31b25400ff
CC setting algorithm is handling a case when CC is too soon (next tick from now). It was setting CC to one tick further in the future if that was detected. Step was repeated if counter incremented during setting CC and CC was behind the counter because of risk of setting CC too late. In certain scenarios we might spend a lot of time in that loop, especially if optimization is turned off. Test shown that loop was executed dozens of time (up. to 700us). To prevent prolonged execution whenever CC setting fails we set CC to one more tick further in future. Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
652 lines
17 KiB
C
652 lines
17 KiB
C
/*
|
|
* Copyright (c) 2016-2021 Nordic Semiconductor ASA
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/device.h>
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/drivers/timer/nrf_rtc_timer.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <hal/nrf_rtc.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
|
|
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
|
|
|
|
#define RTC NRF_RTC1
|
|
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
|
|
#define RTC_LABEL rtc1
|
|
#define RTC_CH_COUNT RTC1_CC_NUM
|
|
|
|
BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");
|
|
|
|
#define COUNTER_BIT_WIDTH 24U
|
|
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
|
|
#define COUNTER_MAX (COUNTER_SPAN - 1U)
|
|
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
|
|
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
|
|
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
|
|
|
|
#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
|
|
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
|
|
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
|
|
#define TARGET_TIME_INVALID (UINT64_MAX)
|
|
|
|
static volatile uint32_t overflow_cnt;
|
|
static volatile uint64_t anchor;
|
|
static uint64_t last_count;
|
|
|
|
struct z_nrf_rtc_timer_chan_data {
|
|
z_nrf_rtc_timer_compare_handler_t callback;
|
|
void *user_context;
|
|
volatile uint64_t target_time;
|
|
};
|
|
|
|
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
|
|
static atomic_t int_mask;
|
|
static atomic_t alloc_mask;
|
|
static atomic_t force_isr_mask;
|
|
|
|
static uint32_t counter_sub(uint32_t a, uint32_t b)
|
|
{
|
|
return (a - b) & COUNTER_MAX;
|
|
}
|
|
|
|
static void set_comparator(int32_t chan, uint32_t cyc)
|
|
{
|
|
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
|
|
}
|
|
|
|
static uint32_t get_comparator(int32_t chan)
|
|
{
|
|
return nrf_rtc_cc_get(RTC, chan);
|
|
}
|
|
|
|
static void event_clear(int32_t chan)
|
|
{
|
|
nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
|
|
}
|
|
|
|
static void event_enable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static void event_disable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static uint32_t counter(void)
|
|
{
|
|
return nrf_rtc_counter_get(RTC);
|
|
}
|
|
|
|
static uint32_t absolute_time_to_cc(uint64_t absolute_time)
|
|
{
|
|
/* 24 least significant bits represent target CC value */
|
|
return absolute_time & COUNTER_MAX;
|
|
}
|
|
|
|
static uint32_t full_int_lock(void)
|
|
{
|
|
uint32_t mcu_critical_state;
|
|
|
|
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
|
|
mcu_critical_state = __get_PRIMASK();
|
|
__disable_irq();
|
|
} else {
|
|
mcu_critical_state = irq_lock();
|
|
}
|
|
|
|
return mcu_critical_state;
|
|
}
|
|
|
|
static void full_int_unlock(uint32_t mcu_critical_state)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
|
|
__set_PRIMASK(mcu_critical_state);
|
|
} else {
|
|
irq_unlock(mcu_critical_state);
|
|
}
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
|
|
{
|
|
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
if (chan == 0) {
|
|
return 0;
|
|
}
|
|
|
|
nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);
|
|
|
|
return nrf_rtc_task_address_get(RTC, task);
|
|
#else
|
|
ARG_UNUSED(chan);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static bool compare_int_lock(int32_t chan)
|
|
{
|
|
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
|
|
|
|
nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
|
|
__DMB();
|
|
__ISB();
|
|
|
|
return prev & BIT(chan);
|
|
}
|
|
|
|
|
|
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
return compare_int_lock(chan);
|
|
}
|
|
|
|
static void compare_int_unlock(int32_t chan, bool key)
|
|
{
|
|
if (key) {
|
|
atomic_or(&int_mask, BIT(chan));
|
|
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
if (atomic_get(&force_isr_mask) & BIT(chan)) {
|
|
NVIC_SetPendingIRQ(RTC_IRQn);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
compare_int_unlock(chan, key);
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
|
|
return nrf_rtc_cc_get(RTC, chan);
|
|
}
|
|
|
|
uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
|
|
{
|
|
uint64_t curr_time;
|
|
int64_t curr_tick;
|
|
int64_t result;
|
|
int64_t abs_ticks;
|
|
|
|
do {
|
|
curr_time = z_nrf_rtc_timer_read();
|
|
curr_tick = sys_clock_tick_get();
|
|
} while (curr_time != z_nrf_rtc_timer_read());
|
|
|
|
abs_ticks = Z_TICK_ABS(t.ticks);
|
|
if (abs_ticks < 0) {
|
|
/* relative timeout */
|
|
return (t.ticks > COUNTER_SPAN) ?
