4d994af032
Remove this intrusive tracing feature in favor of the new object tracing using the main tracing feature in zephyr. See #33603 for the new tracing coverage for all objects. This will allow for support in more tools and less reliance on GDB for tracing objects. Signed-off-by: Anas Nashif <anas.nashif@intel.com>
828 lines
22 KiB
C
828 lines
22 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* @brief Pipes
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
|
|
#include <toolchain.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <init.h>
|
|
#include <syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
#include <sys/check.h>
|
|
|
|
struct k_pipe_desc {
|
|
unsigned char *buffer; /* Position in src/dest buffer */
|
|
size_t bytes_to_xfer; /* # bytes left to transfer */
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
struct k_mem_block *block; /* Pointer to memory block */
|
|
struct k_mem_block copy_block; /* For backwards compatibility */
|
|
struct k_sem *sem; /* Semaphore to give if async */
|
|
#endif
|
|
};
|
|
|
|
struct k_pipe_async {
|
|
struct _thread_base thread; /* Dummy thread object */
|
|
struct k_pipe_desc desc; /* Pipe message descriptor */
|
|
};
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
/* stack of unused asynchronous message descriptors */
|
|
K_STACK_DEFINE(pipe_async_msgs, CONFIG_NUM_PIPE_ASYNC_MSGS);
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
|
|
/*
|
|
* Do run-time initialization of pipe object subsystem.
|
|
*/
|
|
static int init_pipes_module(const struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
/* Array of asynchronous message descriptors */
|
|
static struct k_pipe_async __noinit async_msg[CONFIG_NUM_PIPE_ASYNC_MSGS];
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
/*
|
|
* Create pool of asynchronous pipe message descriptors.
|
|
*
|
|
* A dummy thread requires minimal initialization, since it never gets
|
|
* to execute. The _THREAD_DUMMY flag is sufficient to distinguish a
|
|
* dummy thread from a real one. The threads are *not* added to the
|
|
* kernel's list of known threads.
|
|
*
|
|
* Once initialized, the address of each descriptor is added to a stack
|
|
* that governs access to them.
|
|
*/
|
|
|
|
for (int i = 0; i < CONFIG_NUM_PIPE_ASYNC_MSGS; i++) {
|
|
async_msg[i].thread.thread_state = _THREAD_DUMMY;
|
|
async_msg[i].thread.swap_data = &async_msg[i].desc;
|
|
|
|
z_init_thread_timeout(&async_msg[i].thread);
|
|
|
|
k_stack_push(&pipe_async_msgs, (stack_data_t)&async_msg[i]);
|
|
}
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */
|
|
|
|
/* Complete initialization of statically defined mailboxes. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_pipes_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS */
|
|
|
|
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
|
|
{
|
|
pipe->buffer = buffer;
|
|
pipe->size = size;
|
|
pipe->bytes_used = 0;
|
|
pipe->read_index = 0;
|
|
pipe->write_index = 0;
|
|
pipe->lock = (struct k_spinlock){};
|
|
z_waitq_init(&pipe->wait_q.writers);
|
|
z_waitq_init(&pipe->wait_q.readers);
|
|
SYS_PORT_TRACING_OBJ_INIT(k_pipe, pipe);
|
|
|
|
pipe->flags = 0;
|
|
z_object_init(pipe);
|
|
}
|
|
|
|
int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
void *buffer;
|
|
int ret;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, alloc_init, pipe);
|
|
|
|
if (size != 0U) {
|
|
buffer = z_thread_malloc(size);
|
|
if (buffer != NULL) {
|
|
k_pipe_init(pipe, buffer, size);
|
|
pipe->flags = K_PIPE_FLAG_ALLOC;
|
|
ret = 0;
|
|
} else {
|
|
ret = -ENOMEM;
|
|
}
|
|
} else {
|
|
k_pipe_init(pipe, NULL, 0);
|
|
ret = 0;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, alloc_init, pipe, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_alloc_init(pipe, size);
|
|
}
|
|
#include <syscalls/k_pipe_alloc_init_mrsh.c>
|
|
#endif
|
|
|
|
int k_pipe_cleanup(struct k_pipe *pipe)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, cleanup, pipe);
|
|
|
|
CHECKIF(z_waitq_head(&pipe->wait_q.readers) != NULL ||
|
|
