zephyr/drivers/ieee802154/ieee802154_kw41z.c
Pisit Sawangvonganan 80e1482ddd drivers: ieee802154: set 'ieee802154_radio_api' as 'static const'
This change marks each instance of the 'api' as 'static const'.
The rationale is that 'api' is used for declaring internal
module interfaces and is not intended to be modified at runtime.
By using 'static const', we ensure immutability, leading to usage of only
.rodata and a reduction in the .data area.

Signed-off-by: Pisit Sawangvonganan <pisit@ndrsolution.com>
2024-01-05 09:04:28 +01:00

1134 lines
29 KiB
C

/* ieee802154_kw41z.c - NXP KW41Z driver */
/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kw41z_ieee802154
#define LOG_MODULE_NAME ieee802154_kw41z
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/irq.h>
#include <zephyr/net/ieee802154_radio.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/random/random.h>
#include "fsl_xcvr.h"
#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <zephyr/net/openthread.h>
#endif
/*
* For non-invasive tracing of IRQ events. Sometimes the print logs
* will shift the timings around so this trace buffer can be used to
* post inspect conditions to see what sequence of events occurred.
*/
#define KW41_DBG_TRACE_WTRM 0
#define KW41_DBG_TRACE_RX 1
#define KW41_DBG_TRACE_TX 2
#define KW41_DBG_TRACE_CCA 3
#define KW41_DBG_TRACE_TMR3 0xFF
#if defined(CONFIG_KW41_DBG_TRACE)
#define KW41_DBG_TRACE_SIZE 30
struct kw41_dbg_trace {
uint8_t type;
uint32_t time;
uint32_t irqsts;
uint32_t phy_ctrl;
uint32_t seq_state;
};
struct kw41_dbg_trace kw41_dbg[KW41_DBG_TRACE_SIZE];
int kw41_dbg_idx;
#define KW_DBG_TRACE(_type, _irqsts, _phy_ctrl, _seq_state) \
do { \
kw41_dbg[kw41_dbg_idx].type = (_type); \
kw41_dbg[kw41_dbg_idx].time = \
ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT; \
kw41_dbg[kw41_dbg_idx].irqsts = (_irqsts); \
kw41_dbg[kw41_dbg_idx].phy_ctrl = (_phy_ctrl); \
kw41_dbg[kw41_dbg_idx].seq_state = (_seq_state); \
if (++kw41_dbg_idx == KW41_DBG_TRACE_SIZE) { \
kw41_dbg_idx = 0; \
} \
} while (false)
#else
#define KW_DBG_TRACE(_type, _irqsts, _phy_ctrl, _seq_state)
#endif
#define KW41Z_DEFAULT_CHANNEL 26
#define KW41Z_CCA_TIME 8
#define KW41Z_SHR_PHY_TIME 12
#define KW41Z_PER_BYTE_TIME 2
#define KW41Z_ACK_WAIT_TIME 54
#define KW41Z_PRE_RX_WAIT_TIME 1
#define KW40Z_POST_SEQ_WAIT_TIME 1
#define RADIO_0_IRQ_PRIO 0x0
#define KW41Z_FCS_LENGTH 2
#define KW41Z_PSDU_LENGTH 125
#define KW41Z_OUTPUT_POWER_MAX 4
#define KW41Z_OUTPUT_POWER_MIN (-31)
#define IEEE802154_ACK_LENGTH 5
#define BM_ZLL_IRQSTS_TMRxMSK (ZLL_IRQSTS_TMR1MSK_MASK | \
ZLL_IRQSTS_TMR2MSK_MASK | \
ZLL_IRQSTS_TMR3MSK_MASK | \
ZLL_IRQSTS_TMR4MSK_MASK)
/*
* Clear channel assessment types. Note that there is an extra one when
* bit 26 is included for "No CCA before transmit" if we are handling
* ACK frames but we will let the hardware handle that automatically.
*/
enum {
KW41Z_CCA_ED, /* Energy detect */
KW41Z_CCA_MODE1, /* Energy above threshold */
KW41Z_CCA_MODE2, /* Carrier sense only */
KW41Z_CCA_MODE3 /* Mode 1 + Mode 2 */
};
/*
* KW41Z has a sequencer that can run in any of the following states.