|
|
-EINVAL : (curr_time + t.ticks);
|
|
}
|
|
|
|
/* absolute timeout */
|
|
result = abs_ticks - curr_tick;
|
|
|
|
if (result > COUNTER_SPAN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return curr_time + result;
|
|
}
|
|
|
|
/** @brief Function safely sets absolute alarm.
|
|
*
|
|
* It assumes that provided value is less than COUNTER_HALF_SPAN from now.
|
|
* It detects late setting and also handle +1 cycle case.
|
|
*
|
|
* @param[in] chan A channel for which a new CC value is to be set.
|
|
*
|
|
* @param[in] abs_val An absolute value of CC register to be set.
|
|
*
|
|
* @returns CC value that was actually set. It is equal to @p abs_val or
|
|
* shifted ahead if @p abs_val was too near in the future (+1 case).
|
|
*/
|
|
static uint32_t set_absolute_alarm(int32_t chan, uint32_t abs_val)
|
|
{
|
|
uint32_t now;
|
|
uint32_t now2;
|
|
uint32_t cc_val = abs_val & COUNTER_MAX;
|
|
uint32_t prev_cc = get_comparator(chan);
|
|
uint32_t tick_inc = 2;
|
|
|
|
do {
|
|
now = counter();
|
|
|
|
/* Handle case when previous event may generate an event.
|
|
* It is handled by setting CC to now (far in the future),
|
|
* in case previous event was set for next tick wait for half
|
|
* LF tick and clear event that may have been generated.
|
|
*/
|
|
set_comparator(chan, now);
|
|
if (counter_sub(prev_cc, now) == 1) {
|
|
/* It should wait for half of RTC tick 15.26us. As
|
|
* busy wait runs from different clock source thus
|
|
* wait longer to cover for discrepancy.
|
|
*/
|
|
k_busy_wait(19);
|
|
}
|
|
|
|
/* RTC may not generate event if CC is set for 1 tick from now.
|
|
* Because of that if requested cc_val is in the past or next tick,
|
|
* set CC to further in future. Start with 2 ticks from now but
|
|
* if that fails go even futher. It may fail if operation got
|
|
* interrupted and RTC counter progressed or if optimization is
|
|
* turned off.
|
|
*/
|
|
if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
|
|
cc_val = now + tick_inc;
|
|
tick_inc++;
|
|
}
|
|
|
|
event_clear(chan);
|
|
event_enable(chan);
|
|
set_comparator(chan, cc_val);
|
|
now2 = counter();
|
|
prev_cc = cc_val;
|
|
/* Rerun the algorithm if counter progressed during execution
|
|
* and cc_val is in the past or one tick from now. In such
|
|
* scenario, it is possible that event will not be generated.
|
|
* Rerunning the algorithm will delay the alarm but ensure that
|
|
* event will be generated at the moment indicated by value in
|
|
* CC register.
|
|
*/
|
|
} while ((now2 != now) &&
|
|
(counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));
|
|
|
|
return cc_val;
|
|
}
|
|
|
|
static int compare_set_nolocks(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
int ret = 0;
|
|
uint32_t cc_value = absolute_time_to_cc(target_time);
|
|
uint64_t curr_time = z_nrf_rtc_timer_read();
|
|
|
|
if (curr_time < target_time) {
|
|
if (target_time - curr_time > COUNTER_SPAN) {
|
|
/* Target time is too distant. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (target_time != cc_data[chan].target_time) {
|
|
/* Target time is valid and is different than currently set.
|
|
* Set CC value.