z_waitq_head(&pipe->wait_q.writers) != NULL) {
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, -EAGAIN);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0U) {
|
|
k_free(pipe->buffer);
|
|
pipe->buffer = NULL;
|
|
pipe->flags &= ~K_PIPE_FLAG_ALLOC;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Copy bytes from @a src to @a dest
|
|
*
|
|
* @return Number of bytes copied
|
|
*/
|
|
static size_t pipe_xfer(unsigned char *dest, size_t dest_size,
|
|
const unsigned char *src, size_t src_size)
|
|
{
|
|
size_t num_bytes = MIN(dest_size, src_size);
|
|
const unsigned char *end = src + num_bytes;
|
|
|
|
while (src != end) {
|
|
*dest = *src;
|
|
dest++;
|
|
src++;
|
|
}
|
|
|
|
return num_bytes;
|
|
}
|
|
|
|
/**
|
|
* @brief Put data from @a src into the pipe's circular buffer
|
|
*
|
|
* Modifies the following fields in @a pipe:
|
|
* buffer, bytes_used, write_index
|
|
*
|
|
* @return Number of bytes written to the pipe's circular buffer
|
|
*/
|
|
static size_t pipe_buffer_put(struct k_pipe *pipe,
|
|
const unsigned char *src, size_t src_size)
|
|
{
|
|
size_t bytes_copied;
|
|
size_t run_length;
|
|
size_t num_bytes_written = 0;
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
run_length = MIN(pipe->size - pipe->bytes_used,
|
|
pipe->size - pipe->write_index);
|
|
|
|
bytes_copied = pipe_xfer(pipe->buffer + pipe->write_index,
|
|
run_length,
|
|
src + num_bytes_written,
|
|
src_size - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
pipe->bytes_used += bytes_copied;
|
|
pipe->write_index += bytes_copied;
|
|
if (pipe->write_index == pipe->size) {
|
|
pipe->write_index = 0;
|
|
}
|
|
}
|
|
|
|
return num_bytes_written;
|
|
}
|
|
|
|
/**
|
|
* @brief Get data from the pipe's circular buffer
|
|
*
|
|
* Modifies the following fields in @a pipe:
|
|
* bytes_used, read_index
|
|
*
|
|
* @return Number of bytes read from the pipe's circular buffer
|
|
*/
|
|
static size_t pipe_buffer_get(struct k_pipe *pipe,
|
|
unsigned char *dest, size_t dest_size)
|
|
{
|
|
size_t bytes_copied;
|
|
size_t run_length;
|
|
size_t num_bytes_read = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
run_length = MIN(pipe->bytes_used,
|
|
pipe->size - pipe->read_index);
|
|
|
|
bytes_copied = pipe_xfer(dest + num_bytes_read,
|
|
dest_size - num_bytes_read,
|
|
pipe->buffer + pipe->read_index,
|
|
run_length);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
pipe->bytes_used -= bytes_copied;
|
|
pipe->read_index += bytes_copied;
|
|
if (pipe->read_index == pipe->size) {
|
|
pipe->read_index = 0;
|
|
}
|
|
}
|
|
|
|
return num_bytes_read;
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a working set of readers/writers
|
|
*
|
|
* Prepare a list of "working threads" into/from which the data
|
|
* will be directly copied. This list is useful as it is used to ...
|
|
*
|
|
* 1. avoid double copying
|
|
* 2. minimize interrupt latency as interrupts are unlocked
|
|
* while copying data
|
|
* 3. ensure a timeout can not make the request impossible to satisfy
|
|
*
|
|
* The list is populated with previously pended threads that will be ready to
|
|
* run after the pipe call is complete.
|
|
*
|
|
* Important things to remember when reading from the pipe ...
|
|
* 1. If there are writers int @a wait_q, then the pipe's buffer is full.
|
|
* 2. Conversely if the pipe's buffer is not full, there are no writers.
|
|
* 3. The amount of available data in the pipe is the sum the bytes used in
|
|
* the pipe (@a pipe_space) and all the requests from the waiting writers.
|
|
* 4. Since data is read from the pipe's buffer first, the working set must
|
|
* include writers that will (try to) re-fill the pipe's buffer afterwards.
|
|
*
|
|
* Important things to remember when writing to the pipe ...
|
|
* 1. If there are readers in @a wait_q, then the pipe's buffer is empty.
|
|
* 2. Conversely if the pipe's buffer is not empty, then there are no readers.
|
|
* 3. The amount of space available in the pipe is the sum of the bytes unused
|
|
* in the pipe (@a pipe_space) and all the requests from the waiting readers.
