8eceeee798
Introduce a new API to allow devices capable of wake up the system register themselves was wake up sources. This permits applications to select the most appropriate way to wake up the system when it is suspended. Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
766 lines
25 KiB
C
766 lines
25 KiB
C
/*
|
|
* Copyright (c) 2015 Intel Corporation.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#ifndef ZEPHYR_INCLUDE_DEVICE_H_
|
|
#define ZEPHYR_INCLUDE_DEVICE_H_
|
|
|
|
/**
|
|
* @brief Device Driver APIs
|
|
* @defgroup io_interfaces Device Driver APIs
|
|
* @{
|
|
* @}
|
|
*/
|
|
/**
|
|
* @brief Miscellaneous Drivers APIs
|
|
* @defgroup misc_interfaces Miscellaneous Drivers APIs
|
|
* @ingroup io_interfaces
|
|
* @{
|
|
* @}
|
|
*/
|
|
/**
|
|
* @brief Device Model APIs
|
|
* @defgroup device_model Device Model APIs
|
|
* @{
|
|
*/
|
|
|
|
#include <init.h>
|
|
#include <pm/device.h>
|
|
#include <sys/device_mmio.h>
|
|
#include <sys/util.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/** @brief Type used to represent devices and functions.
|
|
*
|
|
* The extreme values and zero have special significance. Negative
|
|
* values identify functionality that does not correspond to a Zephyr
|
|
* device, such as the system clock or a SYS_INIT() function.
|
|
*/
|
|
typedef int16_t device_handle_t;
|
|
|
|
/** @brief Flag value used in lists of device handles to separate
|
|
* distinct groups.
|
|
*
|
|
* This is the minimum value for the device_handle_t type.
|
|
*/
|
|
#define DEVICE_HANDLE_SEP INT16_MIN
|
|
|
|
/** @brief Flag value used in lists of device handles to indicate the
|
|
* end of the list.
|
|
*
|
|
* This is the maximum value for the device_handle_t type.
|
|
*/
|
|
#define DEVICE_HANDLE_ENDS INT16_MAX
|
|
|
|
/** @brief Flag value used to identify an unknown device. */
|
|
#define DEVICE_HANDLE_NULL 0
|
|
|
|
#define Z_DEVICE_MAX_NAME_LEN 48
|
|
|
|
/**
|
|
* @def DEVICE_NAME_GET
|
|
*
|
|
* @brief Expands to the full name of a global device object
|
|
*
|
|
* @details Return the full name of a device object symbol created by
|
|
* DEVICE_DEFINE(), using the dev_name provided to DEVICE_DEFINE().
|
|
*
|
|
* It is meant to be used for declaring extern symbols pointing on device
|
|
* objects before using the DEVICE_GET macro to get the device object.
|
|
*
|
|
* @param name The same as dev_name provided to DEVICE_DEFINE()
|
|
*
|
|
* @return The expanded name of the device object created by DEVICE_DEFINE()
|
|
*/
|
|
#define DEVICE_NAME_GET(name) _CONCAT(__device_, name)
|
|
|
|
/**
|
|
* @def SYS_DEVICE_DEFINE
|
|
*
|
|
* @brief Run an initialization function at boot at specified priority,
|
|
* and define device PM control function.
|
|
*
|
|
* @details Invokes DEVICE_DEFINE() with no power management support
|
|
* (@p pm_control_fn), no API (@p api_ptr), and a device name derived from
|
|
* the @p init_fn name (@p dev_name).
|
|
*/
|
|
#define SYS_DEVICE_DEFINE(drv_name, init_fn, pm_control_fn, level, prio) \
|
|
DEVICE_DEFINE(Z_SYS_NAME(init_fn), drv_name, init_fn, \
|
|
pm_control_fn, \
|
|
NULL, NULL, level, prio, NULL)
|
|
|
|
/**
|
|
* @def DEVICE_DEFINE
|
|
*
|
|
* @brief Create device object and set it up for boot time initialization,
|
|
* with the option to pm_control. In case of Device Idle Power
|
|
* Management is enabled, make sure the device is in suspended state after
|
|
* initialization.