*/
enum {
KW41Z_STATE_IDLE,
KW41Z_STATE_RX,
KW41Z_STATE_TX,
KW41Z_STATE_CCA,
KW41Z_STATE_TXRX,
KW41Z_STATE_CCCA
};
/* Lookup table for PA_PWR register */
static const uint8_t pa_pwr_lt[] = {
1, /* -31.1 dBm: -31 */
2, 2, 2, 2, 2, 2, 2, /* -25.0 dBm: -30, -29, -28, -27, -26, -25 */
4, 4, 4, 4, 4, /* -19.0 dBm: -24, -23, -22, -21, -20, -19 */
6, 6, 6, /* -15.6 dBm: -18, -17, -16 */
8, 8, /* -13.1 dBm: -15, -14 */
10, 10, /* -11.2 dBm: -13, -12 */
12, 12, /* - 9.6 dBm: -11, -10 */
14, /* - 8.3 dBm: -9 */
16, /* - 7.2 dBm: -8 */
18, /* - 6.2 dBm: -7 */
20, /* - 5.3 dBm: -6 */
22, /* - 4.5 dBm: -5 */
24, /* - 3.8 dBm: -4 */
28, /* - 2.5 dBm: -3 */
30, /* - 1.9 dBm: -2 */
34, /* - 1.0 dBm: -1 */
40, /* + 0.3 dBm: 0 */
44, /* + 1.1 dBm: +1 */
50, /* + 2.1 dBm: +2 */
58, /* + 3.1 dBm: +3 */
62 /* + 3.5 dBm: +4 */
};
struct kw41z_context {
struct net_if *iface;
uint8_t mac_addr[8];
struct k_sem seq_sync;
atomic_t seq_retval;
uint32_t rx_warmup_time;
uint32_t tx_warmup_time;
bool frame_pending; /* FP bit state from the most recent ACK frame. */
};
static struct kw41z_context kw41z_context_data;
static inline uint8_t kw41z_get_instant_state(void)
{
return (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) >>
ZLL_SEQ_STATE_SEQ_STATE_SHIFT;
}
static inline uint8_t kw41z_get_seq_state(void)
{
return (ZLL->PHY_CTRL & ZLL_PHY_CTRL_XCVSEQ_MASK) >>
ZLL_PHY_CTRL_XCVSEQ_SHIFT;
}
static inline void kw41z_set_seq_state(uint8_t state)
{
#if CONFIG_SOC_MKW40Z4
/*
* KW40Z seems to require a small delay when switching to IDLE state
* after a programmed sequence is complete.
*/
if (state == KW41Z_STATE_IDLE) {
k_busy_wait(KW40Z_POST_SEQ_WAIT_TIME);
}
#endif
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_XCVSEQ_MASK) |
ZLL_PHY_CTRL_XCVSEQ(state);
}
static inline void kw41z_wait_for_idle(void)
{
uint8_t state = kw41z_get_instant_state();
while (state != KW41Z_STATE_IDLE) {
state = kw41z_get_instant_state();
}
if (state != KW41Z_STATE_IDLE) {
LOG_ERR("Error waiting for idle state");
}
}
static void kw41z_phy_abort(void)
{
unsigned int key;
key = irq_lock();
/* Mask SEQ interrupt */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_SEQMSK_MASK;
/* Disable timer trigger (for scheduled XCVSEQ) */
if (ZLL->PHY_CTRL & ZLL_PHY_CTRL_TMRTRIGEN_MASK) {
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TMRTRIGEN_MASK;
/* give the FSM enough time to start if it was triggered */
while ((XCVR_MISC->XCVR_CTRL &
XCVR_CTRL_XCVR_STATUS_TSM_COUNT_MASK) == 0) {
}
}
/* If XCVR is not idle, abort current SEQ */
if (ZLL->PHY_CTRL & ZLL_PHY_CTRL_XCVSEQ_MASK) {
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_XCVSEQ_MASK;
/* wait for Sequence Idle (if not already) */
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
}
/* Stop timers */
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR1CMP_EN_MASK |
ZLL_PHY_CTRL_TMR2CMP_EN_MASK |
ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK);
/*
* Clear all IRQ bits to avoid unexpected interrupts.
*
* For Coverity, this is a pointer to a register bank and the IRQSTS
* register bits get cleared when a 1 is written to them so doing a
* reg=reg may generate a warning but it is needed to clear the bits.
*/
ZLL->IRQSTS = ZLL->IRQSTS;
irq_unlock(key);
}
static void kw41z_isr_timeout_cleanup(void)
{
uint32_t irqsts;
/*
* Set the PHY sequencer back to IDLE and disable TMR3 comparator
* and timeout
*/
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK |
ZLL_PHY_CTRL_XCVSEQ_MASK);
/* Mask SEQ, RX, TX and CCA interrupts */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
irqsts = ZLL->IRQSTS;
/* Mask TMR3 interrupt */
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
ZLL->IRQSTS = irqsts;
}
static void kw41z_isr_seq_cleanup(void)
{
uint32_t irqsts;
/* Set the PHY sequencer back to IDLE */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_XCVSEQ_MASK;
/* Mask SEQ, RX, TX and CCA interrupts */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
irqsts = ZLL->IRQSTS;
/* Mask TMR3 interrupt */
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
/* Clear transceiver interrupts except TMRxIRQ */
irqsts &= ~(ZLL_IRQSTS_TMR1IRQ_MASK |
ZLL_IRQSTS_TMR2IRQ_MASK |
ZLL_IRQSTS_TMR3IRQ_MASK |
ZLL_IRQSTS_TMR4IRQ_MASK);
ZLL->IRQSTS = irqsts;
}
static inline void kw41z_enable_seq_irq(void)
{
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_SEQMSK_MASK;
}
static inline void kw41z_disable_seq_irq(void)
{
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_SEQMSK_MASK;
}
/*
* Set the T3CMP timer comparator. The 'timeout' value is an offset from
* now.
