zephyr/subsys/shell/backends/shell_uart.c
Yong Cong Sin f61ce34998 shell: shell_uart: reinstate multi-instance macro
Reinstate the `SHELL_UART_DEFINE` macro and moved the struct
declarations to header file, making it possible to create
another UART shell backend instance by doing
`SHELL_UART_DEFINE()` + `SHELL_DEFINE()` + `shell_init()`.

Signed-off-by: Yong Cong Sin <ycsin@meta.com>
2023-12-06 11:27:20 -08:00

565 lines
15 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/ring_buffer.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/mgmt/mcumgr/transport/smp_shell.h>
#include <zephyr/shell/shell_uart.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/serial/uart_async_rx.h>
#include <zephyr/init.h>
#include <zephyr/logging/log.h>
#include <zephyr/net/buf.h>
#define LOG_MODULE_NAME shell_uart
LOG_MODULE_REGISTER(shell_uart);
#ifdef CONFIG_SHELL_BACKEND_SERIAL_RX_POLL_PERIOD
#define RX_POLL_PERIOD K_MSEC(CONFIG_SHELL_BACKEND_SERIAL_RX_POLL_PERIOD)
#else
#define RX_POLL_PERIOD K_NO_WAIT
#endif
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
NET_BUF_POOL_DEFINE(smp_shell_rx_pool, CONFIG_MCUMGR_TRANSPORT_SHELL_RX_BUF_COUNT,
SMP_SHELL_RX_BUF_SIZE, 0, NULL);
#endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
static void async_callback(const struct device *dev, struct uart_event *evt, void *user_data)
{
struct shell_uart_async *sh_uart = (struct shell_uart_async *)user_data;
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&sh_uart->tx_sem);
break;
case UART_RX_RDY:
uart_async_rx_on_rdy(&sh_uart->async_rx, evt->data.rx.buf, evt->data.rx.len);
sh_uart->common.handler(SHELL_TRANSPORT_EVT_RX_RDY, sh_uart->common.context);
break;
case UART_RX_BUF_REQUEST:
{
uint8_t *buf = uart_async_rx_buf_req(&sh_uart->async_rx);
size_t len = uart_async_rx_get_buf_len(&sh_uart->async_rx);
if (buf) {
int err = uart_rx_buf_rsp(dev, buf, len);
if (err < 0) {
uart_async_rx_on_buf_rel(&sh_uart->async_rx, buf);
}
} else {
atomic_inc(&sh_uart->pending_rx_req);
}
break;
}
case UART_RX_BUF_RELEASED:
uart_async_rx_on_buf_rel(&sh_uart->async_rx, evt->data.rx_buf.buf);
break;
case UART_RX_DISABLED:
break;
default:
break;
};
}
static void uart_rx_handle(const struct device *dev, struct shell_uart_int_driven *sh_uart)
{
uint8_t *data;
uint32_t len;
uint32_t rd_len;
bool new_data = false;
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
struct smp_shell_data *const smp = &sh_uart->common.smp;
#endif
do {
len = ring_buf_put_claim(&sh_uart->rx_ringbuf, &data,
sh_uart->rx_ringbuf.size);
if (len > 0) {
rd_len = uart_fifo_read(dev, data, len);
/* If there is any new data to be either taken into
* ring buffer or consumed by the SMP, signal the
* shell_thread.
*/
if (rd_len > 0) {
new_data = true;
}
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
/* Divert bytes from shell handling if it is
* part of an mcumgr frame.
*/
size_t i = smp_shell_rx_bytes(smp, data, rd_len);
rd_len -= i;
if (rd_len) {
for (uint32_t j = 0; j < rd_len; j++) {
data[j] = data[i + j];
}
}
#endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
int err = ring_buf_put_finish(&sh_uart->rx_ringbuf, rd_len);
(void)err;
__ASSERT_NO_MSG(err == 0);
} else {
uint8_t dummy;
/* No space in the ring buffer - consume byte. */
LOG_WRN("RX ring buffer full.");
rd_len = uart_fifo_read(dev, &dummy, 1);
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
/* If successful in getting byte from the fifo, try
* feeding it to SMP as a part of mcumgr frame.
