zephyr/drivers/timer/xtensa_sys_timer.c
Andy Ross 317178b88f sys_clock: Fix unsafe tick count usage
The system tick count is a 64 bit quantity that gets updated from
interrupt context, meaning that it's dangerously non-atomic and has to
be locked.  The core kernel clock code did this right.

But the value was also exposed to the rest of the universe as a global
variable, and virtually nothing else was doing this correctly.  Even
in the timer ISRs themselves, the interrupts may be themselves
preempted (most of our architectures support nested interrupts) by
code that wants to set timeouts and inspect system uptime.

Define a z_tick_{get,set}() API, eliminate the old variable, and make
sure everyone uses the right mechanism.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2018-10-16 15:03:10 -04:00

620 lines
18 KiB
C

/*
* Copyright (c) 2016 Cadence Design Systems, Inc.
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <zephyr/types.h>
#include <system_timer.h>
#include <xtensa_rtos.h>
#include <xtensa_timer.h>
#include <kernel_structs.h>
#include "irq.h"
#include "xtensa_rtos.h"
/*
* This device driver can be also used with an extenal timer instead of
* the internal one that may simply not exist.
* The below macros are used to abstract the timer HW interface assuming that
* it allows implementing them.
* Of course depending on the HW specific requirements, part of the code may
* need to changed. We tried to identify this code and hoghlight it to users.
*
* User shall track the TODO flags and follow the instruction to adapt the code
* according to his HW.
*/
/* Map CCOMPAREn timer number to interrupt number. Really this should
* be a kconfig, but for legacy reasons we honor xtensa_rtos.h config
* instead.
*/
#if XT_TIMER_INDEX == 0
#define TIMER_IRQ XCHAL_TIMER0_INTERRUPT
#elif XT_TIMER_INDEX == 1
#define TIMER_IRQ XCHAL_TIMER1_INTERRUPT
#elif XT_TIMER_INDEX == 2
#define TIMER_IRQ XCHAL_TIMER2_INTERRUPT
#else
#error Unrecognized/unset XT_TIMER_INDEX
#endif
#define MAX_TIMER_CYCLES 0xFFFFFFFF
/* Abstraction macros to access the timer fire time register */
#if CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0)
#define _XT_SR_CCOMPARE(op, idx) XT_##op##SR_CCOMPARE##idx
#define XT_SR_CCOMPARE(op, idx) _XT_SR_CCOMPARE(op, idx)
/* Use XT_TIMER_INDEX to select XT_CHAL macro to access CCOMPAREx register */
#define GET_TIMER_FIRE_TIME(void) XT_SR_CCOMPARE(R, XT_TIMER_INDEX)()
#define SET_TIMER_FIRE_TIME(time) XT_SR_CCOMPARE(W, XT_TIMER_INDEX)(time)
#define GET_TIMER_CURRENT_TIME(void) XT_RSR_CCOUNT()
#define XTENSA_RSR(sr) \
({u32_t v; \
__asm__ volatile ("rsr." #sr " %0" : "=a"(v)); \
v; })
#define XTENSA_WSR(sr, v) \
({__asm__ volatile ("wsr." #sr " %0" :: "a"(v)); })
#ifndef XT_RSR_CCOUNT
#define XT_RSR_CCOUNT() XTENSA_RSR(ccount)
#endif
#ifndef XT_RSR_CCOMPARE0
#define XT_RSR_CCOMPARE0() XTENSA_RSR(ccompare0)
#endif
#ifndef XT_RSR_CCOMPARE1
#define XT_RSR_CCOMPARE1() XTENSA_RSR(ccompare1)
#endif
#ifndef XT_RSR_CCOMPARE2
#define XT_RSR_CCOMPARE2() XTENSA_RSR(ccompare2)
#endif
#ifndef XT_WSR_CCOMPARE0
#define XT_WSR_CCOMPARE0(v) XTENSA_WSR(ccompare0, v)
#endif
#ifndef XT_WSR_CCOMPARE1
#define XT_WSR_CCOMPARE1(v) XTENSA_WSR(ccompare1, v)
#endif
#ifndef XT_WSR_CCOMPARE2
#define XT_WSR_CCOMPARE2(v) XTENSA_WSR(ccompare2, v)
#endif
/* Value underwich, don't program next tick but trigger it immediately. */
#define MIN_TIMER_PROG_DELAY 50
#else /* Case of an external timer which is not emulated by internal timer */
