCM data (4 channels are not
  supported due to limitations of the DMA engine)
- individual configuration of gain and filter parameters for each DMIC
  channel input

The driver has been tested with up to 4 PCM data streams (2 L/R channels),
as well as the MEMS microphones present on the RT595 EVK.

Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
Co-authored-by: Yves Vandervennet <yves.vandervennet@nxp.com>
2024-01-17 14:43:52 +01:00

728 lines
22 KiB
C

/*
* Copyright 2023 NXP
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* based on dmic_nrfx_pdm.c
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/dma.h>
#include <zephyr/audio/dmic.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/clock_control.h>
#include <soc.h>
#include <fsl_dmic.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dmic_mcux, CONFIG_AUDIO_DMIC_LOG_LEVEL);
#define DT_DRV_COMPAT nxp_dmic
struct mcux_dmic_pdm_chan {
dmic_channel_config_t dmic_channel_cfg;
const struct device *dma;
uint8_t dma_chan;
};
struct mcux_dmic_drv_data {
struct k_mem_slab *mem_slab;
void *dma_bufs[CONFIG_DMIC_MCUX_DMA_BUFFERS];
uint8_t active_buf_idx;
uint32_t block_size;
DMIC_Type *base_address;
struct mcux_dmic_pdm_chan **pdm_channels;
uint8_t act_num_chan;
struct k_msgq *rx_queue;
uint32_t chan_map_lo;
uint32_t chan_map_hi;
enum dmic_state dmic_state;
};
struct mcux_dmic_cfg {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
clock_control_subsys_t clock_name;
bool use2fs;
};
static int dmic_mcux_get_osr(uint32_t pcm_rate, uint32_t bit_clk, bool use_2fs)
{
uint32_t use2fs_div = use_2fs ? 1 : 2;
/* Note that the below calculation assumes the following:
* - DMIC DIVHFCLK is set to 0x0 (divide by 1)
* - DMIC PHY_HALF is set to 0x0 (standard sample rate)
*/
return (uint32_t)(bit_clk / (2 * pcm_rate * use2fs_div));
}
/* Gets hardware channel index from logical channel */
static uint8_t dmic_mcux_hw_chan(struct mcux_dmic_drv_data *drv_data,
uint8_t log_chan)
{
enum pdm_lr lr;
uint8_t hw_chan;
/* This function assigns hardware channel "n" to the left channel,
* and hardware channel "n+1" to the right channel. This choice is
* arbitrary, but must be followed throughout the driver.
*/
dmic_parse_channel_map(drv_data->chan_map_lo,
drv_data->chan_map_hi,
log_chan, &hw_chan, &lr);
if (lr == PDM_CHAN_LEFT) {
return hw_chan * 2;
} else {
return (hw_chan * 2) + 1;
}
}
static void dmic_mcux_activate_channels(struct mcux_dmic_drv_data *drv_data,
bool enable)
{
/* PDM channel 0 must always be enabled, as the RM states:
* "In order to output 8 channels of PDM Data, PDM_CLK01 must be used"
* therefore, even if we don't intend to capture PDM data from the
* channel 0 FIFO, we still enable the channel so the clock is active.
*/
uint32_t mask = 0x1;
for (uint8_t chan = 0; chan < drv_data->act_num_chan; chan++) {
/* Set bitmask of hw channel to enable */
mask |= BIT(dmic_mcux_hw_chan(drv_data, chan));
}
if (enable) {
DMIC_EnableChannnel(drv_data->base_address, mask);
} else {
/* No function to disable channels, we must bypass HAL here */
drv_data->base_address->CHANEN &= ~mask;
}
}
static int dmic_mcux_enable_dma(struct mcux_dmic_drv_data *drv_data, bool enable)
{
struct mcux_dmic_pdm_chan *pdm_channel;
uint8_t num_chan = drv_data->act_num_chan;
uint8_t hw_chan;
int ret = 0;
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
pdm_channel = drv_data->pdm_channels[hw_chan];
if (enable) {
ret = dma_start(pdm_channel->dma, pdm_channel->dma_chan);
if (ret < 0) {
LOG_ERR("Could not start DMA for HW channel %d",
hw_chan);
return ret;
}
} else {
if (dma_stop(pdm_channel->dma, pdm_channel->dma_chan)) {
ret = -EIO;
}
}
DMIC_EnableChannelDma(drv_data->base_address,
(dmic_channel_t)hw_chan, enable);
}
return ret;
}
/* Helper to reload DMA engine for all active channels with new buffer */
static void dmic_mcux_reload_dma(struct mcux_dmic_drv_data *drv_data,
void *buffer)
{
int ret;
uint8_t hw_chan;
struct mcux_dmic_pdm_chan *pdm_channel;
uint8_t num_chan = drv_data->act_num_chan;
uint32_t dma_buf_size = drv_data->block_size / num_chan;
uint32_t src, dst;
/* This function reloads the DMA engine for all active DMA channels
* with the provided buffer. Each DMA channel will start
* at a different initial address to interleave channel data.