|
|
*
|
|
* @details This macro defines a device object that is automatically
|
|
* configured by the kernel during system initialization. Note that
|
|
* devices set up with this macro will not be accessible from user mode
|
|
* since the API is not specified;
|
|
*
|
|
* @param dev_name Device name. This must be less than Z_DEVICE_MAX_NAME_LEN
|
|
* characters (including terminating NUL) in order to be looked up from user
|
|
* mode with device_get_binding().
|
|
*
|
|
* @param drv_name The name this instance of the driver exposes to
|
|
* the system.
|
|
*
|
|
* @param init_fn Address to the init function of the driver.
|
|
*
|
|
* @param pm_control_fn Pointer to pm_control function.
|
|
* Can be NULL if not implemented.
|
|
*
|
|
* @param data_ptr Pointer to the device's private data.
|
|
*
|
|
* @param cfg_ptr The address to the structure containing the
|
|
* configuration information for this instance of the driver.
|
|
*
|
|
* @param level The initialization level. See SYS_INIT() for
|
|
* details.
|
|
*
|
|
* @param prio Priority within the selected initialization level. See
|
|
* SYS_INIT() for details.
|
|
*
|
|
* @param api_ptr Provides an initial pointer to the API function struct
|
|
* used by the driver. Can be NULL.
|
|
*/
|
|
#define DEVICE_DEFINE(dev_name, drv_name, init_fn, pm_control_fn, \
|
|
data_ptr, cfg_ptr, level, prio, api_ptr) \
|
|
Z_DEVICE_DEFINE(DT_INVALID_NODE, dev_name, drv_name, init_fn, \
|
|
pm_control_fn, \
|
|
data_ptr, cfg_ptr, level, prio, api_ptr)
|
|
|
|
/**
|
|
* @def DEVICE_DT_NAME
|
|
*
|
|
* @brief Return a string name for a devicetree node.
|
|
*
|
|
* @details This macro returns a string literal usable as a device name
|
|
* from a devicetree node. If the node has a "label" property, its value is
|
|
* returned. Otherwise, the node's full "node-name@@unit-address" name is
|
|
* returned.
|
|
*
|
|
* @param node_id The devicetree node identifier.
|
|
*/
|
|
#define DEVICE_DT_NAME(node_id) \
|
|
DT_PROP_OR(node_id, label, DT_NODE_FULL_NAME(node_id))
|
|
|
|
/**
|
|
* @def DEVICE_DT_DEFINE
|
|
*
|
|
* @brief Like DEVICE_DEFINE but taking metadata from a devicetree node.
|
|
*
|
|
* @details This macro defines a device object that is automatically
|
|
* configured by the kernel during system initialization. The device
|
|
* object name is derived from the node identifier (encoding the
|
|
* devicetree path to the node), and the driver name is from the @p
|
|
* label property of the devicetree node.
|
|
*
|
|
* The device is declared with extern visibility, so device objects
|
|
* defined through this API can be obtained directly through
|
|
* DEVICE_DT_GET() using @p node_id. Before using the pointer the
|
|
* referenced object should be checked using device_is_ready().
|
|
*
|
|
* @param node_id The devicetree node identifier.
|
|
*
|
|
* @param init_fn Address to the init function of the driver.
|
|
*
|
|
* @param pm_control_fn Pointer to pm_control function.
|
|
* Can be NULL if not implemented.
|
|
*
|
|
* @param data_ptr Pointer to the device's private data.
|
|
*
|
|
* @param cfg_ptr The address to the structure containing the
|
|
* configuration information for this instance of the driver.
|
|
*
|
|
* @param level The initialization level. See SYS_INIT() for
|
|
* details.
|
|
*
|
|
* @param prio Priority within the selected initialization level. See
|
|
* SYS_INIT() for details.
|
|
*
|
|
* @param api_ptr Provides an initial pointer to the API function struct
|
|
* used by the driver. Can be NULL.
