zephyr/drivers/serial/uart_pl011.c
TOKITA Hiroshi e678a6247d drivers: serial: rpi_pico: Migrate to pl011 driver
RaspberryPi Pico's UART can be operated with the pl011 driver.
Replace it with this.

Signed-off-by: TOKITA Hiroshi <tokita.hiroshi@gmail.com>
2024-04-10 10:01:25 +02:00

703 lines
19 KiB
C

/*
* Copyright (c) 2018 Linaro Limited
* Copyright (c) 2022 Arm Limited (or its affiliates). All rights reserved.
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT arm_pl011
#define SBSA_COMPAT arm_sbsa_uart
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/init.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/device_mmio.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/irq.h>
#if defined(CONFIG_PINCTRL)
#include <zephyr/drivers/pinctrl.h>
#endif
#if IS_ENABLED(CONFIG_RESET)
#include <zephyr/drivers/reset.h>
#endif
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
#include <zephyr/drivers/clock_control.h>
#endif
#ifdef CONFIG_CPU_CORTEX_M
#include <cmsis_compiler.h>
#endif
#include "uart_pl011_registers.h"
#include "uart_pl011_ambiq.h"
#include "uart_pl011_raspberrypi_pico.h"
struct pl011_config {
DEVICE_MMIO_ROM;
#if defined(CONFIG_PINCTRL)
const struct pinctrl_dev_config *pincfg;
#endif
#if IS_ENABLED(CONFIG_RESET)
const struct reset_dt_spec reset;
#endif
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
const struct device *clock_dev;
clock_control_subsys_t clock_id;
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
#endif
int (*clk_enable_func)(const struct device *dev, uint32_t clk);
int (*pwr_on_func)(void);
};
/* Device data structure */
struct pl011_data {
DEVICE_MMIO_RAM;
struct uart_config uart_cfg;
bool sbsa; /* SBSA mode */
uint32_t clk_freq;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
volatile bool sw_call_txdrdy;
uart_irq_callback_user_data_t irq_cb;
void *irq_cb_data;
#endif
};
static void pl011_enable(const struct device *dev)
{
get_uart(dev)->cr |= PL011_CR_UARTEN;
}
static void pl011_disable(const struct device *dev)
{
get_uart(dev)->cr &= ~PL011_CR_UARTEN;
}
static void pl011_enable_fifo(const struct device *dev)
{
get_uart(dev)->lcr_h |= PL011_LCRH_FEN;
}
static void pl011_disable_fifo(const struct device *dev)
{
get_uart(dev)->lcr_h &= ~PL011_LCRH_FEN;
}
static int pl011_set_baudrate(const struct device *dev,
uint32_t clk, uint32_t baudrate)
{
/* Avoiding float calculations, bauddiv is left shifted by 6 */
uint64_t bauddiv = (((uint64_t)clk) << PL011_FBRD_WIDTH)
/ (baudrate * 16U);
/* Valid bauddiv value
* uart_clk (min) >= 16 x baud_rate (max)
* uart_clk (max) <= 16 x 65535 x baud_rate (min)
*/
if ((bauddiv < (1u << PL011_FBRD_WIDTH))
|| (bauddiv > (65535u << PL011_FBRD_WIDTH))) {
return -EINVAL;
}
get_uart(dev)->ibrd = bauddiv >> PL011_FBRD_WIDTH;
get_uart(dev)->fbrd = bauddiv & ((1u << PL011_FBRD_WIDTH) - 1u);
barrier_dmem_fence_full();
/* In order to internally update the contents of ibrd or fbrd, a
* lcr_h write must always be performed at the end
* ARM DDI 0183F, Pg 3-13
*/
get_uart(dev)->lcr_h = get_uart(dev)->lcr_h;
return 0;
}
static bool pl011_is_readable(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa &&
(!(get_uart(dev)->cr & PL011_CR_UARTEN) || !(get_uart(dev)->cr & PL011_CR_RXE))) {
return false;
}
return (get_uart(dev)->fr & PL011_FR_RXFE) == 0U;
}
static int pl011_poll_in(const struct device *dev, unsigned char *c)
{
if (!pl011_is_readable(dev)) {
return -1;
}
/* got a character */