*/
if ((rd_len != 0) && (smp_shell_rx_bytes(smp, &dummy, 1) == 1)) {
new_data = true;
}
#endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
}
} while (rd_len && (rd_len == len));
if (new_data) {
sh_uart->common.handler(SHELL_TRANSPORT_EVT_RX_RDY, sh_uart->common.context);
}
}
static bool uart_dtr_check(const struct device *dev)
{
BUILD_ASSERT(!IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_CHECK_DTR) ||
IS_ENABLED(CONFIG_UART_LINE_CTRL),
"DTR check requires CONFIG_UART_LINE_CTRL");
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_CHECK_DTR)) {
int dtr, err;
err = uart_line_ctrl_get(dev, UART_LINE_CTRL_DTR, &dtr);
if (err == -ENOSYS || err == -ENOTSUP) {
return true;
}
return dtr;
}
return true;
}
static void dtr_timer_handler(struct k_timer *timer)
{
struct shell_uart_int_driven *sh_uart = k_timer_user_data_get(timer);
if (!uart_dtr_check(sh_uart->common.dev)) {
return;
}
/* DTR is active, stop timer and start TX */
k_timer_stop(timer);
uart_irq_tx_enable(sh_uart->common.dev);
}
static void uart_tx_handle(const struct device *dev, struct shell_uart_int_driven *sh_uart)
{
uint32_t len;
const uint8_t *data;
if (!uart_dtr_check(dev)) {
/* Wait for DTR signal before sending anything to output. */
uart_irq_tx_disable(dev);
k_timer_start(&sh_uart->dtr_timer, K_MSEC(100), K_MSEC(100));
return;
}
len = ring_buf_get_claim(&sh_uart->tx_ringbuf, (uint8_t **)&data,
sh_uart->tx_ringbuf.size);
if (len) {
int err;
len = uart_fifo_fill(dev, data, len);
err = ring_buf_get_finish(&sh_uart->tx_ringbuf, len);
__ASSERT_NO_MSG(err == 0);
ARG_UNUSED(err);
} else {
uart_irq_tx_disable(dev);
sh_uart->tx_busy = 0;
}
sh_uart->common.handler(SHELL_TRANSPORT_EVT_TX_RDY, sh_uart->common.context);
}
static void uart_callback(const struct device *dev, void *user_data)
{
struct shell_uart_int_driven *sh_uart = (struct shell_uart_int_driven *)user_data;
uart_irq_update(dev);
if (uart_irq_rx_ready(dev)) {
uart_rx_handle(dev, sh_uart);
}
if (uart_irq_tx_ready(dev)) {
uart_tx_handle(dev, sh_uart);
}
}
static void irq_init(struct shell_uart_int_driven *sh_uart)
{
const struct device *dev = sh_uart->common.dev;
ring_buf_init(&sh_uart->rx_ringbuf, CONFIG_SHELL_BACKEND_SERIAL_RX_RING_BUFFER_SIZE,
sh_uart->rx_buf);
ring_buf_init(&sh_uart->tx_ringbuf, CONFIG_SHELL_BACKEND_SERIAL_TX_RING_BUFFER_SIZE,
sh_uart->tx_buf);
sh_uart->tx_busy = 0;
uart_irq_callback_user_data_set(dev, uart_callback, (void *)sh_uart);
uart_irq_rx_enable(dev);
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_CHECK_DTR)) {
k_timer_init(&sh_uart->dtr_timer, dtr_timer_handler, NULL);
k_timer_user_data_set(&sh_uart->dtr_timer, (void *)sh_uart);
}
}
static int rx_enable(const struct device *dev, uint8_t *buf, size_t len)
{
return uart_rx_enable(dev, buf, len, 10000);
}
static void async_init(struct shell_uart_async *sh_uart)
{
const struct device *dev = sh_uart->common.dev;
struct uart_async_rx *async_rx = &sh_uart->async_rx;
int err;
sh_uart->async_rx_config = (struct uart_async_rx_config){
.buffer = sh_uart->rx_data,
.length = ASYNC_RX_BUF_SIZE,
.buf_cnt = CONFIG_SHELL_BACKEND_SERIAL_ASYNC_RX_BUFFER_COUNT,
};
k_sem_init(&sh_uart->tx_sem, 0, 1);
err = uart_async_rx_init(async_rx, &sh_uart->async_rx_config);
(void)err;
__ASSERT_NO_MSG(err == 0);
uint8_t *buf = uart_async_rx_buf_req(async_rx);
err = uart_callback_set(dev, async_callback, (void *)sh_uart);
(void)err;
__ASSERT_NO_MSG(err == 0);
err = rx_enable(dev, buf, uart_async_rx_get_buf_len(async_rx));
(void)err;
__ASSERT_NO_MSG(err == 0);
}
static void polling_rx_timeout_handler(struct k_timer *timer)
{
uint8_t c;
struct shell_uart_polling *sh_uart = k_timer_user_data_get(timer);
while (uart_poll_in(sh_uart->common.dev, &c) == 0) {
if (ring_buf_put(&sh_uart->rx_ringbuf, &c, 1) == 0U) {
/* ring buffer full. */
LOG_WRN("RX ring buffer full.");
}
sh_uart->common.handler(SHELL_TRANSPORT_EVT_RX_RDY, sh_uart->common.context);