|
|
*/
|
|
#define DEVICE_DT_DEFINE(node_id, init_fn, pm_control_fn, \
|
|
data_ptr, cfg_ptr, level, prio, \
|
|
api_ptr, ...) \
|
|
Z_DEVICE_DEFINE(node_id, Z_DEVICE_DT_DEV_NAME(node_id), \
|
|
DEVICE_DT_NAME(node_id), init_fn, \
|
|
pm_control_fn, \
|
|
data_ptr, cfg_ptr, level, prio, \
|
|
api_ptr, __VA_ARGS__)
|
|
|
|
/**
|
|
* @def DEVICE_DT_INST_DEFINE
|
|
*
|
|
* @brief Like DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible
|
|
*
|
|
* @param inst instance number. This is replaced by
|
|
* <tt>DT_DRV_COMPAT(inst)</tt> in the call to DEVICE_DT_DEFINE.
|
|
*
|
|
* @param ... other parameters as expected by DEVICE_DT_DEFINE.
|
|
*/
|
|
#define DEVICE_DT_INST_DEFINE(inst, ...) \
|
|
DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__)
|
|
|
|
/**
|
|
* @def DEVICE_DT_NAME_GET
|
|
*
|
|
* @brief The name of the struct device object for @p node_id
|
|
*
|
|
* @details Return the full name of a device object symbol created by
|
|
* DEVICE_DT_DEFINE(), using the dev_name derived from @p node_id
|
|
*
|
|
* It is meant to be used for declaring extern symbols pointing on device
|
|
* objects before using the DEVICE_DT_GET macro to get the device object.
|
|
*
|
|
* @param node_id The same as node_id provided to DEVICE_DT_DEFINE()
|
|
*
|
|
* @return The expanded name of the device object created by
|
|
* DEVICE_DT_DEFINE()
|
|
*/
|
|
#define DEVICE_DT_NAME_GET(node_id) DEVICE_NAME_GET(Z_DEVICE_DT_DEV_NAME(node_id))
|
|
|
|
/**
|
|
* @def DEVICE_DT_GET
|
|
*
|
|
* @brief Obtain a pointer to a device object by @p node_id
|
|
*
|
|
* @details Return the address of a device object created by
|
|
* DEVICE_DT_INIT(), using the dev_name derived from @p node_id
|
|
*
|
|
* @param node_id The same as node_id provided to DEVICE_DT_DEFINE()
|
|
*
|
|
* @return A pointer to the device object created by DEVICE_DT_DEFINE()
|
|
*/
|
|
#define DEVICE_DT_GET(node_id) (&DEVICE_DT_NAME_GET(node_id))
|
|
|
|
/** @def DEVICE_DT_INST_GET
|
|
*
|
|
* @brief Obtain a pointer to a device object for an instance of a
|
|
* DT_DRV_COMPAT compatible
|
|
*
|
|
* @param inst instance number
|
|
*/
|
|
#define DEVICE_DT_INST_GET(inst) DEVICE_DT_GET(DT_DRV_INST(inst))
|
|
|
|
/**
|
|
* @def DEVICE_DT_GET_ANY
|
|
*
|
|
* @brief Obtain a pointer to a device object by devicetree compatible
|
|
*
|
|
* If any enabled devicetree node has the given compatible and a
|
|
* device object was created from it, this returns that device.
|
|
*
|
|
* If there no such devices, this returns NULL.
|
|
*
|
|
* If there are multiple, this returns an arbitrary one.
|
|
*
|
|
* If this returns non-NULL, the device must be checked for readiness
|
|
* before use, e.g. with device_is_ready().
|
|
*
|
|
* @param compat lowercase-and-underscores devicetree compatible
|
|
* @return a pointer to a device, or NULL
|
|
*/
|
|
#define DEVICE_DT_GET_ANY(compat) \
|
|
COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(compat), \
|
|
(DEVICE_DT_GET(DT_COMPAT_GET_ANY_STATUS_OKAY(compat))), \
|
|
(NULL))
|
|
|
|
/**
|
|
* @def DEVICE_DT_GET_ONE
|
|
*
|
|
* @brief Obtain a pointer to a device object by devicetree compatible
|
|
*
|
|
* If any enabled devicetree node has the given compatible and a
|
|
* device object was created from it, this returns that device.
|
|
*
|
|
* If there no such devices, this throws a compilation error.