*/
static void kw41z_tmr3_set_timeout(uint32_t timeout)
{
uint32_t irqsts;
/* Add in the current time so that we can get the comparator to
* match appropriately to our offset time.
*/
timeout += ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT;
/* disable TMR3 compare */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TMR3CMP_EN_MASK;
ZLL->T3CMP = timeout & ZLL_T3CMP_T3CMP_MASK;
/* acknowledge TMR3 IRQ */
irqsts = ZLL->IRQSTS & BM_ZLL_IRQSTS_TMRxMSK;
irqsts |= ZLL_IRQSTS_TMR3IRQ_MASK;
ZLL->IRQSTS = irqsts;
/* enable TMR3 compare and autosequence stop by TC3 match */
ZLL->PHY_CTRL |=
(ZLL_PHY_CTRL_TMR3CMP_EN_MASK | ZLL_PHY_CTRL_TC3TMOUT_MASK);
}
static void kw41z_tmr3_disable(void)
{
uint32_t irqsts;
/*
* disable TMR3 compare and disable autosequence stop by TC3
* match
*/
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK);
/* mask TMR3 interrupt (do not change other IRQ status) */
irqsts = ZLL->IRQSTS & BM_ZLL_IRQSTS_TMRxMSK;
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
/* acknowledge TMR3 IRQ */
irqsts |= ZLL_IRQSTS_TMR3IRQ_MASK;
ZLL->IRQSTS = irqsts;
}
static enum ieee802154_hw_caps kw41z_get_capabilities(const struct device *dev)
{
return IEEE802154_HW_FCS | IEEE802154_HW_FILTER |
IEEE802154_HW_TX_RX_ACK | IEEE802154_HW_RX_TX_ACK;
}
static int kw41z_cca(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
kw41z_phy_abort();
k_sem_init(&kw41z->seq_sync, 0, 1);
kw41z_enable_seq_irq();
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_CCATYPE_MASK) |
ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1);
kw41z_set_seq_state(KW41Z_STATE_CCA);
k_sem_take(&kw41z->seq_sync, K_FOREVER);
return kw41z->seq_retval;
}
static int kw41z_set_channel(const struct device *dev, uint16_t channel)
{
if (channel < 11 || channel > 26) {
return channel < 11 ? -ENOTSUP : -EINVAL;
}
ZLL->CHANNEL_NUM0 = channel;
return 0;
}
static int kw41z_set_pan_id(const struct device *dev, uint16_t pan_id)
{
ZLL->MACSHORTADDRS0 = (ZLL->MACSHORTADDRS0 &
~ZLL_MACSHORTADDRS0_MACPANID0_MASK) |
ZLL_MACSHORTADDRS0_MACPANID0(pan_id);
return 0;
}
static int kw41z_set_short_addr(const struct device *dev, uint16_t short_addr)
{
ZLL->MACSHORTADDRS0 = (ZLL->MACSHORTADDRS0 &
~ZLL_MACSHORTADDRS0_MACSHORTADDRS0_MASK) |
ZLL_MACSHORTADDRS0_MACSHORTADDRS0(short_addr);
return 0;
}
static int kw41z_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
uint32_t val;
memcpy(&val, ieee_addr, sizeof(val));
ZLL->MACLONGADDRS0_LSB = val;
memcpy(&val, ieee_addr + sizeof(val), sizeof(val));
ZLL->MACLONGADDRS0_MSB = val;
return 0;
}
static int kw41z_filter(const struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return kw41z_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return kw41z_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return kw41z_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int kw41z_set_txpower(const struct device *dev, int16_t dbm)
{
if (dbm < KW41Z_OUTPUT_POWER_MIN) {
