zephyr/kernel/init.c
Torsten Rasmussen 25e1b12ec0 kernel: extract __weak main() into independent file
To support arm-ds / armlink it is required that the weak main is located
in an object externally to the object using the weak symbol.

If the weak symbol is inside the object referring to it, then the weak
symbol will be used and this will result in
```
Error: L6200E: Symbol __ARM_use_no_argv multiply defined
    (by init.o and main.o).
```
as both the weak and strong symbols are used.

Signed-off-by: Torsten Rasmussen <Torsten.Rasmussen@nordicsemi.no>
2021-08-28 08:48:03 -04:00

477 lines
12 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel initialization module
*
* This module contains routines that are used to initialize the kernel.
*/
#include <zephyr.h>
#include <offsets_short.h>
#include <kernel.h>
#include <sys/printk.h>
#include <debug/stack.h>
#include <random/rand32.h>
#include <linker/sections.h>
#include <toolchain.h>
#include <kernel_structs.h>
#include <device.h>
#include <init.h>
#include <linker/linker-defs.h>
#include <ksched.h>
#include <string.h>
#include <sys/dlist.h>
#include <kernel_internal.h>
#include <drivers/entropy.h>
#include <logging/log_ctrl.h>
#include <tracing/tracing.h>
#include <stdbool.h>
#include <debug/gcov.h>
#include <kswap.h>
#include <timing/timing.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
/* the only struct z_kernel instance */
struct z_kernel _kernel;
/* init/main and idle threads */
K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
struct k_thread z_main_thread;
#ifdef CONFIG_MULTITHREADING
__pinned_bss
struct k_thread z_idle_threads[CONFIG_MP_NUM_CPUS];
static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
CONFIG_MP_NUM_CPUS,
CONFIG_IDLE_STACK_SIZE);
#endif /* CONFIG_MULTITHREADING */
/*
* storage space for the interrupt stack
*
* Note: This area is used as the system stack during kernel initialization,
* since the kernel hasn't yet set up its own stack areas. The dual purposing
* of this area is safe since interrupts are disabled until the kernel context
* switches to the init thread.
*/
K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
CONFIG_MP_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
#ifdef CONFIG_SYS_CLOCK_EXISTS
#define initialize_timeouts() do { \
sys_dlist_init(&_timeout_q); \
} while (false)
#else
#define initialize_timeouts() do { } while ((0))
#endif
extern void idle(void *unused1, void *unused2, void *unused3);
/* LCOV_EXCL_START
*
* This code is called so early in the boot process that code coverage
* doesn't work properly. In addition, not all arches call this code,
* some like x86 do this with optimized assembly
*/
/**
*
* @brief Clear BSS
*
* This routine clears the BSS region, so all bytes are 0.
*
* @return N/A
*/
__boot_func
void z_bss_zero(void)
{
(void)memset(__bss_start, 0, __bss_end - __bss_start);
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay)
(void)memset(&__ccm_bss_start, 0,
((uint32_t) &__ccm_bss_end - (uint32_t) &__ccm_bss_start));
#endif
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
(void)memset(&__dtcm_bss_start, 0,
((uint32_t) &__dtcm_bss_end - (uint32_t) &__dtcm_bss_start));
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
extern void bss_zeroing_relocation(void);
bss_zeroing_relocation();
#endif /* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_COVERAGE_GCOV
(void)memset(&__gcov_bss_start, 0,
((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
#endif
}
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
/**
* @brief Clear BSS within the bot region
*
* This routine clears the BSS within the boot region.
* This is separate from z_bss_zero() as boot region may
* contain symbols required for the boot process before
* paging is initialized.
*/
__boot_func
void z_bss_zero_boot(void)
{
(void)memset(&lnkr_boot_bss_start, 0,
(uintptr_t)&lnkr_boot_bss_end
- (uintptr_t)&lnkr_boot_bss_start);
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
/**
* @brief Clear BSS within the pinned region
*
* This routine clears the BSS within the pinned region.
* This is separate from z_bss_zero() as pinned region may
* contain symbols required for the boot process before
* paging is initialized.
