zephyr/drivers/timer/riscv_machine_timer.c
Gerard Marull-Paretas a5fd0d184a init: remove the need for a dummy device pointer in SYS_INIT functions
The init infrastructure, found in `init.h`, is currently used by:

- `SYS_INIT`: to call functions before `main`
- `DEVICE_*`: to initialize devices

They are all sorted according to an initialization level + a priority.
`SYS_INIT` calls are really orthogonal to devices, however, the required
function signature requires a `const struct device *dev` as a first
argument. The only reason for that is because the same init machinery is
used by devices, so we have something like:

```c
struct init_entry {
	int (*init)(const struct device *dev);
	/* only set by DEVICE_*, otherwise NULL */
	const struct device *dev;
}
```

As a result, we end up with such weird/ugly pattern:

```c
static int my_init(const struct device *dev)
{
	/* always NULL! add ARG_UNUSED to avoid compiler warning */
	ARG_UNUSED(dev);
	...
}
```

This is really a result of poor internals isolation. This patch proposes
a to make init entries more flexible so that they can accept sytem
initialization calls like this:

```c
static int my_init(void)
{
	...
}
```

This is achieved using a union:

```c
union init_function {
	/* for SYS_INIT, used when init_entry.dev == NULL */
	int (*sys)(void);
	/* for DEVICE*, used when init_entry.dev != NULL */
	int (*dev)(const struct device *dev);
};

struct init_entry {
	/* stores init function (either for SYS_INIT or DEVICE*)
	union init_function init_fn;
	/* stores device pointer for DEVICE*, NULL for SYS_INIT. Allows
	 * to know which union entry to call.
	 */
	const struct device *dev;
}
```

This solution **does not increase ROM usage**, and allows to offer clean
public APIs for both SYS_INIT and DEVICE*. Note that however, init
machinery keeps a coupling with devices.

**NOTE**: This is a breaking change! All `SYS_INIT` functions will need
to be converted to the new signature. See the script offered in the
following commit.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>

init: convert SYS_INIT functions to the new signature

Conversion scripted using scripts/utils/migrate_sys_init.py.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>

manifest: update projects for SYS_INIT changes

Update modules with updated SYS_INIT calls:

- hal_ti
- lvgl
- sof
- TraceRecorderSource

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>

tests: devicetree: devices: adjust test

Adjust test according to the recently introduced SYS_INIT
infrastructure.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>

tests: kernel: threads: adjust SYS_INIT call

Adjust to the new signature: int (*init_fn)(void);

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2023-04-12 14:28:07 +00:00

246 lines
6.2 KiB
C

/*
* Copyright (c) 2018-2023 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <limits.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
/* andestech,machine-timer */
#if DT_HAS_COMPAT_STATUS_OKAY(andestech_machine_timer)
#define DT_DRV_COMPAT andestech_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* neorv32-machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(neorv32_machine_timer)
#define DT_DRV_COMPAT neorv32_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* nuclei,systimer */
#elif DT_HAS_COMPAT_STATUS_OKAY(nuclei_systimer)
#define DT_DRV_COMPAT nuclei_systimer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* sifive,clint0 */
#elif DT_HAS_COMPAT_STATUS_OKAY(sifive_clint0)
#define DT_DRV_COMPAT sifive_clint0
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0xbff8U)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x4000U)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* telink,machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(telink_machine_timer)
#define DT_DRV_COMPAT telink_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* lowrisc,machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(lowrisc_machine_timer)
#define DT_DRV_COMPAT lowrisc_machine_timer
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0x110)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x118)
#define TIMER_IRQN DT_INST_IRQN(0)
/* niosv-machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(niosv_machine_timer)
#define DT_DRV_COMPAT niosv_machine_timer
#define MTIMECMP_REG DT_INST_REG_ADDR(0)
#define MTIME_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* scr,machine-timer*/
#elif DT_HAS_COMPAT_STATUS_OKAY(scr_machine_timer)
#define DT_DRV_COMPAT scr_machine_timer
#define MTIMER_HAS_DIVIDER
#define MTIMEDIV_REG (DT_INST_REG_ADDR(0) + 4)
#define MTIME_REG (DT_INST_REG_ADDR(0) + 8)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 16)
#define TIMER_IRQN DT_INST_IRQN(0)
#endif
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* the unsigned long cast limits divisions to native CPU register width */
#define cycle_diff_t unsigned long
static struct k_spinlock lock;
static uint64_t last_count;
static uint64_t last_ticks;
static uint32_t last_elapsed;
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = TIMER_IRQN;
#endif
static uintptr_t get_hart_mtimecmp(void)
{
return MTIMECMP_REG + (arch_proc_id() * 8);
}
static void set_mtimecmp(uint64_t time)
{
#ifdef CONFIG_64BIT
*(volatile uint64_t *)get_hart_mtimecmp() = time;
#else
volatile uint32_t *r = (uint32_t *)get_hart_mtimecmp();
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
* but are NOT internally latched for multiword transfers. So
* we have to be careful about sequencing to avoid triggering
* spurious interrupts: always set the high word to a max
* value first.
*/
r[1] = 0xffffffff;
r[0] = (uint32_t)time;
r[1] = (uint32_t)(time >> 32);
#endif
}
static void set_divider(void)
{
#ifdef MTIMER_HAS_DIVIDER
*(volatile uint32_t *)MTIMEDIV_REG =
CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
#endif
}
static uint64_t mtime(void)
{
#ifdef CONFIG_64BIT
return *(volatile uint64_t *)MTIME_REG;
#else
volatile uint32_t *r = (uint32_t *)MTIME_REG;
uint32_t lo, hi;
/* Likewise, must guard against rollover when reading */
do {
hi = r[1];
lo = r[0];
} while (r[1] != hi);
return (((uint64_t)hi) << 32) | lo;
#endif
}
static void timer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint64_t dcycles = now - last_count;
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
last_count += (cycle_diff_t)dticks * CYC_PER_TICK;
last_ticks += dticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next = last_count + CYC_PER_TICK;
set_mtimecmp(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (ticks == K_TICKS_FOREVER) {
set_mtimecmp(UINT64_MAX);
return;
}
/*
* Clamp the max period length to a number of cycles that can fit
* in half the range of a cycle_diff_t for native width divisions
* to be usable elsewhere. Also clamp it to half the range of an
* int32_t as this is the type used for elapsed tick announcements.
* The half range gives us extra room to cope with the unavoidable IRQ
* servicing latency. The compiler should optimize away the least
* restrictive of those tests automatically.
*/
ticks = CLAMP(ticks, 0, (cycle_diff_t)-1 / 2 / CYC_PER_TICK);
ticks = CLAMP(ticks, 0, INT32_MAX / 2);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t cyc = (last_ticks + last_elapsed + ticks) * CYC_PER_TICK;
set_mtimecmp(cyc);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint64_t dcycles = now - last_count;
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
last_elapsed = dticks;
k_spin_unlock(&lock, key);
return dticks;
}
uint32_t sys_clock_cycle_get_32(void)
{
return ((uint32_t)mtime()) << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
}
uint64_t sys_clock_cycle_get_64(void)
{
return mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
}
static int sys_clock_driver_init(void)
{
set_divider();
IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0);
last_ticks = mtime() / CYC_PER_TICK;
last_count = last_ticks * CYC_PER_TICK;
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
return 0;
}
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
}
#endif
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);