LOG_INF("TX-power %d dBm below min of %d dBm, using %d dBm",
dbm,
KW41Z_OUTPUT_POWER_MIN,
KW41Z_OUTPUT_POWER_MIN);
dbm = KW41Z_OUTPUT_POWER_MIN;
} else if (dbm > KW41Z_OUTPUT_POWER_MAX) {
LOG_INF("TX-power %d dBm above max of %d dBm, using %d dBm",
dbm,
KW41Z_OUTPUT_POWER_MAX,
KW41Z_OUTPUT_POWER_MAX);
dbm = KW41Z_OUTPUT_POWER_MAX;
}
ZLL->PA_PWR = pa_pwr_lt[dbm - KW41Z_OUTPUT_POWER_MIN];
return 0;
}
static int kw41z_start(const struct device *dev)
{
irq_enable(Radio_1_IRQn);
kw41z_set_seq_state(KW41Z_STATE_RX);
kw41z_enable_seq_irq();
return 0;
}
static int kw41z_stop(const struct device *dev)
{
irq_disable(Radio_1_IRQn);
kw41z_disable_seq_irq();
kw41z_set_seq_state(KW41Z_STATE_IDLE);
return 0;
}
static uint8_t kw41z_convert_lqi(uint8_t hw_lqi)
{
if (hw_lqi >= 220U) {
return 255;
} else {
return (hw_lqi * 51U) / 44;
}
}
static inline void kw41z_rx(struct kw41z_context *kw41z, uint8_t len)
{
struct net_pkt *pkt = NULL;
struct net_buf *buf = NULL;
uint8_t pkt_len, hw_lqi;
int rslt;
LOG_DBG("ENTRY: len: %d", len);
#if defined(CONFIG_NET_L2_OPENTHREAD)
/*
* OpenThread stack expects a receive frame to include the FCS
*/
pkt_len = len;
#else
pkt_len = len - KW41Z_FCS_LENGTH;
#endif
pkt = net_pkt_rx_alloc_with_buffer(kw41z->iface, pkt_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
LOG_ERR("No buf available");
goto out;
}
buf = pkt->buffer;
#if CONFIG_SOC_MKW41Z4
/* PKT_BUFFER_RX needs to be accessed aligned to 16 bits */
for (uint16_t reg_val = 0, i = 0; i < pkt_len; i++) {
if (i % 2 == 0U) {
reg_val = ZLL->PKT_BUFFER_RX[i/2U];
buf->data[i] = reg_val & 0xFF;
} else {
buf->data[i] = reg_val >> 8;
}
}
#else /* CONFIG_SOC_MKW40Z4 */
/* PKT_BUFFER needs to be accessed aligned to 32 bits */
for (uint32_t reg_val = 0, i = 0; i < pkt_len; i++) {
switch (i % 4) {
case 0:
reg_val = ZLL->PKT_BUFFER[i/4U];
buf->data[i] = reg_val & 0xFF;
break;
case 1:
buf->data[i] = (reg_val >> 8) & 0xFF;
break;
case 2:
buf->data[i] = (reg_val >> 16) & 0xFF;
break;
default:
buf->data[i] = reg_val >> 24;
}
}
#endif
net_buf_add(buf, pkt_len);
hw_lqi = (ZLL->LQI_AND_RSSI & ZLL_LQI_AND_RSSI_LQI_VALUE_MASK) >>
ZLL_LQI_AND_RSSI_LQI_VALUE_SHIFT;
net_pkt_set_ieee802154_lqi(pkt, kw41z_convert_lqi(hw_lqi));
/* ToDo: get the rssi as well and use net_pkt_set_ieee802154_rssi() */
rslt = net_recv_data(kw41z->iface, pkt);
if (rslt < 0) {
LOG_ERR("RCV Packet dropped by NET stack: %d", rslt);
goto out;
}
return;
out:
if (pkt) {
net_pkt_unref(pkt);
}
}
#define ACK_FRAME_LEN 3
#define ACK_FRAME_TYPE (2 << 0)
#define ACK_FRAME_PENDING_BIT (1 << 4)
static void handle_ack(struct kw41z_context *kw41z, uint8_t seq_number)
{
struct net_pkt *ack_pkt;
uint8_t ack_psdu[ACK_FRAME_LEN];
ack_pkt = net_pkt_rx_alloc_with_buffer(kw41z->iface, ACK_FRAME_LEN,
AF_UNSPEC, 0, K_NO_WAIT);
if (!ack_pkt) {
LOG_ERR("No free packet available.");
return;
}
/* Re-create ACK frame. */
ack_psdu[0] = kw41z_context_data.frame_pending ?