*/
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
__boot_func
#else
__pinned_func
#endif
void z_bss_zero_pinned(void)
{
(void)memset(&lnkr_pinned_bss_start, 0,
(uintptr_t)&lnkr_pinned_bss_end
- (uintptr_t)&lnkr_pinned_bss_start);
}
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
#ifdef CONFIG_STACK_CANARIES
extern volatile uintptr_t __stack_chk_guard;
#endif /* CONFIG_STACK_CANARIES */
/* LCOV_EXCL_STOP */
__pinned_bss
bool z_sys_post_kernel;
extern void boot_banner(void);
/**
*
* @brief Mainline for kernel's background thread
*
* This routine completes kernel initialization by invoking the remaining
* init functions, then invokes application's main() routine.
*
* @return N/A
*/
__boot_func
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
{
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
ARG_UNUSED(unused3);
#ifdef CONFIG_MMU
/* Invoked here such that backing store or eviction algorithms may
* initialize kernel objects, and that all POST_KERNEL and later tasks
* may perform memory management tasks (except for z_phys_map() which
* is allowed at any time)
*/
z_mem_manage_init();
#endif /* CONFIG_MMU */
z_sys_post_kernel = true;
z_sys_init_run_level(_SYS_INIT_LEVEL_POST_KERNEL);
#if CONFIG_STACK_POINTER_RANDOM
z_stack_adjust_initialized = 1;
#endif
boot_banner();
#if defined(CONFIG_CPLUSPLUS) && !defined(CONFIG_ARCH_POSIX)
void z_cpp_init_static(void);
z_cpp_init_static();
#endif
/* Final init level before app starts */
z_sys_init_run_level(_SYS_INIT_LEVEL_APPLICATION);
z_init_static_threads();
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
#endif
#ifdef CONFIG_SMP
z_smp_init();
z_sys_init_run_level(_SYS_INIT_LEVEL_SMP);
#endif
#ifdef CONFIG_MMU
z_mem_manage_boot_finish();
#endif /* CONFIG_MMU */
extern void main(void);
main();
/* Mark nonessenrial since main() has no more work to do */
z_main_thread.base.user_options &= ~K_ESSENTIAL;
#ifdef CONFIG_COVERAGE_DUMP
/* Dump coverage data once the main() has exited. */
gcov_coverage_dump();
#endif
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
/* LCOV_EXCL_START */
/* LCOV_EXCL_STOP */
#if defined(CONFIG_MULTITHREADING)
__boot_func
static void init_idle_thread(int i)
{
struct k_thread *thread = &z_idle_threads[i];
k_thread_stack_t *stack = z_idle_stacks[i];
#ifdef CONFIG_THREAD_NAME
char tname[8];
snprintk(tname, 8, "idle %02d", i);
#else
char *tname = NULL;
#endif /* CONFIG_THREAD_NAME */
z_setup_new_thread(thread, stack,
CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i],
NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
tname);
z_mark_thread_as_started(thread);
#ifdef CONFIG_SMP
thread->base.is_idle = 1U;
#endif
}
/**
*
* @brief Initializes kernel data structures
*
* This routine initializes various kernel data structures, including
* the init and idle threads and any architecture-specific initialization.
*
* Note that all fields of "_kernel" are set to zero on entry, which may
* be all the initialization many of them require.
*
* @return initial stack pointer for the main thread
*/
__boot_func
static char *prepare_multithreading(void)
{
char *stack_ptr;
/* _kernel.ready_q is all zeroes */
z_sched_init();
#ifndef CONFIG_SMP
/*
* prime the cache with the main thread since:
*
* - the cache can never be NULL
* - the main thread will be the one to run first
* - no other thread is initialized yet and thus their priority fields
* contain garbage, which would prevent the cache loading algorithm
* to work as intended
*/
_kernel.ready_q.cache = &z_main_thread;
#endif
stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
CONFIG_MAIN_STACK_SIZE, bg_thread_main,
NULL, NULL, NULL,
CONFIG_MAIN_THREAD_PRIORITY,
K_ESSENTIAL, "main");
z_mark_thread_as_started(&z_main_thread);
z_ready_thread(&z_main_thread);
for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) {
init_idle_thread(i);
_kernel.cpus[i].idle_thread = &z_idle_threads[i];
_kernel.cpus[i].id = i;
_kernel.cpus[i].irq_stack =
(Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[i]) +
K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[i]));
}
initialize_timeouts();
return stack_ptr;
}
__boot_func
static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
#else
ARG_UNUSED(stack_ptr);
/*
* Context switch to main task (entry function is _main()): the
* current fake thread is not on a wait queue or ready queue, so it
* will never be rescheduled in.