/* TODO: User who wants ot use and external timer should ensure that:
* - CONFIG_XTENSA_INTERNAL_TIMER is unset
* - CONFIG_XTENSA_TIMER_IRQ > 0
* - Macros below are correctly implemented
*/
#define GET_TIMER_FIRE_TIME(void) /* TODO: Implement this case */
#define SET_TIMER_FIRE_TIME(time) /* TODO: Implement this case */
#define GET_TIMER_CURRENT_TIME(void) /* TODO: Implement this case */
/* Value underwich, don't program next tick but trigger it immediately. */
#define MIN_TIMER_PROG_DELAY 50 /* TODO: Update this value */
#endif /* CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0) */
#ifdef CONFIG_TICKLESS_IDLE
#define TIMER_MODE_PERIODIC 0 /* normal running mode */
#define TIMER_MODE_ONE_SHOT 1 /* emulated, since sysTick has 1 mode */
#define IDLE_NOT_TICKLESS 0 /* non-tickless idle mode */
#define IDLE_TICKLESS 1 /* tickless idle mode */
extern s32_t _sys_idle_elapsed_ticks;
static u32_t __noinit cycles_per_tick;
static u32_t __noinit max_system_ticks;
static u32_t idle_original_ticks;
static u32_t __noinit max_load_value;
#ifdef CONFIG_TICKLESS_KERNEL
static u32_t last_timer_value;
#else
static unsigned char timer_mode = TIMER_MODE_PERIODIC;
static unsigned char idle_mode = IDLE_NOT_TICKLESS;
#endif /* CONFIG_TICKLESS_KERNEL */
#ifdef CONFIG_TICKLESS_KERNEL
/* provides total programmed in tick count. */
u32_t _get_program_time(void)
{
return idle_original_ticks;
}
/* Timer Clock Ticks remaining for timer to expire. */
u32_t _get_remaining_program_time(void)
{
u32_t c; /* Current time (time within this function execution) */
u32_t f; /* Idle timer programmed fire time */
u32_t r; /*remaining time to the timer to expire */
if (!idle_original_ticks) {
return 0;
}
f = GET_TIMER_FIRE_TIME();
c = GET_TIMER_CURRENT_TIME();
r = f > c ? (f - c) / cycles_per_tick : 0;
return r;
}
/* Total number of timer ticks passed since last Timer program. */
u32_t _get_elapsed_program_time(void)
{
if (!idle_original_ticks) {
return 0;
}
return (_get_program_time() - _get_remaining_program_time());
}
/* Returns number of clocks Cycles remaining for timer to overflow. */
static inline int32_t _get_max_clock_time(void)
{
u32_t C;
C = GET_TIMER_CURRENT_TIME();
return (MAX_TIMER_CYCLES - C);
}
static inline void _set_max_clock_time(void)
{
unsigned int key;
key = irq_lock();
z_tick_set(_get_elapsed_clock_time());
last_timer_value = GET_TIMER_CURRENT_TIME();
irq_unlock(key);
SET_TIMER_FIRE_TIME(MAX_TIMER_CYCLES); /* Program timer to max value */
}
/*
* This Function does following:-
* 1. Updates expected system ticks equal to time.
* 2. Update kernel time book keeping for time passed since device bootup.
* 3. Calls routine to set interrupt.
*/
void _set_time(u32_t time)
{
u32_t C; /* (current) time */
u32_t F; /* Time to program */
unsigned int key;
if (!time) {
idle_original_ticks = 0;
return;
}
key = irq_lock();
/* Update System Level Ticks Time Keeping */
z_tick_set(_get_elapsed_clock_time());
C = GET_TIMER_CURRENT_TIME();
last_timer_value = C;
irq_unlock(key);
/* Track TICKs to program, this is required at next timer interrupt */
idle_original_ticks = time;
/* Track timer Overflow Case */
if (idle_original_ticks >= (_get_max_clock_time() / cycles_per_tick)) {
F = MAX_TIMER_CYCLES;
idle_original_ticks = (F - C) / cycles_per_tick;
}
/* Calculate tiring time */
F = (C + (idle_original_ticks * cycles_per_tick));
/* Program firing timer */
SET_TIMER_FIRE_TIME(F);
}
/*
* This is used to program Timer clock to maximum Clock cycles in case Clock to
* remain On.