|
|
*/
|
|
uint32_t cc_set = set_absolute_alarm(chan, cc_value);
|
|
|
|
target_time += counter_sub(cc_set, cc_value);
|
|
}
|
|
} else {
|
|
/* Force ISR handling when exiting from critical section. */
|
|
atomic_or(&force_isr_mask, BIT(chan));
|
|
}
|
|
|
|
cc_data[chan].target_time = target_time;
|
|
cc_data[chan].callback = handler;
|
|
cc_data[chan].user_context = user_data;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int compare_set(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
bool key;
|
|
|
|
key = compare_int_lock(chan);
|
|
|
|
int ret = compare_set_nolocks(chan, target_time, handler, user_data);
|
|
|
|
compare_int_unlock(chan, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
return compare_set(chan, target_time, handler, user_data);
|
|
}
|
|
|
|
void z_nrf_rtc_timer_abort(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
bool key = compare_int_lock(chan);
|
|
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
event_clear(chan);
|
|
event_disable(chan);
|
|
(void)atomic_and(&force_isr_mask, ~BIT(chan));
|
|
|
|
compare_int_unlock(chan, key);
|
|
}
|
|
|
|
uint64_t z_nrf_rtc_timer_read(void)
|
|
{
|
|
uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
|
|
|
|
__DMB();
|
|
|
|
uint32_t cntr = counter();
|
|
|
|
val += cntr;
|
|
|
|
if (cntr < OVERFLOW_RISK_RANGE_END) {
|
|
/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
|
|
* due to possibility that this code preempted overflow interrupt before final write
|
|
* of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
|
|
* `anchor` is considered valid and stable. Because of this timing there is no risk
|
|
* of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
|
|
*/
|
|
if (val < anchor) {
|
|
/* Unhandled overflow, detected, let's add correction */
|
|
val += COUNTER_SPAN;
|
|
}
|
|
} else {
|
|
/* `overflow_cnt` is considered valid and stable in this range, no need to
|
|
* check validity using `anchor`
|
|
*/
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline bool in_anchor_range(uint32_t cc_value)
|
|
{
|
|
return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
|
|
}
|
|
|
|
static inline bool anchor_update(uint32_t cc_value)
|
|
{
|
|
/* Update anchor when far from overflow */
|
|
if (in_anchor_range(cc_value)) {
|
|
/* In this range `overflow_cnt` is considered valid and stable.
|
|
* Write of 64-bit `anchor` is non atomic. However it happens
|
|
* far in time from the moment the `anchor` is read in
|
|
* `z_nrf_rtc_timer_read`.
|
|
*/
|
|
anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void sys_clock_timeout_handler(int32_t chan,
|
|
uint64_t expire_time,
|
|
void *user_data)
|
|
{
|
|
uint32_t cc_value = absolute_time_to_cc(expire_time);
|
|
uint64_t dticks = (expire_time - last_count) / CYC_PER_TICK;
|
|
|
|
last_count += dticks * CYC_PER_TICK;
|
|
|
|
bool anchor_updated = anchor_update(cc_value);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* protection is not needed because we are in the RTC interrupt
|
|
* so it won't get preempted by the interrupt.
|
|
*/
|
|
compare_set(chan, last_count + CYC_PER_TICK,
|
|
sys_clock_timeout_handler, NULL);
|
|
}
|
|
|
|
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
|
|
(int32_t)dticks : (dticks > 0));
|
|
|
|
if (cc_value == get_comparator(chan)) {
|
|
/* New value was not set. Set something that can update anchor.
|
|
* If anchor was updated we can enable same CC value to trigger
|
|
* interrupt after full cycle. Else set event in anchor update
|
|
* range. Since anchor was not updated we know that it's very
|
|
* far from mid point so setting is done without any protection.
|
|
*/
|
|
if (!anchor_updated) {
|
|
set_comparator(chan, COUNTER_HALF_SPAN);
|
|
}
|
|
event_enable(chan);
|
|
}
|
|
}
|
|
|
|
static bool channel_processing_check_and_clear(int32_t chan)
|
|
{
|
|
bool result = false;
|
|
|
|
uint32_t mcu_critical_state = full_int_lock();
|
|
|
|
if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan))) {
|
|
/* The processing of channel can be caused by CC match
|
|
* or be forced.