|
|
*
|
|
* @return false if request is unsatisfiable, otherwise true
|
|
*/
|
|
static bool pipe_xfer_prepare(sys_dlist_t *xfer_list,
|
|
struct k_thread **waiter,
|
|
_wait_q_t *wait_q,
|
|
size_t pipe_space,
|
|
size_t bytes_to_xfer,
|
|
size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
struct k_thread *thread;
|
|
struct k_pipe_desc *desc;
|
|
size_t num_bytes = 0;
|
|
|
|
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
_WAIT_Q_FOR_EACH(wait_q, thread) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
|
|
num_bytes += desc->bytes_to_xfer;
|
|
|
|
if (num_bytes >= bytes_to_xfer) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_bytes + pipe_space < min_xfer) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either @a timeout is not K_NO_WAIT (so the thread may pend) or
|
|
* the entire request can be satisfied. Generate the working list.
|
|
*/
|
|
|
|
sys_dlist_init(xfer_list);
|
|
num_bytes = 0;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
num_bytes += desc->bytes_to_xfer;
|
|
|
|
if (num_bytes > bytes_to_xfer) {
|
|
/*
|
|
* This request can not be fully satisfied.
|
|
* Do not remove it from the wait_q.
|
|
* Do not abort its timeout (if applicable).
|
|
* Do not add it to the transfer list
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This request can be fully satisfied.
|
|
* Remove it from the wait_q.
|
|
* Abort its timeout.
|
|
* Add it to the transfer list.
|
|
*/
|
|
z_unpend_thread(thread);
|
|
sys_dlist_append(xfer_list, &thread->base.qnode_dlist);
|
|
}
|
|
|
|
*waiter = (num_bytes > bytes_to_xfer) ? thread : NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Determine the correct return code
|
|
*
|
|
* Bytes Xferred No Wait Wait
|
|
* >= Minimum 0 0
|
|
* < Minimum -EIO* -EAGAIN
|
|
*
|
|
* * The "-EIO No Wait" case was already checked when the "working set"
|
|
* was created in _pipe_xfer_prepare().
|
|
*
|
|
* @return See table above
|
|
*/
|
|
static int pipe_return_code(size_t min_xfer, size_t bytes_remaining,
|
|
size_t bytes_requested)
|
|
{
|
|
if (bytes_requested - bytes_remaining >= min_xfer) {
|
|
/*
|
|
* At least the minimum number of requested
|
|
* bytes have been transferred.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* @brief Ready a pipe thread
|
|
*
|
|
* If the pipe thread is a real thread, then add it to the ready queue.
|
|
* If it is a dummy thread, then finish the asynchronous work.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void pipe_thread_ready(struct k_thread *thread)
|
|
{
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
if ((thread->base.thread_state & _THREAD_DUMMY) != 0U) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
z_ready_thread(thread);
|
|
}
|
|
|
|
/**
|
|
* @brief Internal API used to send data to a pipe
|
|
*/
|
|
int z_pipe_put_internal(struct k_pipe *pipe, struct k_pipe_async *async_desc,
|
|
unsigned char *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
struct k_thread *reader;
|
|
struct k_pipe_desc *desc;
|
|
sys_dlist_t xfer_list;
|
|
size_t num_bytes_written = 0;
|
|
size_t bytes_copied;
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS == 0)
|
|
ARG_UNUSED(async_desc);
|
|
#endif
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, put, pipe, timeout);
|
|
|
|
CHECKIF((min_xfer > bytes_to_write) || bytes_written == NULL) {
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, -EINVAL);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
/*
|
|
* Create a list of "working readers" into which the data will be
|
|
* directly copied.
|
|
*/
|
|
|
|
if (!pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers,
|
|
pipe->size - pipe->bytes_used, bytes_to_write,
|
|
min_xfer, timeout)) {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_written = 0;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, -EIO);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, put, pipe, timeout);
|
|
|
|
z_sched_lock();
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
/*
|
|
* 1. 'xfer_list' currently contains a list of reader threads that can
|
|
* have their read requests fulfilled by the current call.
|
|
* 2. 'reader' if not NULL points to a thread on the reader wait_q
|
|
* that can get some of its requested data.