*/
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
pdm_channel = drv_data->pdm_channels[hw_chan];
src = DMIC_FifoGetAddress(drv_data->base_address, hw_chan);
dst = (uint32_t)(((uint16_t *)buffer) + chan);
ret = dma_reload(pdm_channel->dma, pdm_channel->dma_chan,
src, dst, dma_buf_size);
if (ret < 0) {
LOG_ERR("Could not reload DMIC HW channel %d", hw_chan);
return;
}
}
}
/* Helper to get next buffer index for DMA */
static uint8_t dmic_mcux_next_buf_idx(uint8_t current_idx)
{
if ((current_idx + 1) == CONFIG_DMIC_MCUX_DMA_BUFFERS) {
return 0;
}
return current_idx + 1;
}
static int dmic_mcux_stop(struct mcux_dmic_drv_data *drv_data)
{
/* Disable active channels */
dmic_mcux_activate_channels(drv_data, false);
/* Disable DMA */
dmic_mcux_enable_dma(drv_data, false);
/* Free all memory slabs */
for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) {
k_mem_slab_free(drv_data->mem_slab, drv_data->dma_bufs[i]);
}
/* Purge the RX queue as well. */
k_msgq_purge(drv_data->rx_queue);
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
return 0;
}
static void dmic_mcux_dma_cb(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
struct mcux_dmic_drv_data *drv_data = (struct mcux_dmic_drv_data *)user_data;
int ret;
void *done_buffer = drv_data->dma_bufs[drv_data->active_buf_idx];
void *new_buffer;
LOG_DBG("CB: channel is %u", channel);
if (status < 0) {
/* DMA has failed, free allocated blocks */
LOG_ERR("DMA reports error");
dmic_mcux_enable_dma(drv_data, false);
dmic_mcux_activate_channels(drv_data, false);
/* Free all allocated DMA buffers */
dmic_mcux_stop(drv_data);
drv_data->dmic_state = DMIC_STATE_ERROR;
return;
}
/* Before we queue the current buffer, make sure we can allocate
* another one to replace it.
*/
ret = k_mem_slab_alloc(drv_data->mem_slab, &new_buffer, K_NO_WAIT);
if (ret < 0) {
/* We can't allocate a new buffer to replace the current
* one, so we cannot release the current buffer to the
* rx queue (or the DMA would stave). Therefore, we just
* leave the current buffer in place to be overwritten
* by the DMA.
*/
LOG_ERR("Could not allocate RX buffer. Dropping RX data");
drv_data->dmic_state = DMIC_STATE_ERROR;
/* Reload DMA */
dmic_mcux_reload_dma(drv_data, done_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx =
dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
return;
}
/* DMA issues an interrupt at the completion of every block.
* we should put the active buffer into the rx queue for the
* application to read. The application is responsible for
* freeing this buffer once it processes it.
*/
ret = k_msgq_put(drv_data->rx_queue, &done_buffer, K_NO_WAIT);
if (ret < 0) {
/* Free the newly allocated buffer, we won't need it. */
k_mem_slab_free(drv_data->mem_slab, new_buffer);
/* We cannot enqueue the current buffer, so we will drop
* the current buffer data and leave the current buffer
* in place to be overwritten by the DMA
*/
LOG_ERR("RX queue overflow, dropping RX buffer data");
drv_data->dmic_state = DMIC_STATE_ERROR;
/* Reload DMA */
dmic_mcux_reload_dma(drv_data, done_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx =
dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
return;
}
/* Previous buffer was enqueued, and new buffer is allocated.
* Replace pointer to previous buffer in our dma slots array,
* and reload DMA with next buffer.