|
|
*
|
|
* If there are multiple, this returns an arbitrary one.
|
|
*
|
|
* If this returns non-NULL, the device must be checked for readiness
|
|
* before use, e.g. with device_is_ready().
|
|
*
|
|
* @param compat lowercase-and-underscores devicetree compatible
|
|
* @return a pointer to a device
|
|
*/
|
|
#define DEVICE_DT_GET_ONE(compat) \
|
|
COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(compat), \
|
|
(DEVICE_DT_GET(DT_COMPAT_GET_ANY_STATUS_OKAY(compat))), \
|
|
(ZERO_OR_COMPILE_ERROR(0)))
|
|
|
|
/**
|
|
* @def DEVICE_GET
|
|
*
|
|
* @brief Obtain a pointer to a device object by name
|
|
*
|
|
* @details Return the address of a device object created by
|
|
* DEVICE_DEFINE(), using the dev_name provided to DEVICE_DEFINE().
|
|
*
|
|
* @param name The same as dev_name provided to DEVICE_DEFINE()
|
|
*
|
|
* @return A pointer to the device object created by DEVICE_DEFINE()
|
|
*/
|
|
#define DEVICE_GET(name) (&DEVICE_NAME_GET(name))
|
|
|
|
/** @def DEVICE_DECLARE
|
|
*
|
|
* @brief Declare a static device object
|
|
*
|
|
* This macro can be used at the top-level to declare a device, such
|
|
* that DEVICE_GET() may be used before the full declaration in
|
|
* DEVICE_DEFINE().
|
|
*
|
|
* This is often useful when configuring interrupts statically in a
|
|
* device's init or per-instance config function, as the init function
|
|
* itself is required by DEVICE_DEFINE() and use of DEVICE_GET()
|
|
* inside it creates a circular dependency.
|
|
*
|
|
* @param name Device name
|
|
*/
|
|
#define DEVICE_DECLARE(name) static const struct device DEVICE_NAME_GET(name)
|
|
|
|
/**
|
|
* @brief Runtime device dynamic structure (in RAM) per driver instance
|
|
*
|
|
* Fields in this are expected to be default-initialized to zero. The
|
|
* kernel driver infrastructure and driver access functions are
|
|
* responsible for ensuring that any non-zero initialization is done
|
|
* before they are accessed.
|
|
*/
|
|
struct device_state {
|
|
/** Non-negative result of initializing the device.
|
|
*
|
|
* The absolute value returned when the device initialization
|
|
* function was invoked, or `UINT8_MAX` if the value exceeds
|
|
* an 8-bit integer. If initialized is also set, a zero value
|
|
* indicates initialization succeeded.
|
|
*/
|
|
unsigned int init_res : 8;
|
|
|
|
/** Indicates the device initialization function has been
|
|
* invoked.
|
|
*/
|
|
bool initialized : 1;
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
/* Power management data */
|
|
struct pm_device pm;
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
};
|
|
|
|
/**
|
|
* @brief Runtime device structure (in ROM) per driver instance
|
|
*/
|
|
struct device {
|
|
/** Name of the device instance */
|
|
const char *name;
|
|
/** Address of device instance config information */
|
|
const void *config;
|
|
/** Address of the API structure exposed by the device instance */
|
|
const void *api;
|
|
/** Address of the common device state */
|
|
struct device_state * const state;
|
|
/** Address of the device instance private data */
|
|
void * const data;
|
|
/** optional pointer to handles associated with the device.
|
|
*
|
|
* This encodes a sequence of sets of device handles that have
|
|
* some relationship to this node. The individual sets are
|
|
* extracted with dedicated API, such as
|
|
* device_required_handles_get().
|
|
*/
|
|
const device_handle_t *const handles;
|
|
#ifdef CONFIG_PM_DEVICE
|
|
/** Power Management function */
|
|
pm_device_control_callback_t pm_control;
|
|
/** Pointer to device instance power management data */
|
|
struct pm_device * const pm;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* @brief Get the handle for a given device
|
|
*
|
|
* @param dev the device for which a handle is desired.
|
|
*
|
|
* @return the handle for the device, or DEVICE_HANDLE_NULL if the
|
|
* device does not have an associated handle.