*/
void _enable_sys_clock(void)
{
if (!idle_original_ticks) {
/* Program sys tick to maximum possible value */
_set_time(_get_max_clock_time());
}
}
/* Total number of ticks passed since device bootup. */
u64_t _get_elapsed_clock_time(void)
{
u32_t C;
unsigned int key;
u64_t total;
u32_t elapsed;
key = irq_lock();
C = GET_TIMER_CURRENT_TIME();
elapsed = (last_timer_value <= C) ? (C - last_timer_value) :
(MAX_TIMER_CYCLES - last_timer_value) + C;
total = (z_tick_get() + (elapsed / cycles_per_tick));
irq_unlock(key);
return total;
}
#endif /* CONFIG_TICKLESS_KERNEL */
static ALWAYS_INLINE void tickless_idle_init(void)
{
cycles_per_tick = sys_clock_hw_cycles_per_tick();
/* calculate the max number of ticks with this 32-bit H/W counter */
max_system_ticks = MAX_TIMER_CYCLES / cycles_per_tick;
max_load_value = max_system_ticks * cycles_per_tick;
}
/*
* @brief Place the system timer into idle state
*
* Re-program the timer to enter into the idle state for either the given
* number of ticks or the maximum number of ticks that can be programmed
* into hardware.
*
* @return N/A
*/
void _timer_idle_enter(s32_t ticks)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (idle_original_ticks != K_FOREVER) {
/* Need to reprograme timer if current program is smaller */
if (ticks > idle_original_ticks) {
_set_time(ticks);
}
} else {
idle_original_ticks = 0;
/* Set time to largest possile Timer Tick */
_set_max_clock_time();
}
#else
u32_t P; /* Programming (current) time */
u32_t F; /* Idle timer fire time */
u32_t f; /* Last programmed timer fire time */
if ((ticks == K_FOREVER) || (ticks > max_system_ticks)) {
/*
* The number of cycles until the timer must fire next might
* not fit in the 32-bit counter register. To work around this,
* program the counter to fire in the maximum number of ticks.
*/
idle_original_ticks = max_system_ticks - 1;
} else {
/* Leave one tick margin time to react when coming back */
idle_original_ticks = ticks - 1;
}
/* Set timer to virtual "one shot" mode. */
timer_mode = TIMER_MODE_ONE_SHOT;
idle_mode = IDLE_TICKLESS;
/*
* We're being asked to have the timer fire in "ticks" from now. To
* maintain accuracy we must account for the remaining time left in the
* timer to the next tick to fire, so that the programmed fire time
* corresponds always on a tick bondary.
*/
P = GET_TIMER_CURRENT_TIME();
f = GET_TIMER_FIRE_TIME();
/*
* Get the time of last tick. As we are entring idle mode we are sure
* that |f - P| < cycles_per_tick.
* |-------f----P---|--------|--------|----F---|--------|--------|
* |-------|----P---f--------|--------|----F---|--------|--------|
* P f-----------s--------->F
*/
if (f < P) {
f = f + cycles_per_tick;
}
F = f + idle_original_ticks * cycles_per_tick;
/* Program the timer register to fire at the right time */
SET_TIMER_FIRE_TIME(F);
#endif /* CONFIG_TICKLESS_KERNEL */
}
/**
*
* @brief Handling of tickless idle when interrupted
*
* The routine, called by _sys_power_save_idle_exit, is responsible for taking
* the timer out of idle mode and generating an interrupt at the next
* tick interval. It is expected that interrupts have been disabled.
* Note that in this routine, _sys_idle_elapsed_ticks must be zero because the
* ticker has done its work and consumed all the ticks. This has to be true
* otherwise idle mode wouldn't have been entered in the first place.
*
* @return N/A
*/
void _timer_idle_exit(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (!idle_original_ticks) {
_set_max_clock_time();
}
#else
u32_t C; /* Current time (time within this function execution) */
u32_t F; /* Idle timer programmed fire time */
u32_t s; /* Requested idle timer sleep time */
u32_t e; /* elapsed "Cer time" */
u32_t r; /*reamining time to the timer to expire */
if (timer_mode == TIMER_MODE_PERIODIC) {
/*
* The timer interrupt handler is handling a completed tickless
* idle
* or this has been called by mistake; there's nothing to do
* here.