*/
z_swap_unlocked();
#endif
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#endif /* CONFIG_MULTITHREADING */
#if defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR)
__boot_func
void z_early_boot_rand_get(uint8_t *buf, size_t length)
{
int n = sizeof(uint32_t);
#ifdef CONFIG_ENTROPY_HAS_DRIVER
const struct device *entropy = device_get_binding(DT_CHOSEN_ZEPHYR_ENTROPY_LABEL);
int rc;
if (entropy == NULL) {
goto sys_rand_fallback;
}
/* Try to see if driver provides an ISR-specific API */
rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
if (rc == -ENOTSUP) {
/* Driver does not provide an ISR-specific API, assume it can
* be called from ISR context
*/
rc = entropy_get_entropy(entropy, buf, length);
}
if (rc >= 0) {
return;
}
/* Fall through to fallback */
sys_rand_fallback:
#endif
/* FIXME: this assumes sys_rand32_get() won't use any synchronization
* primitive, like semaphores or mutexes. It's too early in the boot
* process to use any of them. Ideally, only the path where entropy
* devices are available should be built, this is only a fallback for
* those devices without a HWRNG entropy driver.
*/
while (length > 0U) {
uint32_t rndbits;
uint8_t *p_rndbits = (uint8_t *)&rndbits;
rndbits = sys_rand32_get();
if (length < sizeof(uint32_t)) {
n = length;
}
for (int i = 0; i < n; i++) {
*buf = *p_rndbits;
buf++;
p_rndbits++;
}
length -= n;
}
}
/* defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) */
#endif
/**
*
* @brief Initialize kernel
*
* This routine is invoked when the system is ready to run C code. The
* processor must be running in 32-bit mode, and the BSS must have been
* cleared/zeroed.
*
* @return Does not return
*/
__boot_func
FUNC_NORETURN void z_cstart(void)
{
/* gcov hook needed to get the coverage report.*/
gcov_static_init();
LOG_CORE_INIT();
/* perform any architecture-specific initialization */
arch_kernel_init();
#if defined(CONFIG_MULTITHREADING)
/* Note: The z_ready_thread() call in prepare_multithreading() requires
* a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y
*/
struct k_thread dummy_thread;
z_dummy_thread_init(&dummy_thread);
#endif
/* do any necessary initialization of static devices */
z_device_state_init();
/* perform basic hardware initialization */
z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_1);
z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_2);
#ifdef CONFIG_STACK_CANARIES
uintptr_t stack_guard;
z_early_boot_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
__stack_chk_guard = stack_guard;
__stack_chk_guard <<= 8;
#endif /* CONFIG_STACK_CANARIES */
#ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
timing_init();
timing_start();
#endif
#ifdef CONFIG_MULTITHREADING
switch_to_main_thread(prepare_multithreading());
#else
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
/* Custom ARCH-specific routine to switch to main()
* in the case of no multi-threading.
*/
ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
NULL, NULL, NULL);
#else
bg_thread_main(NULL, NULL, NULL);
/* LCOV_EXCL_START
* We've already dumped coverage data at this point.
*/
irq_lock();
while (true) {
}
/* LCOV_EXCL_STOP */
#endif
#endif /* CONFIG_MULTITHREADING */
/*
* Compiler can't tell that the above routines won't return and issues
* a warning unless we explicitly tell it that control never gets this
* far.
*/
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}