ACK_FRAME_TYPE | ACK_FRAME_PENDING_BIT : ACK_FRAME_TYPE;
ack_psdu[1] = 0;
ack_psdu[2] = seq_number;
if (net_pkt_write(ack_pkt, ack_psdu, sizeof(ack_psdu)) < 0) {
LOG_ERR("Failed to write to a packet.");
goto out;
}
/* Use some fake values for LQI and RSSI. */
(void)net_pkt_set_ieee802154_lqi(ack_pkt, 80);
(void)net_pkt_set_ieee802154_rssi_dbm(ack_pkt, -40);
net_pkt_cursor_init(ack_pkt);
if (ieee802154_handle_ack(kw41z->iface, ack_pkt) != NET_OK) {
LOG_INF("ACK packet not handled - releasing.");
}
out:
net_pkt_unref(ack_pkt);
}
static int kw41z_tx(const struct device *dev, enum ieee802154_tx_mode mode,
struct net_pkt *pkt, struct net_buf *frag)
{
struct kw41z_context *kw41z = dev->data;
uint8_t payload_len = frag->len;
uint32_t tx_timeout;
uint8_t xcvseq;
unsigned int key;
if (mode != IEEE802154_TX_MODE_DIRECT) {
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
/*
* The transmit requests are preceded by the CCA request. On
* completion of the CCA the sequencer should be in the IDLE
* state.
*/
if (kw41z_get_seq_state() != KW41Z_STATE_IDLE) {
LOG_WRN("Can't initiate new SEQ state");
return -EBUSY;
}
if (payload_len > KW41Z_PSDU_LENGTH) {
LOG_ERR("Payload too long");
return 0;
}
key = irq_lock();
/* Disable the 802.15.4 radio IRQ */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_TRCV_MSK_MASK;
kw41z_disable_seq_irq();
#if CONFIG_SOC_MKW41Z4
((uint8_t *)ZLL->PKT_BUFFER_TX)[0] = payload_len + KW41Z_FCS_LENGTH;
memcpy(((uint8_t *)ZLL->PKT_BUFFER_TX) + 1,
(void *)frag->data, payload_len);
#else /* CONFIG_SOC_MKW40Z4 */
((uint8_t *)ZLL->PKT_BUFFER)[0] = payload_len + KW41Z_FCS_LENGTH;
memcpy(((uint8_t *)ZLL->PKT_BUFFER) + 1,
(void *)frag->data, payload_len);
#endif
/* Set CCA mode */
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_CCATYPE_MASK) |
ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1);
/* Clear all IRQ flags */
ZLL->IRQSTS = ZLL->IRQSTS;
/* Perform automatic reception of ACK frame, if required */
if (ieee802154_is_ar_flag_set(frag)) {
tx_timeout = kw41z->tx_warmup_time + KW41Z_SHR_PHY_TIME +
payload_len * KW41Z_PER_BYTE_TIME + 10 +
KW41Z_ACK_WAIT_TIME;
LOG_DBG("AUTOACK ENABLED: len: %d, timeout: %d, seq: %d",
payload_len, tx_timeout, frag->data[2]);
kw41z_tmr3_set_timeout(tx_timeout);
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_RXACKRQD_MASK;
xcvseq = KW41Z_STATE_TXRX;
} else {
LOG_DBG("AUTOACK DISABLED: len: %d, seq: %d",
payload_len, frag->data[2]);
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_RXACKRQD_MASK;
xcvseq = KW41Z_STATE_TX;
}
kw41z_enable_seq_irq();
/*
* PHY_CTRL is sensitive to multiple writes that can kick off
* the sequencer engine causing TX with AR request to send the
* TX frame multiple times.
*
* To minimize, ensure there is only one write to PHY_CTRL with
* TXRX sequence enable and the 802.15.4 radio IRQ.
*/
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_TRCV_MSK_MASK) | xcvseq;
irq_unlock(key);
k_sem_take(&kw41z->seq_sync, K_FOREVER);
if ((kw41z->seq_retval == 0) && ieee802154_is_ar_flag_set(frag)) {
handle_ack(kw41z, frag->data[2]);
}
LOG_DBG("seq_retval: %ld", kw41z->seq_retval);
return kw41z->seq_retval;
}
static void kw41z_isr(int unused)
{
uint32_t irqsts = ZLL->IRQSTS;
uint8_t state = kw41z_get_seq_state();
uint8_t restart_rx = 1U;
uint32_t rx_len;
/*
* Variable is used in debug output to capture the state of the
* sequencer at interrupt.