*/
return;
}
/*
* This is a tricky logic where we use the particularity of unsigned
* integers computation and overflow/underflow to check for timer expiry
* In adddition to above defined variables, let's define following ones:
* P := Programming time (time within _timer_idle_enter execution)
* M := Maximum programmable value (0xFFFFFFFF)
*
* First case:
0----fired---->P-----not fired---->F---------------fired------------M
0 P<------------s-----F M
0 P C<---r-----F M
0 C<---------P-------------r-----F M
0--------------P-------------r-----F C<----------------M
*
* Second case:
0--not fired-->F-------fired------>P--------------not-fired---------M
0--------s-----F P<-------------------------------M
0--------r-----F C<---------P--------------------------------M
0 C<---r-----F P M
0--------r-----F P C<----------------M
*
* On both case, the timer fired when and only when r >= s.
*/
F = GET_TIMER_FIRE_TIME();
s = idle_original_ticks * cycles_per_tick; /* also s = F - P; */
C = GET_TIMER_CURRENT_TIME();
r = F - C;
/*
* Announce elapsed ticks to the kernel. Note we are guaranteed
* that the timer ISR will execute before the tick event is serviced,
* so _sys_idle_elapsed_ticks is adjusted to account for it.
*/
e = s - r; /* also e = (C > P ? C - P : C - P + M); */
_sys_idle_elapsed_ticks = e / cycles_per_tick;
if (r >= s) {
/*
* The timer expired. There is nothing to do for this use case.
* There is no need to reprogram the timer, the interrupt is
* being serviced, and the timer ISR will be called after this
* function returns.
*/
} else {
/*
* System was interrupted before the timer fires.
* Reprogram to fire on tick edge: F := C + (r % cpt).
*/
F = C + (r - _sys_idle_elapsed_ticks * cycles_per_tick);
C = GET_TIMER_CURRENT_TIME(); /* Update current time value */
if (F - C < MIN_TIMER_PROG_DELAY) {
/*
* We are too close to the next tick edge. Let's fire
* it manually and reprogram timer to fire on next one.
*/
F += cycles_per_tick;
_sys_idle_elapsed_ticks += 1;
}
SET_TIMER_FIRE_TIME(F);
}
if (_sys_idle_elapsed_ticks) {
_sys_clock_tick_announce();
}
/* Exit timer idle mode */
idle_mode = IDLE_NOT_TICKLESS;
timer_mode = TIMER_MODE_PERIODIC;
#endif /* CONFIG_TICKLESS_KERNEL */
}
#endif /* CONFIG_TICKLESS_IDLE */
#if CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0)
// Internal timer
extern void _zxt_tick_timer_init(void);
unsigned int _xt_tick_divisor; /* cached number of cycles per tick */
#ifdef CONFIG_XTENSA_ASM2
void _zxt_tick_timer_init(void)
{
int val;
__asm__ volatile("rsr.intenable %0" : "=r"(val));
val |= 1 << TIMER_IRQ;
__asm__ volatile("wsr.intenable %0" : : "r"(val));
__asm__ volatile("rsync");
SET_TIMER_FIRE_TIME(GET_TIMER_CURRENT_TIME() + _xt_tick_divisor);
}
#endif
#ifdef CONFIG_SMP
/**
* @brief Timer initialization for SMP auxiliary CPUs
*
* Called on MP CPUs other than zero. Some architectures appear to
* generate spurious timer interrupts during initialization, so this
* function must be called late in the SMP initialization sequence.
*/
void smp_timer_init(void)
{
_zxt_tick_timer_init();
}
#endif
/*
* Compute and initialize at run-time the tick divisor (the number of
* processor clock cycles in an RTOS tick, used to set the tick timer).
* Called when the processor clock frequency is not known at compile-time.
*/
void _xt_tick_divisor_init(void)
{
#ifdef XT_CLOCK_FREQ
_xt_tick_divisor = (XT_CLOCK_FREQ / XT_TICK_PER_SEC);
#else
#ifdef XT_BOARD
_xt_tick_divisor = xtbsp_clock_freq_hz() / XT_TICK_PER_SEC;
#else
#error "No way to obtain processor clock frequency"
#endif /* XT_BOARD */
#endif /* XT_CLOCK_FREQ */
}
#endif /* CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0) */
/**
*
* @brief System clock tick handler
*
* This routine handles the system clock periodic tick interrupt. It always
* announces one tick by pushing a TICK_EVENT event onto the kernel stack.