*c = (unsigned char)get_uart(dev)->dr;
return get_uart(dev)->rsr & PL011_RSR_ERROR_MASK;
}
static void pl011_poll_out(const struct device *dev,
unsigned char c)
{
/* Wait for space in FIFO */
while (get_uart(dev)->fr & PL011_FR_TXFF) {
; /* Wait */
}
/* Send a character */
get_uart(dev)->dr = (uint32_t)c;
}
static int pl011_err_check(const struct device *dev)
{
int errors = 0;
if (get_uart(dev)->rsr & PL011_RSR_ECR_OE) {
errors |= UART_ERROR_OVERRUN;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_BE) {
errors |= UART_BREAK;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_PE) {
errors |= UART_ERROR_PARITY;
}
if (get_uart(dev)->rsr & PL011_RSR_ECR_FE) {
errors |= UART_ERROR_FRAMING;
}
return errors;
}
static int pl011_runtime_configure_internal(const struct device *dev,
const struct uart_config *cfg,
bool disable)
{
struct pl011_data *data = dev->data;
uint32_t lcrh;
int ret = -ENOTSUP;
if (data->sbsa) {
goto out;
}
if (disable) {
pl011_disable(dev);
pl011_disable_fifo(dev);
}
lcrh = get_uart(dev)->lcr_h & ~(PL011_LCRH_FORMAT_MASK | PL011_LCRH_STP2);
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
lcrh &= ~(BIT(1) | BIT(2));
break;
case UART_CFG_PARITY_ODD:
lcrh |= PL011_LCRH_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
lcrh |= PL011_LCRH_PARTIY_EVEN;
break;
default:
goto enable;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
lcrh &= ~(PL011_LCRH_STP2);
break;
case UART_CFG_STOP_BITS_2:
lcrh |= PL011_LCRH_STP2;
break;
default:
goto enable;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
lcrh |= PL011_LCRH_WLEN_SIZE(5) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_6:
lcrh |= PL011_LCRH_WLEN_SIZE(6) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_7:
lcrh |= PL011_LCRH_WLEN_SIZE(7) << PL011_LCRH_WLEN_SHIFT;
break;
case UART_CFG_DATA_BITS_8:
lcrh |= PL011_LCRH_WLEN_SIZE(8) << PL011_LCRH_WLEN_SHIFT;
break;
default:
goto enable;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
break;
default:
goto enable;
}
/* Set baud rate */
ret = pl011_set_baudrate(dev, data->clk_freq, cfg->baudrate);
if (ret != 0) {
goto enable;
}
/* Update settings */
get_uart(dev)->lcr_h = lcrh;
memcpy(&data->uart_cfg, cfg, sizeof(data->uart_cfg));
enable:
if (disable) {
pl011_enable_fifo(dev);
pl011_enable(dev);
}
out:
return ret;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int pl011_runtime_configure(const struct device *dev,
const struct uart_config *cfg)
{
return pl011_runtime_configure_internal(dev, cfg, true);
}
static int pl011_runtime_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct pl011_data *data = dev->data;
*cfg = data->uart_cfg;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int pl011_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int len)
{
uint8_t num_tx = 0U;
while (!(get_uart(dev)->fr & PL011_FR_TXFF) && (len - num_tx > 0)) {
get_uart(dev)->dr = tx_data[num_tx++];
}
return num_tx;
}
static int pl011_fifo_read(const struct device *dev,
uint8_t *rx_data, const int len)
{
uint8_t num_rx = 0U;
while ((len - num_rx > 0) && !(get_uart(dev)->fr & PL011_FR_RXFE)) {
rx_data[num_rx++] = get_uart(dev)->dr;
}
return num_rx;
}
static void pl011_irq_tx_enable(const struct device *dev)
{
struct pl011_data *data = dev->data;
get_uart(dev)->imsc |= PL011_IMSC_TXIM;
if (data->sw_call_txdrdy) {
/* Verify if the callback has been registered */
if (data->irq_cb) {
/*
* Due to HW limitation, the first TX interrupt should
* be triggered by the software.