|
|
* 3. Interrupts are unlocked but the scheduler is locked to allow
|
|
* ticks to be delivered but no scheduling to occur
|
|
* 4. If 'reader' times out while we are copying data, not only do we
|
|
* still have a pointer to it, but it can not execute until this call
|
|
* is complete so it is still safe to copy data to it.
|
|
*/
|
|
|
|
struct k_thread *thread = (struct k_thread *)
|
|
sys_dlist_get(&xfer_list);
|
|
while (thread != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer,
|
|
data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/* The thread's read request has been satisfied. Ready it. */
|
|
z_ready_thread(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
/*
|
|
* Copy any data to the reader that we left on the wait_q.
|
|
* It is possible no data will be copied.
|
|
*/
|
|
if (reader != NULL) {
|
|
desc = (struct k_pipe_desc *)reader->base.swap_data;
|
|
bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer,
|
|
data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
/*
|
|
* As much data as possible has been directly copied to any waiting
|
|
* readers. Add as much as possible to the pipe's circular buffer.
|
|
*/
|
|
|
|
num_bytes_written +=
|
|
pipe_buffer_put(pipe, data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
if (num_bytes_written == bytes_to_write) {
|
|
*bytes_written = num_bytes_written;
|
|
k_sched_unlock();
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)
|
|
&& num_bytes_written >= min_xfer
|
|
&& min_xfer > 0U) {
|
|
*bytes_written = num_bytes_written;
|
|
k_sched_unlock();
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Not all data was copied */
|
|
|
|
struct k_pipe_desc pipe_desc;
|
|
|
|
pipe_desc.buffer = data + num_bytes_written;
|
|
pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written;
|
|
|
|
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
_current->base.swap_data = &pipe_desc;
|
|
/*
|
|
* Lock interrupts and unlock the scheduler before
|
|
* manipulating the writers wait_q.
|
|
*/
|
|
k_spinlock_key_t key2 = k_spin_lock(&pipe->lock);
|
|
z_sched_unlock_no_reschedule();
|
|
(void)z_pend_curr(&pipe->lock, key2,
|
|
&pipe->wait_q.writers, timeout);
|
|
} else {
|
|
k_sched_unlock();
|
|
}
|
|
|
|
*bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer;
|
|
|
|
int ret = pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer,
|
|
bytes_to_write);
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, ret);
|
|
return ret;
|
|
}
|
|
|
|
int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
|
|
{
|
|
struct k_thread *writer;
|
|
struct k_pipe_desc *desc;
|
|
sys_dlist_t xfer_list;
|
|
size_t num_bytes_read = 0;
|
|
size_t bytes_copied;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, get, pipe, timeout);
|
|
|
|
CHECKIF((min_xfer > bytes_to_read) || bytes_read == NULL) {
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, -EINVAL);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
/*
|
|
* Create a list of "working readers" into which the data will be
|
|
* directly copied.
|
|
*/
|
|
if (!pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers,
|
|
pipe->bytes_used, bytes_to_read,
|
|
min_xfer, timeout)) {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_read = 0;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, -EIO);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, get, pipe, timeout);
|
|
|
|
z_sched_lock();
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
num_bytes_read = pipe_buffer_get(pipe, data, bytes_to_read);
|
|
|
|
/*
|
|
* 1. 'xfer_list' currently contains a list of writer threads that can
|
|
* have their write requests fulfilled by the current call.
|
|
* 2. 'writer' if not NULL points to a thread on the writer wait_q
|
|
* that can post some of its requested data.
|
|
* 3. Data will be copied from each writer's buffer to either the
|
|
* reader's buffer and/or to the pipe's circular buffer.
|
|
* 4. Interrupts are unlocked but the scheduler is locked to allow
|
|
* ticks to be delivered but no scheduling to occur
|
|
* 5. If 'writer' times out while we are copying data, not only do we
|
|
* still have a pointer to it, but it can not execute until this
|
|
* call is complete so it is still safe to copy data from it.
|
|
*/
|
|
|
|
struct k_thread *thread = (struct k_thread *)
|
|
sys_dlist_get(&xfer_list);
|
|
while ((thread != NULL) && (num_bytes_read < bytes_to_read)) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_xfer((uint8_t *)data + num_bytes_read,
|
|
bytes_to_read - num_bytes_read,
|
|
desc->buffer, desc->bytes_to_xfer);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/*
|
|
* It is expected that the write request will be satisfied.
|
|
* However, if the read request was satisfied before the
|
|
* write request was satisfied, then the write request must
|
|
* finish later when writing to the pipe's circular buffer.