|
|
*/
|
|
static inline device_handle_t
|
|
device_handle_get(const struct device *dev)
|
|
{
|
|
device_handle_t ret = DEVICE_HANDLE_NULL;
|
|
extern const struct device __device_start[];
|
|
|
|
/* TODO: If/when devices can be constructed that are not part of the
|
|
* fixed sequence we'll need another solution.
|
|
*/
|
|
if (dev != NULL) {
|
|
ret = 1 + (device_handle_t)(dev - __device_start);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the device corresponding to a handle.
|
|
*
|
|
* @param dev_handle the device handle
|
|
*
|
|
* @return the device that has that handle, or a null pointer if @p
|
|
* dev_handle does not identify a device.
|
|
*/
|
|
static inline const struct device *
|
|
device_from_handle(device_handle_t dev_handle)
|
|
{
|
|
extern const struct device __device_start[];
|
|
extern const struct device __device_end[];
|
|
const struct device *dev = NULL;
|
|
size_t numdev = __device_end - __device_start;
|
|
|
|
if ((dev_handle > 0) && ((size_t)dev_handle < numdev)) {
|
|
dev = &__device_start[dev_handle - 1];
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* @brief Prototype for functions used when iterating over a set of devices.
|
|
*
|
|
* Such a function may be used in API that identifies a set of devices and
|
|
* provides a visitor API supporting caller-specific interaction with each
|
|
* device in the set.
|
|
*
|
|
* The visit is said to succeed if the visitor returns a non-negative value.
|
|
*
|
|
* @param dev a device in the set being iterated
|
|
*
|
|
* @param context state used to support the visitor function
|
|
*
|
|
* @return A non-negative number to allow walking to continue, and a negative
|
|
* error code to case the iteration to stop.
|
|
*/
|
|
typedef int (*device_visitor_callback_t)(const struct device *dev, void *context);
|
|
|
|
/**
|
|
* @brief Get the set of handles for devicetree dependencies of this device.
|
|
*
|
|
* These are the device dependencies inferred from devicetree.
|
|
*
|
|
* @param dev the device for which dependencies are desired.
|
|
*
|
|
* @param count pointer to a place to store the number of devices provided at
|
|
* the returned pointer. The value is not set if the call returns a null
|
|
* pointer. The value may be set to zero.
|
|
*
|
|
* @return a pointer to a sequence of @p *count device handles, or a null
|
|
* pointer if @p dh does not provide dependency information.
|
|
*/
|
|
static inline const device_handle_t *
|
|
device_required_handles_get(const struct device *dev,
|
|
size_t *count)
|
|
{
|
|
const device_handle_t *rv = dev->handles;
|
|
|
|
if (rv != NULL) {
|
|
size_t i = 0;
|
|
|
|
while ((rv[i] != DEVICE_HANDLE_ENDS)
|
|
&& (rv[i] != DEVICE_HANDLE_SEP)) {
|
|
++i;
|
|
}
|
|
*count = i;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* @brief Visit every device that @p dev directly requires.
|
|
*
|
|
* Zephyr maintains information about which devices are directly required by
|
|
* another device; for example an I2C-based sensor driver will require an I2C
|
|
* controller for communication. Required devices can derive from
|
|
* statically-defined devicetree relationships or dependencies registered
|
|
* at runtime.
|
|
*
|
|
* This API supports operating on the set of required devices. Example uses
|
|
* include making sure required devices are ready before the requiring device
|
|
* is used, and releasing them when the requiring device is no longer needed.
|
|
*
|
|
* There is no guarantee on the order in which required devices are visited.
|
|
*
|
|
* If the @p visitor function returns a negative value iteration is halted,
|
|
* and the returned value from the visitor is returned from this function.
|
|
*
|
|
* @note This API is not available to unprivileged threads.
|
|
*
|
|
* @param dev a device of interest. The devices that this device depends on
|
|
* will be used as the set of devices to visit. This parameter must not be
|
|
* null.
|
|
*
|
|
* @param visitor_cb the function that should be invoked on each device in the
|
|
* dependency set. This parameter must not be null.