*
* PL011 TX interrupt is based on a transition through
* a level, rather than on the level itself[1]. So that,
* enable TX interrupt can not trigger TX interrupt if
* no data was filled to TX FIFO at the beginning.
*
* [1]: PrimeCell UART (PL011) Technical Reference Manual
* functional-overview/interrupts
*/
data->irq_cb(dev, data->irq_cb_data);
}
data->sw_call_txdrdy = false;
}
}
static void pl011_irq_tx_disable(const struct device *dev)
{
get_uart(dev)->imsc &= ~PL011_IMSC_TXIM;
}
static int pl011_irq_tx_complete(const struct device *dev)
{
/* Check for UART is busy transmitting data. */
return ((get_uart(dev)->fr & PL011_FR_BUSY) == 0);
}
static int pl011_irq_tx_ready(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa && !(get_uart(dev)->cr & PL011_CR_TXE))
return false;
return ((get_uart(dev)->imsc & PL011_IMSC_TXIM) &&
/* Check for TX interrupt status is set or TX FIFO is empty. */
(get_uart(dev)->ris & PL011_RIS_TXRIS || get_uart(dev)->fr & PL011_FR_TXFE));
}
static void pl011_irq_rx_enable(const struct device *dev)
{
get_uart(dev)->imsc |= PL011_IMSC_RXIM | PL011_IMSC_RTIM;
}
static void pl011_irq_rx_disable(const struct device *dev)
{
get_uart(dev)->imsc &= ~(PL011_IMSC_RXIM | PL011_IMSC_RTIM);
}
static int pl011_irq_rx_ready(const struct device *dev)
{
struct pl011_data *data = dev->data;
if (!data->sbsa && !(get_uart(dev)->cr & PL011_CR_RXE))
return false;
return ((get_uart(dev)->imsc & PL011_IMSC_RXIM) &&
(!(get_uart(dev)->fr & PL011_FR_RXFE)));
}
static void pl011_irq_err_enable(const struct device *dev)
{
/* enable framing, parity, break, and overrun */
get_uart(dev)->imsc |= PL011_IMSC_ERROR_MASK;
}
static void pl011_irq_err_disable(const struct device *dev)
{
get_uart(dev)->imsc &= ~PL011_IMSC_ERROR_MASK;
}
static int pl011_irq_is_pending(const struct device *dev)
{
return pl011_irq_rx_ready(dev) || pl011_irq_tx_ready(dev);
}
static int pl011_irq_update(const struct device *dev)
{
return 1;
}
static void pl011_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct pl011_data *data = dev->data;
data->irq_cb = cb;
data->irq_cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api pl011_driver_api = {
.poll_in = pl011_poll_in,
.poll_out = pl011_poll_out,
.err_check = pl011_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = pl011_runtime_configure,
.config_get = pl011_runtime_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = pl011_fifo_fill,
.fifo_read = pl011_fifo_read,
.irq_tx_enable = pl011_irq_tx_enable,
.irq_tx_disable = pl011_irq_tx_disable,
.irq_tx_ready = pl011_irq_tx_ready,
.irq_rx_enable = pl011_irq_rx_enable,
.irq_rx_disable = pl011_irq_rx_disable,
.irq_tx_complete = pl011_irq_tx_complete,
.irq_rx_ready = pl011_irq_rx_ready,
.irq_err_enable = pl011_irq_err_enable,
.irq_err_disable = pl011_irq_err_disable,
.irq_is_pending = pl011_irq_is_pending,
.irq_update = pl011_irq_update,
.irq_callback_set = pl011_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int pl011_init(const struct device *dev)
{
const struct pl011_config *config = dev->config;
struct pl011_data *data = dev->data;
int ret;
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
#if IS_ENABLED(CONFIG_RESET)
if (config->reset.dev) {
ret = reset_line_toggle_dt(&config->reset);
if (ret) {
return ret;
}
}
#endif
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
if (config->clock_dev) {
clock_control_on(config->clock_dev, config->clock_id);
clock_control_get_rate(config->clock_dev, config->clock_id, &data->clk_freq);
}
#endif
/*
* If working in SBSA mode, we assume that UART is already configured,
* or does not require configuration at all (if UART is emulated by
* virtualization software).