*/
uint32_t seq_state = ZLL->SEQ_STATE;
LOG_DBG("ENTRY: irqsts: 0x%08X, PHY_CTRL: 0x%08X, "
"SEQ_STATE: 0x%08X, SEQ_CTRL: 0x%08X, TMR: %d, state: %d",
irqsts, (unsigned int)ZLL->PHY_CTRL,
(unsigned int)seq_state,
(unsigned int)ZLL->SEQ_CTRL_STS,
(unsigned int)(ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT),
state);
/* Clear interrupts */
ZLL->IRQSTS = irqsts;
if (irqsts & ZLL_IRQSTS_FILTERFAIL_IRQ_MASK) {
LOG_DBG("Incoming RX failed packet filtering rules: "
"CODE: 0x%08X, irqsts: 0x%08X, PHY_CTRL: 0x%08X, "
"SEQ_STATE: 0x%08X, state: %d",
(unsigned int)ZLL->FILTERFAIL_CODE,
irqsts,
(unsigned int)ZLL->PHY_CTRL,
(unsigned int)seq_state, state);
restart_rx = 0U;
} else if ((!(ZLL->PHY_CTRL & ZLL_PHY_CTRL_RX_WMRK_MSK_MASK)) &&
(irqsts & ZLL_IRQSTS_RXWTRMRKIRQ_MASK)) {
/*
* There is a bug in the KW41Z where in noisy environments
* the RX sequence can get lost. The watermark mask IRQ can
* start TMR3 to complete the rest of the read or to assert
* IRQ if the sequencer gets lost so we can reset things.
* Note that a TX from the upper layers will also reset
* things so the problem is contained a bit in normal
* operation.
*/
rx_len = (irqsts & ZLL_IRQSTS_RX_FRAME_LENGTH_MASK)
>> ZLL_IRQSTS_RX_FRAME_LENGTH_SHIFT;
KW_DBG_TRACE(KW41_DBG_TRACE_WTRM, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (rx_len > IEEE802154_ACK_LENGTH) {
LOG_DBG("WMRK irq: seq_state: 0x%08x, rx_len: %d",
seq_state, rx_len);
/*
* Assume the RX includes an auto-ACK so set the
* timer to include the RX frame size, crc, IFS,
* and ACK length and convert to symbols.
*
* IFS is 12 symbols
*
* ACK frame is 11 bytes: 4 preamble, 1 start of
* frame, 1 frame length, 2 frame control,
* 1 sequence, 2 FCS. Times two to convert to symbols.
*/
rx_len = rx_len * 2U + 12 + 22 + 2;
kw41z_tmr3_set_timeout(rx_len);
}
restart_rx = 0U;
}
/* Sequence done IRQ */
if ((state != KW41Z_STATE_IDLE) && (irqsts & ZLL_IRQSTS_SEQIRQ_MASK)) {
/*
* PLL unlock, the autosequence has been aborted due to
* PLL unlock
*/
if (irqsts & ZLL_IRQSTS_PLL_UNLOCK_IRQ_MASK) {
LOG_ERR("PLL unlock error");
kw41z_isr_seq_cleanup();
restart_rx = 1U;
}
/*
* TMR3 timeout, the autosequence has been aborted due to
* TMR3 timeout
*/
else if ((irqsts & ZLL_IRQSTS_TMR3IRQ_MASK) &&
(!(irqsts & ZLL_IRQSTS_RXIRQ_MASK)) &&
(state != KW41Z_STATE_TX)) {
LOG_DBG("a) TMR3 timeout: irqsts: 0x%08X, "
"seq_state: 0x%08X, PHY_CTRL: 0x%08X, "
"state: %d",
irqsts, seq_state,
(unsigned int)ZLL->PHY_CTRL, state);
KW_DBG_TRACE(KW41_DBG_TRACE_TMR3, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
kw41z_isr_timeout_cleanup();
restart_rx = 1U;
if (state == KW41Z_STATE_TXRX) {
/* TODO: What is the right error for no ACK? */
atomic_set(&kw41z_context_data.seq_retval,
-EBUSY);
k_sem_give(&kw41z_context_data.seq_sync);
}
} else {
kw41z_isr_seq_cleanup();
switch (state) {
case KW41Z_STATE_RX:
LOG_DBG("RX seq done: SEQ_STATE: 0x%08X",
(unsigned int)seq_state);
KW_DBG_TRACE(KW41_DBG_TRACE_RX, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
kw41z_tmr3_disable();
rx_len = (ZLL->IRQSTS &
ZLL_IRQSTS_RX_FRAME_LENGTH_MASK) >>
ZLL_IRQSTS_RX_FRAME_LENGTH_SHIFT;
if (irqsts & ZLL_IRQSTS_RXIRQ_MASK) {
if (rx_len != 0U) {
kw41z_rx(&kw41z_context_data,
rx_len);
}
}
restart_rx = 1U;
break;
case KW41Z_STATE_TXRX:
LOG_DBG("TXRX seq done");
kw41z_tmr3_disable();
/* Store the frame pending bit status. */
kw41z_context_data.frame_pending =
irqsts & ZLL_IRQSTS_RX_FRM_PEND_MASK;
case KW41Z_STATE_TX:
LOG_DBG("TX seq done");
KW_DBG_TRACE(KW41_DBG_TRACE_TX, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (irqsts & ZLL_IRQSTS_CCA_MASK) {