*
* @return N/A
*/
void _timer_int_handler(void *params)
{
ARG_UNUSED(params);
#ifdef CONFIG_EXECUTION_BENCHMARKING
extern void read_timer_start_of_tick_handler(void);
read_timer_start_of_tick_handler();
#endif
#ifdef CONFIG_XTENSA_ASM2
/* FIXME: the legacy xtensa code did this in the assembly
* hook, and was a little more sophisticated. We should track
* the delta from the last set time, not the current time.
* And the earlier code was even prepared to handle missed
* ticks by calling the handler function multiple times if the
* delta was more than one _xt_tick_divisor.
*/
SET_TIMER_FIRE_TIME(GET_TIMER_CURRENT_TIME() + _xt_tick_divisor);
#endif
sys_trace_isr_enter();
#ifdef CONFIG_SMP
/* The timer infractructure isn't prepared to handle
* asynchronous timeouts on multiple CPUs. In SMP we use the
* timer interrupt on auxiliary CPUs only for scheduling.
* Don't muck up the timeout math.
*/
if (_arch_curr_cpu()->id) {
return;
}
#endif
#ifdef CONFIG_TICKLESS_KERNEL
if (!idle_original_ticks) {
_set_max_clock_time();
return;
}
_sys_idle_elapsed_ticks = idle_original_ticks;
idle_original_ticks = 0;
/* Anounce elapsed of _sys_idle_elapsed_ticks systicks */
_sys_clock_tick_announce();
/* Program timer incase it is not Prgrammed */
if (!idle_original_ticks) {
_set_max_clock_time();
return;
}
#else
/* Announce the tick event to the kernel. */
_sys_clock_final_tick_announce();
#endif /* CONFIG_TICKLESS_KERNEL */
#ifdef CONFIG_EXECUTION_BENCHMARKING
extern void read_timer_end_of_tick_handler(void);
read_timer_end_of_tick_handler();
#endif
}
/**
*
* @brief Initialize and enable the system clock
*
* This routine is used to program the systick to deliver interrupts at the
* rate specified via the 'sys_clock_us_per_tick' global variable.
*
* @return 0
*/
int _sys_clock_driver_init(struct device *device)
{
IRQ_CONNECT(TIMER_IRQ, 0, _timer_int_handler, 0, 0);
#if CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0)
_xt_tick_divisor_init();
/* Set up periodic tick timer (assume enough time to complete init). */
_zxt_tick_timer_init();
#else /* Case of an external timer which is not emulated by internal timer */
/*
* The code below is just an example code that is provided for Xtensa
* customers as an example of how to support external timers.
* The TODOs are here to tell customer what shall be re-implemented.
* This implementation is not fake, it works with an external timer that
* is provided as a systemC example and that could be plugged by using:
* make run EMU_PLATFORM=xtsc-run.
*
*
* The address below is that of the systemC timer example, provided in
* ${ZEPHYR_BASE}/board/xt-sim/xtsc-models/external-irqs.
* Hopefully, this hard-coded address doesn't conflict with anything
* User needs for sure to rewrite this code to fit his timer.
* I do agree that this hope is unlikely to be satisfied, but users who
* don't have external timer will never hit here, and those who do, will
* for sure modify this code in order to initialize their HW.
*/
/* TODO: Implement this case: remove below code and write yours */
volatile u32_t *p_mmio = (u32_t *) 0xC0000000; /* start HW reg */
u32_t interrupt = 0x00000000;
/* Start the timer: Trigger the interrupt source drivers */
*p_mmio = MAX_TIMER_CYCLES;
*p_mmio = interrupt;
/*
* Code above is example code, it is kept here on purpose to let users
* find all code related to external timer support on the same file.
* They will have to rewrite this anyway.
*
* Code below (enabling timer IRQ) is likely to reamin as is.
*/
/* Enable the interrupt handler */
irq_enable(CONFIG_XTENSA_TIMER_IRQ);
#endif /* CONFIG_XTENSA_INTERNAL_TIMER || (CONFIG_XTENSA_TIMER_IRQ < 0) */
#if CONFIG_TICKLESS_IDLE
tickless_idle_init();
#endif /* CONFIG_TICKLESS_KERNEL */
return 0;
}
/**
*
* @brief Read the platform's timer hardware
*
* This routine returns the current time in terms of timer hardware clock
* cycles.
*
* @return up counter of elapsed clock cycles
*/
u32_t _timer_cycle_get_32(void)
{
return GET_TIMER_CURRENT_TIME();
}