*/
if (!data->sbsa) {
#if defined(CONFIG_PINCTRL)
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
#endif
/* Call vendor-specific function to power on the peripheral */
if (config->pwr_on_func != NULL) {
ret = config->pwr_on_func();
}
/* disable the uart */
pl011_disable(dev);
pl011_disable_fifo(dev);
/* Call vendor-specific function to enable clock for the peripheral */
if (config->clk_enable_func != NULL) {
ret = config->clk_enable_func(dev, data->clk_freq);
if (ret) {
return ret;
}
}
pl011_runtime_configure_internal(dev, &data->uart_cfg, false);
/* Setting transmit and receive interrupt FIFO level */
get_uart(dev)->ifls = FIELD_PREP(PL011_IFLS_TXIFLSEL_M, TXIFLSEL_1_8_FULL)
| FIELD_PREP(PL011_IFLS_RXIFLSEL_M, RXIFLSEL_1_2_FULL);
/* Enabling the FIFOs */
pl011_enable_fifo(dev);
}
/* initialize all IRQs as masked */
get_uart(dev)->imsc = 0U;
get_uart(dev)->icr = PL011_IMSC_MASK_ALL;
if (!data->sbsa) {
get_uart(dev)->dmacr = 0U;
barrier_isync_fence_full();
get_uart(dev)->cr &= ~(BIT(14) | BIT(15) | BIT(1));
get_uart(dev)->cr |= PL011_CR_RXE | PL011_CR_TXE;
barrier_isync_fence_full();
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
data->sw_call_txdrdy = true;
#endif
if (!data->sbsa) {
pl011_enable(dev);
}
return 0;
}
#define COMPAT_SPECIFIC_FUNC_NAME(prefix, name) _CONCAT(_CONCAT(prefix, name), _)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to pwr_on_ambiq_uart_[n].
*/
#define COMPAT_SPECIFIC_PWR_ON_FUNC(n) \
_CONCAT(COMPAT_SPECIFIC_FUNC_NAME(pwr_on_, DT_INST_STRING_TOKEN_BY_IDX(n, compatible, 0)), \
n)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to clk_enable_ambiq_uart_[n].
*/
#define COMPAT_SPECIFIC_CLK_ENABLE_FUNC(n) \
_CONCAT(COMPAT_SPECIFIC_FUNC_NAME(clk_enable_, \
DT_INST_STRING_TOKEN_BY_IDX(n, compatible, 0)), n)
/*
* The first element of compatible is used to determine the type.
* When compatible defines as "ambiq,uart", "arm,pl011",
* this macro expands to AMBIQ_UART_DEFINE(n).