*/
drv_data->dma_bufs[drv_data->active_buf_idx] = new_buffer;
dmic_mcux_reload_dma(drv_data, new_buffer);
/* Advance active buffer index */
drv_data->active_buf_idx = dmic_mcux_next_buf_idx(drv_data->active_buf_idx);
}
static int dmic_mcux_setup_dma(const struct device *dev)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
struct mcux_dmic_pdm_chan *pdm_channel;
struct dma_block_config blk_cfg[CONFIG_DMIC_MCUX_DMA_BUFFERS] = {0};
struct dma_config dma_cfg = {0};
uint8_t num_chan = drv_data->act_num_chan;
uint32_t dma_buf_size = drv_data->block_size / num_chan;
uint8_t dma_buf_idx = 0;
void *dma_buf = drv_data->dma_bufs[dma_buf_idx];
uint8_t hw_chan;
int ret = 0;
/* Setup DMA configuration common between all channels */
dma_cfg.user_data = drv_data;
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg.source_data_size = sizeof(uint16_t); /* Each sample is 16 bits */
dma_cfg.dest_data_size = sizeof(uint16_t);
dma_cfg.block_count = CONFIG_DMIC_MCUX_DMA_BUFFERS;
dma_cfg.head_block = &blk_cfg[0];
dma_cfg.complete_callback_en = 1; /* Callback at each block */
dma_cfg.dma_callback = dmic_mcux_dma_cb;
/* When multiple channels are enabled simultaneously, the DMA
* completion interrupt from one channel will signal that DMA data
* from multiple channels may be collected, provided the same
* amount of data was transferred. Therefore, we only enable the
* DMA completion callback for the first channel we setup
*/
for (uint8_t chan = 0; chan < num_chan; chan++) {
/* Parse the channel map data */
hw_chan = dmic_mcux_hw_chan(drv_data, chan);
/* Configure blocks for hw_chan */
for (uint32_t blk = 0; blk < CONFIG_DMIC_MCUX_DMA_BUFFERS; blk++) {
blk_cfg[blk].source_address =
DMIC_FifoGetAddress(drv_data->base_address, hw_chan);
/* We interleave samples within the output buffer
* based on channel map. So for a channel map like so:
* [pdm0_l, pdm0_r, pdm1_r, pdm1_l]
* the resulting DMA buffer would look like:
* [pdm0_l_s0, pdm0_r_s0, pdm1_r_s0, pdm1_l_s0,
* pdm0_l_s1, pdm0_r_s1, pdm1_r_s1, pdm1_l_s1, ...]
* Each sample is 16 bits wide.
*/
blk_cfg[blk].dest_address =
(uint32_t)(((uint16_t *)dma_buf) + chan);
blk_cfg[blk].dest_scatter_interval =
num_chan * sizeof(uint16_t);
blk_cfg[blk].dest_scatter_en = 1;
blk_cfg[blk].source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg[blk].dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
blk_cfg[blk].block_size = dma_buf_size;
/* Enable circular mode- when the final DMA block
* is exhausted, we want the DMA controller
* to restart with the first one.
*/
blk_cfg[blk].source_reload_en = 1;
blk_cfg[blk].dest_reload_en = 1;
if (blk < (CONFIG_DMIC_MCUX_DMA_BUFFERS - 1)) {
blk_cfg[blk].next_block = &blk_cfg[blk + 1];
} else {
/* Last block, enable circular reload */
blk_cfg[blk].next_block = NULL;
}
/* Select next dma buffer in array */
dma_buf_idx = dmic_mcux_next_buf_idx(dma_buf_idx);
dma_buf = drv_data->dma_bufs[dma_buf_idx];
}
pdm_channel = drv_data->pdm_channels[hw_chan];
/* Set configuration for hw_chan_0 */
ret = dma_config(pdm_channel->dma, pdm_channel->dma_chan, &dma_cfg);
if (ret < 0) {
LOG_ERR("Could not configure DMIC channel %d", hw_chan);
return ret;
}
/* First channel is configured. Do not install callbacks for
* other channels.