atomic_set(
&kw41z_context_data.seq_retval,
-EBUSY);
} else {
atomic_set(
&kw41z_context_data.seq_retval,
0);
}
k_sem_give(&kw41z_context_data.seq_sync);
restart_rx = 1U;
break;
case KW41Z_STATE_CCA:
LOG_DBG("CCA seq done");
KW_DBG_TRACE(KW41_DBG_TRACE_CCA, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (irqsts & ZLL_IRQSTS_CCA_MASK) {
atomic_set(
&kw41z_context_data.seq_retval,
-EBUSY);
restart_rx = 1U;
} else {
atomic_set(
&kw41z_context_data.seq_retval,
0);
restart_rx = 0U;
}
k_sem_give(&kw41z_context_data.seq_sync);
break;
default:
LOG_DBG("Unhandled state: %d", state);
restart_rx = 1U;
break;
}
}
} else {
/* Timer 3 Compare Match */
if ((irqsts & ZLL_IRQSTS_TMR3IRQ_MASK) &&
(!(irqsts & ZLL_IRQSTS_TMR3MSK_MASK))) {
LOG_DBG("b) TMR3 timeout: irqsts: 0x%08X, "
"seq_state: 0x%08X, state: %d",
irqsts, seq_state, state);
kw41z_tmr3_disable();
restart_rx = 0U;
if (state != KW41Z_STATE_IDLE) {
kw41z_isr_timeout_cleanup();
restart_rx = 1U;
/* If we are not running an automated
* sequence then handle event. TMR3 can expire
* during Recv/Ack sequence where the transmit
* of the ACK is not being interrupted.
*/
}
}
}
/* Restart RX */
if (restart_rx) {
LOG_DBG("RESET RX");
kw41z_phy_abort();
kw41z_set_seq_state(KW41Z_STATE_RX);
kw41z_enable_seq_irq();
}
}
static inline uint8_t *get_mac(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
/*
* The KW40Z has two 32-bit registers for the MAC address where
* 40 bits of the registers are factory programmed to be unique
* and the rest are to be assigned as the "company-specific" value.
* 802.15.4 defines a EUI-64 64-bit address with company specific
* being 24 or 36 bits with the unique value being 24 or 40 bits.
*
* TODO: Grab from RSIM->MAC_LSB/MAC_MSB for the unique 40 bits
* and how to allow for a OUI portion?
*/
uint32_t *ptr = (uint32_t *)(kw41z->mac_addr);
UNALIGNED_PUT(sys_rand32_get(), ptr);
ptr = (uint32_t *)(kw41z->mac_addr + 4);
UNALIGNED_PUT(sys_rand32_get(), ptr);
/*
* Clear bit 0 to ensure it isn't a multicast address and set
* bit 1 to indicate address is locally administered and may
* not be globally unique.
*/
kw41z->mac_addr[0] = (kw41z->mac_addr[0] & ~0x01) | 0x02;
return kw41z->mac_addr;
}
static int kw41z_init(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
xcvrStatus_t xcvrStatus;
xcvrStatus = XCVR_Init(ZIGBEE_MODE, DR_500KBPS);
if (xcvrStatus != gXcvrSuccess_c) {
return -EIO;
}
/* Disable all timers, enable AUTOACK, mask all interrupts */
ZLL->PHY_CTRL = ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1) |
ZLL_PHY_CTRL_CRC_MSK_MASK |
ZLL_PHY_CTRL_PLL_UNLOCK_MSK_MASK |
/*ZLL_PHY_CTRL_FILTERFAIL_MSK_MASK |*/
ZLL_PHY_CTRL_RX_WMRK_MSK_MASK |
ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_CCABFRTX_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
#if CONFIG_SOC_MKW41Z4
ZLL->PHY_CTRL |= ZLL_IRQSTS_WAKE_IRQ_MASK;
#endif
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_AUTOACK_MASK;
/*
* Clear all PP IRQ bits to avoid unexpected interrupts immediately
* after init disable all timer interrupts
*/
ZLL->IRQSTS = ZLL->IRQSTS;
/* Clear HW indirect queue */
ZLL->SAM_TABLE |= ZLL_SAM_TABLE_INVALIDATE_ALL_MASK;
/* Accept FrameVersion 0 and 1 packets, reject all others */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_PROMISCUOUS_MASK;
ZLL->RX_FRAME_FILTER &= ~ZLL_RX_FRAME_FILTER_FRM_VER_FILTER_MASK;
ZLL->RX_FRAME_FILTER = ZLL_RX_FRAME_FILTER_FRM_VER_FILTER(3) |
ZLL_RX_FRAME_FILTER_CMD_FT_MASK |
ZLL_RX_FRAME_FILTER_DATA_FT_MASK |
ZLL_RX_FRAME_FILTER_ACK_FT_MASK |