|
|
*/
|
|
result = atomic_and(&force_isr_mask, ~BIT(chan)) ||
|
|
nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
|
|
|
|
if (result) {
|
|
event_clear(chan);
|
|
}
|
|
}
|
|
|
|
full_int_unlock(mcu_critical_state);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void process_channel(int32_t chan)
|
|
{
|
|
if (channel_processing_check_and_clear(chan)) {
|
|
void *user_context;
|
|
uint32_t mcu_critical_state;
|
|
uint64_t curr_time;
|
|
uint64_t expire_time;
|
|
z_nrf_rtc_timer_compare_handler_t handler = NULL;
|
|
|
|
curr_time = z_nrf_rtc_timer_read();
|
|
|
|
/* This critical section is used to provide atomic access to
|
|
* cc_data structure and prevent higher priority contexts
|
|
* (including ZLIs) from overwriting it.
|
|
*/
|
|
mcu_critical_state = full_int_lock();
|
|
|
|
/* If target_time is in the past or is equal to current time
|
|
* value, execute the handler.
|
|
*/
|
|
expire_time = cc_data[chan].target_time;
|
|
if (curr_time >= expire_time) {
|
|
handler = cc_data[chan].callback;
|
|
user_context = cc_data[chan].user_context;
|
|
cc_data[chan].callback = NULL;
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
event_disable(chan);
|
|
}
|
|
|
|
full_int_unlock(mcu_critical_state);
|
|
|
|
if (handler) {
|
|
handler(chan, expire_time, user_context);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Note: this function has public linkage, and MUST have this
|
|
* particular name. The platform architecture itself doesn't care,
|
|
* but there is a test (tests/arch/arm_irq_vector_table) that needs
|
|
* to find it to it can set it in a custom vector table. Should
|
|
* probably better abstract that at some point (e.g. query and reset
|
|
* it by pointer at runtime, maybe?) so we don't have this leaky
|
|
* symbol.
|
|
*/
|
|
void rtc_nrf_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
|
|
nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
|
|
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
|
|
overflow_cnt++;
|
|
}
|
|
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
process_channel(chan);
|
|
}
|
|
}
|
|
|
|
int32_t z_nrf_rtc_timer_chan_alloc(void)
|
|
{
|
|
int32_t chan;
|
|
atomic_val_t prev;
|
|
do {
|
|
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
|
|
if (chan < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
prev = atomic_and(&alloc_mask, ~BIT(chan));
|
|
} while (!(prev & BIT(chan)));
|
|
|
|
return chan;
|
|
}
|
|
|
|
void z_nrf_rtc_timer_chan_free(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
atomic_or(&alloc_mask, BIT(chan));
|
|
}
|
|
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
uint32_t cyc;
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
|
|
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
|
|
|
|
uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
|
|
|
|
/* If we haven't announced for more than half the 24-bit wrap
|
|
* duration, then force an announce to avoid loss of a wrap
|
|
* event. This can happen if new timeouts keep being set
|
|
* before the existing one triggers the interrupt.
|
|
*/
|
|
if (unannounced >= COUNTER_HALF_SPAN) {
|
|
ticks = 0;
|
|
}
|
|
|
|
/* Get the cycles from last_count to the tick boundary after
|
|
* the requested ticks have passed starting now.
|
|
*/
|
|
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
|
|
cyc += (CYC_PER_TICK - 1);
|
|
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
|
|
|
|
/* Due to elapsed time the calculation above might produce a
|
|
* duration that laps the counter. Don't let it.
|
|
*/
|
|
if (cyc > MAX_CYCLES) {
|
|
cyc = MAX_CYCLES;
|
|
}
|
|
|
|
uint64_t target_time = cyc + last_count;
|
|
|
|
compare_set(0, target_time, sys_clock_timeout_handler, NULL);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
return (uint32_t)z_nrf_rtc_timer_read();
|
|
}
|
|
|
|
static int sys_clock_driver_init(const struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
static const enum nrf_lfclk_start_mode mode =
|
|
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
|
|
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
|
|
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
|
|
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
|
|
CLOCK_CONTROL_NRF_LF_START_STABLE);
|
|
|
|
/* TODO: replace with counter driver to access RTC */
|
|
nrf_rtc_prescaler_set(RTC, 0);
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
|
|
|
|
NVIC_ClearPendingIRQ(RTC_IRQn);
|
|
|
|
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
|
|
rtc_nrf_isr, 0, 0);
|
|
irq_enable(RTC_IRQn);
|
|
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
|
|
|
|
int_mask = BIT_MASK(CHAN_COUNT);
|
|
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
|
|
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
|
|
}
|
|
|
|
uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
|
|
(COUNTER_HALF_SPAN - 1) :
|
|
(counter() + CYC_PER_TICK);
|
|
|
|
compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL);
|
|
|
|
z_nrf_clock_control_lf_on(mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|