*/
dma_cfg.dma_callback = NULL;
}
return 0;
}
/* Initializes a DMIC hardware channel */
static int dmic_mcux_init_channel(const struct device *dev, uint32_t osr,
uint8_t chan, enum pdm_lr lr)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
if (!drv_data->pdm_channels[chan]) {
/* Channel disabled at devicetree level */
return -EINVAL;
}
drv_data->pdm_channels[chan]->dmic_channel_cfg.osr = osr;
/* Configure channel settings */
DMIC_ConfigChannel(drv_data->base_address, (dmic_channel_t)chan,
lr == PDM_CHAN_LEFT ? kDMIC_Left : kDMIC_Right,
&drv_data->pdm_channels[chan]->dmic_channel_cfg);
/* Setup channel FIFO. We use maximum threshold to avoid triggering
* DMA too frequently
*/
DMIC_FifoChannel(drv_data->base_address, chan, 15, true, true);
/* Disable interrupts. DMA will be enabled in dmic_mcux_trigger. */
DMIC_EnableChannelInterrupt(drv_data->base_address, chan, false);
return 0;
}
static int mcux_dmic_init(const struct device *dev)
{
const struct mcux_dmic_cfg *config = dev->config;
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
DMIC_Init(drv_data->base_address);
DMIC_Use2fs(drv_data->base_address, config->use2fs);
#if !(defined(FSL_FEATURE_DMIC_HAS_NO_IOCFG) && FSL_FEATURE_DMIC_HAS_NO_IOCFG)
/* Set IO to dual mode */
DMIC_SetIOCFG(drv_data->base_address, kDMIC_PdmDual);
#endif
drv_data->dmic_state = DMIC_STATE_INITIALIZED;
return 0;
}
static int dmic_mcux_configure(const struct device *dev,
struct dmic_cfg *config)
{
const struct mcux_dmic_cfg *drv_config = dev->config;
struct mcux_dmic_drv_data *drv_data = dev->data;
struct pdm_chan_cfg *channel = &config->channel;
struct pcm_stream_cfg *stream = &config->streams[0];
enum pdm_lr lr_0 = 0, lr_1 = 0;
uint8_t hw_chan_0 = 0, hw_chan_1 = 0;
uint32_t bit_clk_rate, osr;
int ret;
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
LOG_ERR("Cannot configure device while it is active");
return -EBUSY;
}
/* Only one active channel is supported */
if (channel->req_num_streams != 1) {
return -EINVAL;
}
/* DMIC supports up to 8 active channels. Verify user is not
* requesting more
*/
if (channel->req_num_chan > FSL_FEATURE_DMIC_CHANNEL_NUM) {
LOG_ERR("DMIC only supports 8 channels or less");
return -ENOTSUP;
}
if (stream->pcm_rate == 0 || stream->pcm_width == 0) {
if (drv_data->dmic_state == DMIC_STATE_CONFIGURED) {
DMIC_DeInit(drv_data->base_address);
drv_data->dmic_state = DMIC_STATE_UNINIT;
}
return 0;
}
/* If DMIC was deinitialized, reinit here */
if (drv_data->dmic_state == DMIC_STATE_UNINIT) {
ret = mcux_dmic_init(dev);
if (ret < 0) {
LOG_ERR("Could not reinit DMIC");
return ret;
}
}
/* Currently, we only support 16 bit samples. This is because the DMIC
* API dictates that samples should be interleaved between channels,
* IE: {C0, C1, C2, C0, C1, C2}. To achieve this we must use the
* "destination address increment" function of the LPC DMA IP. Since
* the LPC DMA IP does not support 3 byte wide transfers, we cannot
* effectively use destination address increments to interleave 24
* bit samples.
*/
if (stream->pcm_width != 16) {
LOG_ERR("Only 16 bit samples are supported");
return -ENOTSUP;
}
ret = clock_control_get_rate(drv_config->clock_dev,
drv_config->clock_name, &bit_clk_rate);
if (ret < 0) {
return ret;
}
/* Check bit clock rate versus what user requested */
if ((config->io.min_pdm_clk_freq > bit_clk_rate) ||
(config->io.max_pdm_clk_freq < bit_clk_rate)) {
return -EINVAL;
}
/* Calculate the required OSR divider based on the PCM bit clock
* rate to the DMIC.
*/
osr = dmic_mcux_get_osr(stream->pcm_rate, bit_clk_rate, drv_config->use2fs);
/* Now, parse the channel map and set up each channel we should
* make active. We parse two channels at once, that way we can
* check to make sure that the L/R channels of each PDM controller
* are adjacent.