|
|
*
|
|
* @param context state that is passed through to the visitor function. This
|
|
* parameter may be null if @p visitor tolerates a null @p context.
|
|
*
|
|
* @return The number of devices that were visited if all visits succeed, or
|
|
* the negative value returned from the first visit that did not succeed.
|
|
*/
|
|
int device_required_foreach(const struct device *dev,
|
|
device_visitor_callback_t visitor_cb,
|
|
void *context);
|
|
|
|
/**
|
|
* @brief Retrieve the device structure for a driver by name
|
|
*
|
|
* @details Device objects are created via the DEVICE_DEFINE() macro and
|
|
* placed in memory by the linker. If a driver needs to bind to another driver
|
|
* it can use this function to retrieve the device structure of the lower level
|
|
* driver by the name the driver exposes to the system.
|
|
*
|
|
* @param name device name to search for. A null pointer, or a pointer to an
|
|
* empty string, will cause NULL to be returned.
|
|
*
|
|
* @return pointer to device structure; NULL if not found or cannot be used.
|
|
*/
|
|
__syscall const struct device *device_get_binding(const char *name);
|
|
|
|
/** @brief Get access to the static array of static devices.
|
|
*
|
|
* @param devices where to store the pointer to the array of
|
|
* statically allocated devices. The array must not be mutated
|
|
* through this pointer.
|
|
*
|
|
* @return the number of statically allocated devices.
|
|
*/
|
|
size_t z_device_get_all_static(const struct device * *devices);
|
|
|
|
/** @brief Determine whether a device has been successfully initialized.
|
|
*
|
|
* @param dev pointer to the device in question.
|
|
*
|
|
* @return true if and only if the device is available for use.
|
|
*/
|
|
bool z_device_ready(const struct device *dev);
|
|
|
|
/** @brief Determine whether a device is ready for use
|
|
*
|
|
* This is the implementation underlying `device_usable_check()`, without the
|
|
* overhead of a syscall wrapper.
|
|
*
|
|
* @param dev pointer to the device in question.
|
|
*
|
|
* @return a non-positive integer as documented in device_usable_check().
|
|
*/
|
|
static inline int z_device_usable_check(const struct device *dev)
|
|
{
|
|
return z_device_ready(dev) ? 0 : -ENODEV;
|
|
}
|
|
|
|
/** @brief Determine whether a device is ready for use.
|
|
*
|
|
* This checks whether a device can be used, returning 0 if it can, and
|
|
* distinct error values that identify the reason if it cannot.
|
|
*
|
|
* @retval 0 if the device is usable.
|
|
* @retval -ENODEV if the device has not been initialized, the device pointer
|
|
* is NULL or the initialization failed.
|
|
* @retval other negative error codes to indicate additional conditions that
|
|
* make the device unusable.
|
|
*/
|
|
__syscall int device_usable_check(const struct device *dev);
|
|
|
|
static inline int z_impl_device_usable_check(const struct device *dev)
|
|
{
|
|
return z_device_usable_check(dev);
|
|
}
|
|
|
|
/** @brief Verify that a device is ready for use.
|
|
*
|
|
* Indicates whether the provided device pointer is for a device known to be
|
|
* in a state where it can be used with its standard API.
|
|
*
|
|
* This can be used with device pointers captured from DEVICE_DT_GET(), which
|
|
* does not include the readiness checks of device_get_binding(). At minimum
|
|
* this means that the device has been successfully initialized, but it may
|
|
* take on further conditions (e.g. is not powered down).
|
|
*
|
|
* @param dev pointer to the device in question.
|
|
*
|
|
* @retval true if the device is ready for use.
|
|
* @retval false if the device is not ready for use or if a NULL device pointer
|
|
* is passed as argument.
|
|
*/
|
|
static inline bool device_is_ready(const struct device *dev)
|
|
{
|
|
return device_usable_check(dev) == 0;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Node paths can exceed the maximum size supported by device_get_binding() in user mode,
|
|
* so synthesize a unique dev_name from the devicetree node.
|
|
*
|
|
* The ordinal used in this name can be mapped to the path by
|
|
* examining zephyr/include/generated/device_extern.h header. If the
|
|
* format of this conversion changes, gen_defines should be updated to
|
|
* match it.
