zephyr/kernel/atomic_c.c
Peter Bigot f69a38162a kernel: atomic: consistently use named type for atomic pointer values
There's a typedef for non-pointer values compatible with atomic
non-pointer objects.  Add a similar typedef for pointer values, and
the corresponding macro for initializing atomic pointer types.

This also will simplify replacing the Zephyr atomic API with one
based on C11 atomics, should that be desirable.  C11 atomic pointer
values are not void*.

Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
2021-04-19 15:22:13 +02:00

407 lines
9.6 KiB
C

/*
* Copyright (c) 2016 Intel Corporation
* Copyright (c) 2011-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file Atomic ops in pure C
*
* This module provides the atomic operators for processors
* which do not support native atomic operations.
*
* The atomic operations are guaranteed to be atomic with respect
* to interrupt service routines, and to operations performed by peer
* processors.
*
* (originally from x86's atomic.c)
*/
#include <toolchain.h>
#include <arch/cpu.h>
#include <spinlock.h>
#include <sys/atomic.h>
#include <kernel_structs.h>
/* Single global spinlock for atomic operations. This is fallback
* code, not performance sensitive. At least by not using irq_lock()
* in SMP contexts we won't content with legitimate users of the
* global lock.
*/
static struct k_spinlock lock;
/* For those rare CPUs which support user mode, but not native atomic
* operations, the best we can do for them is implement the atomic
* functions as system calls, since in user mode locking a spinlock is
* forbidden.
*/
#ifdef CONFIG_USERSPACE
#include <syscall_handler.h>
#define ATOMIC_SYSCALL_HANDLER_TARGET(name) \
static inline atomic_val_t z_vrfy_##name(atomic_t *target) \
{ \
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \
return z_impl_##name((atomic_t *)target); \
}
#define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name) \
static inline atomic_val_t z_vrfy_##name(atomic_t *target, \
atomic_val_t value) \
{ \
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \
return z_impl_##name((atomic_t *)target, value); \
}
#else
#define ATOMIC_SYSCALL_HANDLER_TARGET(name)
#define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name)
#endif
/**
*
* @brief Atomic compare-and-set primitive
*
* This routine provides the compare-and-set operator. If the original value at
* <target> equals <oldValue>, then <newValue> is stored at <target> and the
* function returns true.
*
* If the original value at <target> does not equal <oldValue>, then the store
* is not done and the function returns false.
*
* The reading of the original value at <target>, the comparison,
* and the write of the new value (if it occurs) all happen atomically with
* respect to both interrupts and accesses of other processors to <target>.
*
* @param target address to be tested
* @param old_value value to compare against
* @param new_value value to compare against
* @return Returns true if <new_value> is written, false otherwise.
*/
bool z_impl_atomic_cas(atomic_t *target, atomic_val_t old_value,
atomic_val_t new_value)
{
k_spinlock_key_t key;
int ret = false;
key = k_spin_lock(&lock);
if (*target == old_value) {
*target = new_value;
ret = true;
}
k_spin_unlock(&lock, key);
return ret;
}
#ifdef CONFIG_USERSPACE
bool z_vrfy_atomic_cas(atomic_t *target, atomic_val_t old_value,
atomic_val_t new_value)
{
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t)));
return z_impl_atomic_cas((atomic_t *)target, old_value, new_value);
}
#include <syscalls/atomic_cas_mrsh.c>
#endif /* CONFIG_USERSPACE */
bool z_impl_atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value,
atomic_ptr_val_t new_value)
{
k_spinlock_key_t key;
int ret = false;
key = k_spin_lock(&lock);
if (*target == old_value) {
*target = new_value;
ret = true;
}
k_spin_unlock(&lock, key);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline bool z_vrfy_atomic_ptr_cas(atomic_ptr_t *target,
atomic_ptr_val_t old_value,
atomic_ptr_val_t new_value)
{
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t)));
return z_impl_atomic_ptr_cas(target, old_value, new_value);
}
#include <syscalls/atomic_ptr_cas_mrsh.c>
#endif /* CONFIG_USERSPACE */
/**
*
* @brief Atomic addition primitive
*
* This routine provides the atomic addition operator. The <value> is
* atomically added to the value at <target>, placing the result at <target>,
* and the old value from <target> is returned.
*
* @param target memory location to add to
* @param value the value to add
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_add(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target += value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_add);
/**
*
* @brief Atomic subtraction primitive
*
* This routine provides the atomic subtraction operator. The <value> is
* atomically subtracted from the value at <target>, placing the result at
* <target>, and the old value from <target> is returned.
*
* @param target the memory location to subtract from
* @param value the value to subtract
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_sub(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target -= value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_sub);
/**
*
* @brief Atomic get primitive
*
* @param target memory location to read from
*
* This routine provides the atomic get primitive to atomically read
* a value from <target>. It simply does an ordinary load. Note that <target>
* is expected to be aligned to a 4-byte boundary.
*
* @return The value read from <target>
*/
atomic_val_t atomic_get(const atomic_t *target)
{
return *target;
}
atomic_ptr_val_t atomic_ptr_get(const atomic_ptr_t *target)
{
return *target;
}
/**
*
* @brief Atomic get-and-set primitive
*
* This routine provides the atomic set operator. The <value> is atomically
* written at <target> and the previous value at <target> is returned.
*
* @param target the memory location to write to
* @param value the value to write
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_set(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target = value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_set);
atomic_ptr_val_t z_impl_atomic_ptr_set(atomic_ptr_t *target,
atomic_ptr_val_t value)
{
k_spinlock_key_t key;
atomic_ptr_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target = value;
k_spin_unlock(&lock, key);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline atomic_ptr_val_t z_vrfy_atomic_ptr_set(atomic_ptr_t *target,
atomic_ptr_val_t value)
{
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t)));
return z_impl_atomic_ptr_set(target, value);
}
#include <syscalls/atomic_ptr_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
/**
*
* @brief Atomic bitwise inclusive OR primitive
*
* This routine provides the atomic bitwise inclusive OR operator. The <value>
* is atomically bitwise OR'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to OR
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_or(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target |= value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_or);
/**
*
* @brief Atomic bitwise exclusive OR (XOR) primitive
*
* This routine provides the atomic bitwise exclusive OR operator. The <value>
* is atomically bitwise XOR'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to XOR
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_xor(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target ^= value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_xor);
/**
*
* @brief Atomic bitwise AND primitive
*
* This routine provides the atomic bitwise AND operator. The <value> is
* atomically bitwise AND'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to AND
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_and(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target &= value;
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_and);
/**
*
* @brief Atomic bitwise NAND primitive
*
* This routine provides the atomic bitwise NAND operator. The <value> is
* atomically bitwise NAND'ed with the value at <target>, placing the result
* at <target>, and the previous value at <target> is returned.
*
* @param target the memory location to be modified
* @param value the value to NAND
*
* @return The previous value from <target>
*/
atomic_val_t z_impl_atomic_nand(atomic_t *target, atomic_val_t value)
{
k_spinlock_key_t key;
atomic_val_t ret;
key = k_spin_lock(&lock);
ret = *target;
*target = ~(*target & value);
k_spin_unlock(&lock, key);
return ret;
}
ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_nand);
#ifdef CONFIG_USERSPACE
#include <syscalls/atomic_add_mrsh.c>
#include <syscalls/atomic_sub_mrsh.c>
#include <syscalls/atomic_set_mrsh.c>
#include <syscalls/atomic_or_mrsh.c>
#include <syscalls/atomic_xor_mrsh.c>
#include <syscalls/atomic_and_mrsh.c>
#include <syscalls/atomic_nand_mrsh.c>
#endif