*/
channel->act_num_chan = 0;
/* Save channel request data */
drv_data->chan_map_lo = channel->req_chan_map_lo;
drv_data->chan_map_hi = channel->req_chan_map_hi;
for (uint8_t chan = 0; chan < channel->req_num_chan; chan += 2) {
/* Get the channel map data for channel pair */
dmic_parse_channel_map(channel->req_chan_map_lo,
channel->req_chan_map_hi,
chan, &hw_chan_0, &lr_0);
if ((chan + 1) < channel->req_num_chan) {
/* Paired channel is enabled */
dmic_parse_channel_map(channel->req_chan_map_lo,
channel->req_chan_map_hi,
chan + 1, &hw_chan_1, &lr_1);
/* Verify that paired channels use same hardware index */
if ((lr_0 == lr_1) ||
(hw_chan_0 != hw_chan_1)) {
return -EINVAL;
}
}
/* Configure selected channels in DMIC */
ret = dmic_mcux_init_channel(dev, osr,
dmic_mcux_hw_chan(drv_data, chan),
lr_0);
if (ret < 0) {
return ret;
}
channel->act_num_chan++;
if ((chan + 1) < channel->req_num_chan) {
/* Paired channel is enabled */
ret = dmic_mcux_init_channel(dev, osr,
dmic_mcux_hw_chan(drv_data,
chan + 1),
lr_1);
if (ret < 0) {
return ret;
}
channel->act_num_chan++;
}
}
channel->act_chan_map_lo = channel->req_chan_map_lo;
channel->act_chan_map_hi = channel->req_chan_map_hi;
drv_data->mem_slab = stream->mem_slab;
drv_data->block_size = stream->block_size;
drv_data->act_num_chan = channel->act_num_chan;
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
return 0;
}
static int dmic_mcux_start(const struct device *dev)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
/* Allocate the initial set of buffers reserved for use by the hardware.
* We queue buffers so that when the DMA is operating on buffer "n",
* buffer "n+1" is already queued in the DMA hardware. When buffer "n"
* completes, we allocate another buffer and add it to the tail of the
* DMA descriptor chain. This approach requires the driver to allocate
* a minimum of two buffers
*/
for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) {
/* Allocate buffers for DMA */
ret = k_mem_slab_alloc(drv_data->mem_slab,
&drv_data->dma_bufs[i], K_NO_WAIT);
if (ret < 0) {
LOG_ERR("failed to allocate buffer");
return -ENOBUFS;
}
}
ret = dmic_mcux_setup_dma(dev);
if (ret < 0) {
return ret;
}
ret = dmic_mcux_enable_dma(drv_data, true);
if (ret < 0) {
return ret;
}
dmic_mcux_activate_channels(drv_data, true);
return 0;
}
static int dmic_mcux_trigger(const struct device *dev,
enum dmic_trigger cmd)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
switch (cmd) {
case DMIC_TRIGGER_PAUSE:
/* Disable active channels */
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
dmic_mcux_activate_channels(drv_data, false);
}
drv_data->dmic_state = DMIC_STATE_PAUSED;
break;
case DMIC_TRIGGER_STOP:
if (drv_data->dmic_state == DMIC_STATE_ACTIVE) {
dmic_mcux_stop(drv_data);
}
drv_data->dmic_state = DMIC_STATE_CONFIGURED;
break;
case DMIC_TRIGGER_RELEASE:
/* Enable active channels */
if (drv_data->dmic_state == DMIC_STATE_PAUSED) {
dmic_mcux_activate_channels(drv_data, true);
}
drv_data->dmic_state = DMIC_STATE_ACTIVE;
break;
case DMIC_TRIGGER_START:
if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) &&
(drv_data->dmic_state != DMIC_STATE_ACTIVE)) {
LOG_ERR("Device is not configured");
return -EIO;
} else if (drv_data->dmic_state != DMIC_STATE_ACTIVE) {
if (dmic_mcux_start(dev) < 0) {
LOG_ERR("Could not start DMIC");
return -EIO;
}
drv_data->dmic_state = DMIC_STATE_ACTIVE;
}
break;