*/
#define COMPAT_SPECIFIC_DEFINE(n) \
_CONCAT(DT_INST_STRING_UPPER_TOKEN_BY_IDX(n, compatible, 0), _DEFINE)(n)
#define COMPAT_SPECIFIC_CLOCK_CTLR_SUBSYS_CELL(n) \
_CONCAT(DT_INST_STRING_UPPER_TOKEN_BY_IDX(n, compatible, 0), _CLOCK_CTLR_SUBSYS_CELL)
#if defined(CONFIG_PINCTRL)
#define PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n);
#define PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),
#else
#define PINCTRL_DEFINE(n)
#define PINCTRL_INIT(n)
#endif /* CONFIG_PINCTRL */
#if IS_ENABLED(CONFIG_RESET)
#define RESET_INIT(n) \
IF_ENABLED(DT_INST_NODE_HAS_PROP(0, resets), (.reset = RESET_DT_SPEC_INST_GET(n),))
#else
#define RESET_INIT(n)
#endif
#define CLOCK_INIT(n) \
COND_CODE_1(DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(n), fixed_clock), (), \
(.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_id = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, \
COMPAT_SPECIFIC_CLOCK_CTLR_SUBSYS_CELL(n)),))
#define ARM_PL011_DEFINE(n) \
static inline int pwr_on_arm_pl011_##n(void) \
{ \
return 0; \
} \
static inline int clk_enable_arm_pl011_##n(const struct device *dev, uint32_t clk) \
{ \
return 0; \
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void pl011_isr(const struct device *dev)
{
struct pl011_data *data = dev->data;
/* Verify if the callback has been registered */
if (data->irq_cb) {
data->irq_cb(dev, data->irq_cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define PL011_IRQ_CONFIG_FUNC_BODY(n, prop, i) \
{ \
IRQ_CONNECT(DT_IRQ_BY_IDX(n, i, irq), \
DT_IRQ_BY_IDX(n, i, priority), \
pl011_isr, \
DEVICE_DT_GET(n), \
0); \
irq_enable(DT_IRQ_BY_IDX(n, i, irq)); \
}
#define PL011_CONFIG_PORT(n) \
static void pl011_irq_config_func_##n(const struct device *dev) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, \
PL011_IRQ_CONFIG_FUNC_BODY) \
}; \
\
static struct pl011_config pl011_cfg_port_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
CLOCK_INIT(n) \
PINCTRL_INIT(n) \
.irq_config_func = pl011_irq_config_func_##n, \
.clk_enable_func = COMPAT_SPECIFIC_CLK_ENABLE_FUNC(n), \
.pwr_on_func = COMPAT_SPECIFIC_PWR_ON_FUNC(n), \
};
#else
#define PL011_CONFIG_PORT(n) \
static struct pl011_config pl011_cfg_port_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
CLOCK_INIT(n) \
PINCTRL_INIT(n) \
};
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define PL011_INIT(n) \
PINCTRL_DEFINE(n) \
COMPAT_SPECIFIC_DEFINE(n) \
PL011_CONFIG_PORT(n) \
\
static struct pl011_data pl011_data_port_##n = { \
.uart_cfg = { \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
.flow_ctrl = UART_CFG_FLOW_CTRL_NONE, \
}, \
.clk_freq = COND_CODE_1( \
DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(n), fixed_clock), \
(DT_INST_PROP_BY_PHANDLE(n, clocks, clock_frequency)), (0)), \
}; \
\
DEVICE_DT_INST_DEFINE(n, &pl011_init, \
NULL, \
&pl011_data_port_##n, \
&pl011_cfg_port_##n, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&pl011_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PL011_INIT)
#ifdef CONFIG_UART_PL011_SBSA
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT SBSA_COMPAT
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define PL011_SBSA_CONFIG_PORT(n) \
static void pl011_irq_config_func_sbsa_##n(const struct device *dev) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, \
PL011_IRQ_CONFIG_FUNC_BODY) \
}; \
\
static struct pl011_config pl011_cfg_sbsa_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
.irq_config_func = pl011_irq_config_func_sbsa_##n, \
};
#else
#define PL011_SBSA_CONFIG_PORT(n) \
static struct pl011_config pl011_cfg_sbsa_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
};
#endif
#define PL011_SBSA_INIT(n) \
PL011_SBSA_CONFIG_PORT(n) \
\
static struct pl011_data pl011_data_sbsa_##n = { \
.sbsa = true, \
}; \
\
DEVICE_DT_INST_DEFINE(n, &pl011_init, \
NULL, \
&pl011_data_sbsa_##n, \
&pl011_cfg_sbsa_##n, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&pl011_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PL011_SBSA_INIT)
#endif /* CONFIG_UART_PL011_SBSA */