}
}
static void polling_init(struct shell_uart_polling *sh_uart)
{
k_timer_init(&sh_uart->rx_timer, polling_rx_timeout_handler, NULL);
k_timer_user_data_set(&sh_uart->rx_timer, (void *)sh_uart);
k_timer_start(&sh_uart->rx_timer, RX_POLL_PERIOD, RX_POLL_PERIOD);
ring_buf_init(&sh_uart->rx_ringbuf, CONFIG_SHELL_BACKEND_SERIAL_RX_RING_BUFFER_SIZE,
sh_uart->rx_buf);
}
static int init(const struct shell_transport *transport,
const void *config,
shell_transport_handler_t evt_handler,
void *context)
{
struct shell_uart_common *common = (struct shell_uart_common *)transport->ctx;
common->dev = (const struct device *)config;
common->handler = evt_handler;
common->context = context;
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
common->smp.buf_pool = &smp_shell_rx_pool;
k_fifo_init(&common->smp.buf_ready);
#endif
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_ASYNC)) {
async_init((struct shell_uart_async *)transport->ctx);
} else if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_INTERRUPT_DRIVEN)) {
irq_init((struct shell_uart_int_driven *)transport->ctx);
} else {
polling_init((struct shell_uart_polling *)transport->ctx);
}
return 0;
}
static void irq_uninit(struct shell_uart_int_driven *sh_uart)
{
const struct device *dev = sh_uart->common.dev;
k_timer_stop(&sh_uart->dtr_timer);
uart_irq_tx_disable(dev);
uart_irq_rx_disable(dev);
}
static void async_uninit(struct shell_uart_async *sh_uart)
{
}
static void polling_uninit(struct shell_uart_polling *sh_uart)
{
k_timer_stop(&sh_uart->rx_timer);
}
static int uninit(const struct shell_transport *transport)
{
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_ASYNC)) {
async_uninit((struct shell_uart_async *)transport->ctx);
} else if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_INTERRUPT_DRIVEN)) {
irq_uninit((struct shell_uart_int_driven *)transport->ctx);
} else {
polling_uninit((struct shell_uart_polling *)transport->ctx);
}
return 0;
}
static int enable(const struct shell_transport *transport, bool blocking_tx)
{
struct shell_uart_common *sh_uart = (struct shell_uart_common *)transport->ctx;
sh_uart->blocking_tx = blocking_tx;
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_INTERRUPT_DRIVEN) && blocking_tx) {
uart_irq_tx_disable(sh_uart->dev);
}
return 0;
}
static int polling_write(struct shell_uart_common *sh_uart,
const void *data, size_t length, size_t *cnt)
{
const uint8_t *data8 = (const uint8_t *)data;
for (size_t i = 0; i < length; i++) {
uart_poll_out(sh_uart->dev, data8[i]);
}
*cnt = length;
sh_uart->handler(SHELL_TRANSPORT_EVT_TX_RDY, sh_uart->context);
return 0;
}
static int irq_write(struct shell_uart_int_driven *sh_uart,
const void *data, size_t length, size_t *cnt)
{
*cnt = ring_buf_put(&sh_uart->tx_ringbuf, data, length);
if (atomic_set(&sh_uart->tx_busy, 1) == 0) {
uart_irq_tx_enable(sh_uart->common.dev);
}
return 0;
}
static int async_write(struct shell_uart_async *sh_uart,
const void *data, size_t length, size_t *cnt)
{
int err;
err = uart_tx(sh_uart->common.dev, data, length, SYS_FOREVER_US);
if (err < 0) {
*cnt = 0;
return err;
}
err = k_sem_take(&sh_uart->tx_sem, K_FOREVER);
*cnt = length;
sh_uart->common.handler(SHELL_TRANSPORT_EVT_TX_RDY, sh_uart->common.context);
return err;
}
static int write(const struct shell_transport *transport,
const void *data, size_t length, size_t *cnt)
{
struct shell_uart_common *sh_uart = (struct shell_uart_common *)transport->ctx;
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_POLLING) || sh_uart->blocking_tx) {
return polling_write(sh_uart, data, length, cnt);
} else if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_INTERRUPT_DRIVEN)) {
return irq_write((struct shell_uart_int_driven *)transport->ctx, data, length, cnt);
} else {
return async_write((struct shell_uart_async *)transport->ctx, data, length, cnt);
}
}