case DMIC_TRIGGER_RESET:
/* Reset DMIC to uninitialized state */
DMIC_DeInit(drv_data->base_address);
drv_data->dmic_state = DMIC_STATE_UNINIT;
break;
default:
LOG_ERR("Invalid command: %d", cmd);
return -EINVAL;
}
return 0;
}
static int dmic_mcux_read(const struct device *dev,
uint8_t stream,
void **buffer, size_t *size, int32_t timeout)
{
struct mcux_dmic_drv_data *drv_data = dev->data;
int ret;
ARG_UNUSED(stream);
if (drv_data->dmic_state == DMIC_STATE_ERROR) {
LOG_ERR("Device reports an error, please reset and reconfigure it");
return -EIO;
}
if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) &&
(drv_data->dmic_state != DMIC_STATE_ACTIVE) &&
(drv_data->dmic_state != DMIC_STATE_PAUSED)) {
LOG_ERR("Device state is not valid for read");
return -EIO;
}
ret = k_msgq_get(drv_data->rx_queue, buffer, SYS_TIMEOUT_MS(timeout));
if (ret < 0) {
return ret;
}
*size = drv_data->block_size;
LOG_DBG("read buffer = %p", *buffer);
return 0;
}
static const struct _dmic_ops dmic_ops = {
.configure = dmic_mcux_configure,
.trigger = dmic_mcux_trigger,
.read = dmic_mcux_read,
};
/* Converts integer gainshift into 5 bit 2's complement value for GAINSHIFT reg */
#define PDM_DMIC_GAINSHIFT(val) \
(val >= 0) ? (val & 0xF) : (BIT(4) | (0x10 - (val & 0xF)))
/* Defines structure for a given PDM channel node */
#define PDM_DMIC_CHAN_DEFINE(pdm_node) \
static struct mcux_dmic_pdm_chan \
pdm_channel_##pdm_node = { \
.dma = DEVICE_DT_GET(DT_DMAS_CTLR(pdm_node)), \
.dma_chan = DT_DMAS_CELL_BY_IDX(pdm_node, 0, channel), \
.dmic_channel_cfg = { \
.gainshft = PDM_DMIC_GAINSHIFT(DT_PROP(pdm_node, \
gainshift)), \
.preac2coef = DT_ENUM_IDX(pdm_node, compensation_2fs), \
.preac4coef = DT_ENUM_IDX(pdm_node, compensation_4fs), \
.dc_cut_level = DT_ENUM_IDX(pdm_node, dc_cutoff), \
.post_dc_gain_reduce = DT_PROP(pdm_node, dc_gain), \
.sample_rate = kDMIC_PhyFullSpeed, \
.saturate16bit = 1U, \
}, \
};
/* Defines structures for all enabled PDM channels */
#define PDM_DMIC_CHANNELS_DEFINE(idx) \
DT_INST_FOREACH_CHILD_STATUS_OKAY(idx, PDM_DMIC_CHAN_DEFINE)
/* Gets pointer for a given PDM channel node */
#define PDM_DMIC_CHAN_GET(pdm_node) \
COND_CODE_1(DT_NODE_HAS_STATUS(pdm_node, okay), \
(&pdm_channel_##pdm_node), (NULL)),
/* Gets array of pointers to PDM channels */
#define PDM_DMIC_CHANNELS_GET(idx) \
DT_INST_FOREACH_CHILD(idx, PDM_DMIC_CHAN_GET)
#define MCUX_DMIC_DEVICE(idx) \
PDM_DMIC_CHANNELS_DEFINE(idx); \
static struct mcux_dmic_pdm_chan \
*pdm_channels##idx[FSL_FEATURE_DMIC_CHANNEL_NUM] = { \
PDM_DMIC_CHANNELS_GET(idx) \
}; \
K_MSGQ_DEFINE(dmic_msgq##idx, sizeof(void *), \
CONFIG_DMIC_MCUX_QUEUE_SIZE, 1); \
static struct mcux_dmic_drv_data mcux_dmic_data##idx = { \
.pdm_channels = pdm_channels##idx, \
.base_address = (DMIC_Type *) DT_INST_REG_ADDR(idx), \
.dmic_state = DMIC_STATE_UNINIT, \
.rx_queue = &dmic_msgq##idx, \
.active_buf_idx = 0U, \
}; \
\
PINCTRL_DT_INST_DEFINE(idx); \
static struct mcux_dmic_cfg mcux_dmic_cfg##idx = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_name = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(idx, name), \
.use2fs = DT_INST_PROP(idx, use2fs), \
}; \
\
DEVICE_DT_INST_DEFINE(idx, mcux_dmic_init, NULL, \
&mcux_dmic_data##idx, &mcux_dmic_cfg##idx, \
POST_KERNEL, CONFIG_AUDIO_DMIC_INIT_PRIORITY, \
&dmic_ops);
/* Existing SoCs only have one PDM instance. */
DT_INST_FOREACH_STATUS_OKAY(MCUX_DMIC_DEVICE)