ZLL_RX_FRAME_FILTER_BEACON_FT_MASK;
/* Set prescaler to obtain 1 symbol (16us) timebase */
ZLL->TMR_PRESCALE = 0x05;
kw41z_tmr3_disable();
/* Compute warmup times (scaled to 16us) */
kw41z->rx_warmup_time = (XCVR_TSM->END_OF_SEQ &
XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_MASK) >>
XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_SHIFT;
kw41z->tx_warmup_time = (XCVR_TSM->END_OF_SEQ &
XCVR_TSM_END_OF_SEQ_END_OF_TX_WU_MASK) >>
XCVR_TSM_END_OF_SEQ_END_OF_TX_WU_SHIFT;
if (kw41z->rx_warmup_time & 0x0F) {
kw41z->rx_warmup_time = 1 + (kw41z->rx_warmup_time >> 4);
} else {
kw41z->rx_warmup_time = kw41z->rx_warmup_time >> 4;
}
if (kw41z->tx_warmup_time & 0x0F) {
kw41z->tx_warmup_time = 1 + (kw41z->tx_warmup_time >> 4);
} else {
kw41z->tx_warmup_time = kw41z->tx_warmup_time >> 4;
}
/* Set CCA threshold to -75 dBm */
ZLL->CCA_LQI_CTRL &= ~ZLL_CCA_LQI_CTRL_CCA1_THRESH_MASK;
ZLL->CCA_LQI_CTRL |= ZLL_CCA_LQI_CTRL_CCA1_THRESH(0xB5);
/* Set the default power level */
kw41z_set_txpower(dev, 0);
/* Adjust ACK delay to fulfill the 802.15.4 turnaround requirements */
ZLL->ACKDELAY &= ~ZLL_ACKDELAY_ACKDELAY_MASK;
ZLL->ACKDELAY |= ZLL_ACKDELAY_ACKDELAY(-8);
/* Adjust LQI compensation */
ZLL->CCA_LQI_CTRL &= ~ZLL_CCA_LQI_CTRL_LQI_OFFSET_COMP_MASK;
ZLL->CCA_LQI_CTRL |= ZLL_CCA_LQI_CTRL_LQI_OFFSET_COMP(96);
/* Enable the RxWatermark IRQ */
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_RX_WMRK_MSK_MASK);
/* Set Rx watermark level */
ZLL->RX_WTR_MARK = 0;
/* Set default channel to 2405 MHZ */
kw41z_set_channel(dev, KW41Z_DEFAULT_CHANNEL);
/* Unmask Transceiver Global Interrupts */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TRCV_MSK_MASK;
/* Configure Radio IRQ */
NVIC_ClearPendingIRQ(Radio_1_IRQn);
IRQ_CONNECT(Radio_1_IRQn, RADIO_0_IRQ_PRIO, kw41z_isr, 0, 0);
return 0;
}
static void kw41z_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct kw41z_context *kw41z = dev->data;
uint8_t *mac = get_mac(dev);
#if defined(CONFIG_KW41_DBG_TRACE)
kw41_dbg_idx = 0;
#endif
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
kw41z->iface = iface;
ieee802154_init(iface);
}
static int kw41z_configure(const struct device *dev,
enum ieee802154_config_type type,
const struct ieee802154_config *config)
{
return 0;
}
/* driver-allocated attribute memory - constant across all driver instances */
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26);
static int kw41z_attr_get(const struct device *dev, enum ieee802154_attr attr,
struct ieee802154_attr_value *value)
{
ARG_UNUSED(dev);
return ieee802154_attr_get_channel_page_and_range(
attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915,
&drv_attr.phy_supported_channels, value);
}
static const struct ieee802154_radio_api kw41z_radio_api = {
.iface_api.init = kw41z_iface_init,
.get_capabilities = kw41z_get_capabilities,
.cca = kw41z_cca,
.set_channel = kw41z_set_channel,
.filter = kw41z_filter,
.set_txpower = kw41z_set_txpower,
.start = kw41z_start,
.stop = kw41z_stop,
.tx = kw41z_tx,
.configure = kw41z_configure,
.attr_get = kw41z_attr_get,
};
#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU KW41Z_PSDU_LENGTH
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#endif
NET_DEVICE_DT_INST_DEFINE(
0,
kw41z_init, /* Initialization Function */
NULL, /* No PM API support */
&kw41z_context_data, /* Context data */
NULL, /* Configuration info */
CONFIG_IEEE802154_KW41Z_INIT_PRIO, /* Initial priority */
&kw41z_radio_api, /* API interface functions */
L2, /* L2 */
L2_CTX_TYPE, /* L2 context type */
MTU); /* MTU size */