static int irq_read(struct shell_uart_int_driven *sh_uart,
void *data, size_t length, size_t *cnt)
{
*cnt = ring_buf_get(&sh_uart->rx_ringbuf, data, length);
return 0;
}
static int polling_read(struct shell_uart_polling *sh_uart,
void *data, size_t length, size_t *cnt)
{
*cnt = ring_buf_get(&sh_uart->rx_ringbuf, data, length);
return 0;
}
static int async_read(struct shell_uart_async *sh_uart,
void *data, size_t length, size_t *cnt)
{
uint8_t *buf;
size_t blen;
struct uart_async_rx *async_rx = &sh_uart->async_rx;
blen = uart_async_rx_data_claim(async_rx, &buf, length);
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
struct smp_shell_data *const smp = &sh_uart->common.smp;
size_t sh_cnt = 0;
for (size_t i = 0; i < blen; i++) {
if (smp_shell_rx_bytes(smp, &buf[i], 1) == 0) {
((uint8_t *)data)[sh_cnt++] = buf[i];
}
}
#else
size_t sh_cnt = blen;
memcpy(data, buf, blen);
#endif
uart_async_rx_data_consume(async_rx, sh_cnt);
*cnt = sh_cnt;
if (sh_uart->pending_rx_req) {
uint8_t *buf = uart_async_rx_buf_req(async_rx);
if (buf) {
int err;
size_t len = uart_async_rx_get_buf_len(async_rx);
atomic_dec(&sh_uart->pending_rx_req);
err = uart_rx_buf_rsp(sh_uart->common.dev, buf, len);
/* If it is too late and RX is disabled then re-enable it. */
if (err < 0) {
if (err == -EACCES) {
sh_uart->pending_rx_req = 0;
err = rx_enable(sh_uart->common.dev, buf, len);
} else {
return err;
}
}
}
}
return 0;
}
static int read(const struct shell_transport *transport,
void *data, size_t length, size_t *cnt)
{
if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_INTERRUPT_DRIVEN)) {
return irq_read((struct shell_uart_int_driven *)transport->ctx, data, length, cnt);
} else if (IS_ENABLED(CONFIG_SHELL_BACKEND_SERIAL_API_ASYNC)) {
return async_read((struct shell_uart_async *)transport->ctx, data, length, cnt);
} else {
return polling_read((struct shell_uart_polling *)transport->ctx, data, length, cnt);
}
}
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
static void update(const struct shell_transport *transport)
{
/*
* This is dependent on the fact that `struct shell_uart_common`
* is always the first member, regardless of the UART configuration
*/
struct shell_uart_common *sh_uart = (struct shell_uart_common *)transport->ctx;
smp_shell_process(&sh_uart->smp);
}
#endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
const struct shell_transport_api shell_uart_transport_api = {
.init = init,
.uninit = uninit,
.enable = enable,
.write = write,
.read = read,
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
.update = update,
#endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
};
SHELL_UART_DEFINE(shell_transport_uart);
SHELL_DEFINE(shell_uart, CONFIG_SHELL_PROMPT_UART, &shell_transport_uart,
CONFIG_SHELL_BACKEND_SERIAL_LOG_MESSAGE_QUEUE_SIZE,
CONFIG_SHELL_BACKEND_SERIAL_LOG_MESSAGE_QUEUE_TIMEOUT,
SHELL_FLAG_OLF_CRLF);
#ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
struct smp_shell_data *shell_uart_smp_shell_data_get_ptr(void)
{
struct shell_uart_common *common = (struct shell_uart_common *)shell_transport_uart.ctx;
return &common->smp;
}
#endif
static int enable_shell_uart(void)
{
const struct device *const dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_shell_uart));
bool log_backend = CONFIG_SHELL_BACKEND_SERIAL_LOG_LEVEL > 0;
uint32_t level =
(CONFIG_SHELL_BACKEND_SERIAL_LOG_LEVEL > LOG_LEVEL_DBG) ?
CONFIG_LOG_MAX_LEVEL : CONFIG_SHELL_BACKEND_SERIAL_LOG_LEVEL;
static const struct shell_backend_config_flags cfg_flags =
SHELL_DEFAULT_BACKEND_CONFIG_FLAGS;
if (!device_is_ready(dev)) {
return -ENODEV;
}
if (IS_ENABLED(CONFIG_MCUMGR_TRANSPORT_SHELL)) {
smp_shell_init();
}
shell_init(&shell_uart, dev, cfg_flags, log_backend, level);
return 0;
}
SYS_INIT(enable_shell_uart, POST_KERNEL,
CONFIG_SHELL_BACKEND_SERIAL_INIT_PRIORITY);
const struct shell *shell_backend_uart_get_ptr(void)
{
return &shell_uart;
}