|
|
*/
|
|
if (num_bytes_read == bytes_to_read) {
|
|
break;
|
|
}
|
|
pipe_thread_ready(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
if ((writer != NULL) && (num_bytes_read < bytes_to_read)) {
|
|
desc = (struct k_pipe_desc *)writer->base.swap_data;
|
|
bytes_copied = pipe_xfer((uint8_t *)data + num_bytes_read,
|
|
bytes_to_read - num_bytes_read,
|
|
desc->buffer, desc->bytes_to_xfer);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
/*
|
|
* Copy as much data as possible from the writers (if any)
|
|
* into the pipe's circular buffer.
|
|
*/
|
|
|
|
while (thread != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_buffer_put(pipe, desc->buffer,
|
|
desc->bytes_to_xfer);
|
|
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/* Write request has been satisfied */
|
|
pipe_thread_ready(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
if (writer != NULL) {
|
|
desc = (struct k_pipe_desc *)writer->base.swap_data;
|
|
bytes_copied = pipe_buffer_put(pipe, desc->buffer,
|
|
desc->bytes_to_xfer);
|
|
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
if (num_bytes_read == bytes_to_read) {
|
|
k_sched_unlock();
|
|
|
|
*bytes_read = num_bytes_read;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)
|
|
&& num_bytes_read >= min_xfer
|
|
&& min_xfer > 0U) {
|
|
k_sched_unlock();
|
|
|
|
*bytes_read = num_bytes_read;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Not all data was read */
|
|
|
|
struct k_pipe_desc pipe_desc;
|
|
|
|
pipe_desc.buffer = (uint8_t *)data + num_bytes_read;
|
|
pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read;
|
|
|
|
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
_current->base.swap_data = &pipe_desc;
|
|
k_spinlock_key_t key2 = k_spin_lock(&pipe->lock);
|
|
|
|
z_sched_unlock_no_reschedule();
|
|
(void)z_pend_curr(&pipe->lock, key2,
|
|
&pipe->wait_q.readers, timeout);
|
|
} else {
|
|
k_sched_unlock();
|
|
}
|
|
|
|
*bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer;
|
|
|
|
int ret = pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer,
|
|
bytes_to_read);
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read));
|
|
|
|
return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_read, bytes_read, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_get_mrsh.c>
|
|
#endif
|
|
|
|
int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
return z_pipe_put_internal(pipe, NULL, data,
|
|
bytes_to_write, bytes_written,
|
|
min_xfer, timeout);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write));
|
|
|
|
return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_write, bytes_written, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_put_mrsh.c>
|
|
#endif
|
|
|
|
size_t z_impl_k_pipe_read_avail(struct k_pipe *pipe)
|
|
{
|
|
size_t res;
|
|
k_spinlock_key_t key;
|
|
|
|
/* Buffer and size are fixed. No need to spin. */
|
|
if (pipe->buffer == NULL || pipe->size == 0U) {
|
|
res = 0;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
|
|
if (pipe->read_index == pipe->write_index) {
|
|
res = pipe->bytes_used;
|
|
} else if (pipe->read_index < pipe->write_index) {
|
|
res = pipe->write_index - pipe->read_index;
|
|
} else {
|
|
res = pipe->size - (pipe->read_index - pipe->write_index);
|
|
}
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
size_t z_vrfy_k_pipe_read_avail(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_read_avail(pipe);
|
|
}
|
|
#include <syscalls/k_pipe_read_avail_mrsh.c>
|
|
#endif
|
|
|
|
size_t z_impl_k_pipe_write_avail(struct k_pipe *pipe)
|
|
{
|
|
size_t res;
|
|
k_spinlock_key_t key;
|
|
|
|
/* Buffer and size are fixed. No need to spin. */
|
|
if (pipe->buffer == NULL || pipe->size == 0U) {
|
|
res = 0;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
|
|
if (pipe->write_index == pipe->read_index) {
|
|
res = pipe->size - pipe->bytes_used;
|
|
} else if (pipe->write_index < pipe->read_index) {
|
|
res = pipe->read_index - pipe->write_index;
|
|
} else {
|
|
res = pipe->size - (pipe->write_index - pipe->read_index);
|
|
}
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
size_t z_vrfy_k_pipe_write_avail(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_write_avail(pipe);
|
|
}
|
|
#include <syscalls/k_pipe_write_avail_mrsh.c>
|
|
#endif
|