|
|
*/
|
|
#define Z_DEVICE_DT_DEV_NAME(node_id) _CONCAT(dts_ord_, DT_DEP_ORD(node_id))
|
|
|
|
/* Synthesize a unique name for the device state associated with
|
|
* dev_name.
|
|
*/
|
|
#define Z_DEVICE_STATE_NAME(dev_name) _CONCAT(__devstate_, dev_name)
|
|
|
|
/** Synthesize the name of the object that holds device ordinal and
|
|
* dependency data. If the object doesn't come from a devicetree
|
|
* node, use dev_name.
|
|
*/
|
|
#define Z_DEVICE_HANDLE_NAME(node_id, dev_name) \
|
|
_CONCAT(__devicehdl_, \
|
|
COND_CODE_1(DT_NODE_EXISTS(node_id), \
|
|
(node_id), \
|
|
(dev_name)))
|
|
|
|
#define Z_DEVICE_EXTRA_HANDLES(...) \
|
|
FOR_EACH_NONEMPTY_TERM(IDENTITY, (,), __VA_ARGS__)
|
|
|
|
/* If device power management is enabled, this macro defines a pointer to a
|
|
* device in the z_pm_device_slots region. When invoked for each device, this
|
|
* will effectively result in a device pointer array with the same size of the
|
|
* actual devices list. This is used internally by the device PM subsystem to
|
|
* keep track of suspended devices during system power transitions.
|
|
*/
|
|
#if CONFIG_PM_DEVICE
|
|
#define Z_DEVICE_DEFINE_PM_SLOT(dev_name) \
|
|
static const Z_DECL_ALIGN(struct device *) \
|
|
_CONCAT(__pm_device_slot_, DEVICE_NAME_GET(dev_name)) __used \
|
|
__attribute__((__section__(".z_pm_device_slots")));
|
|
#else
|
|
#define Z_DEVICE_DEFINE_PM_SLOT(dev_name)
|
|
#endif
|
|
|
|
/* Construct objects that are referenced from struct device. These
|
|
* include power management and dependency handles.
|
|
*/
|
|
#define Z_DEVICE_DEFINE_PRE(node_id, dev_name, ...) \
|
|
Z_DEVICE_DEFINE_HANDLES(node_id, dev_name, __VA_ARGS__) \
|
|
Z_DEVICE_STATE_DEFINE(node_id, dev_name) \
|
|
Z_DEVICE_DEFINE_PM_SLOT(dev_name)
|
|
|
|
|
|
/* Initial build provides a record that associates the device object
|
|
* with its devicetree ordinal, and provides the dependency ordinals.
|
|
* These are provided as weak definitions (to prevent the reference
|
|
* from being captured when the original object file is compiled), and
|
|
* in a distinct pass1 section (which will be replaced by
|
|
* postprocessing).
|
|
*
|
|
* It is also (experimentally) necessary to provide explicit alignment
|
|
* on each object. Otherwise x86-64 builds will introduce padding
|
|
* between objects in the same input section in individual object
|
|
* files, which will be retained in subsequent links both wasting
|
|
* space and resulting in aggregate size changes relative to pass2
|
|
* when all objects will be in the same input section.
|
|
*
|
|
* The build assert will fail if device_handle_t changes size, which
|
|
* means the alignment directives in the linker scripts and in
|
|
* `gen_handles.py` must be updated.
|
|
*/
|
|
BUILD_ASSERT(sizeof(device_handle_t) == 2, "fix the linker scripts");
|
|
#define Z_DEVICE_DEFINE_HANDLES(node_id, dev_name, ...) \
|
|
extern const device_handle_t \
|
|
Z_DEVICE_HANDLE_NAME(node_id, dev_name)[]; \
|
|
const device_handle_t \
|
|
__aligned(sizeof(device_handle_t)) \
|
|
__attribute__((__weak__, \
|
|
__section__(".__device_handles_pass1"))) \
|
|
Z_DEVICE_HANDLE_NAME(node_id, dev_name)[] = { \
|
|
COND_CODE_1(DT_NODE_EXISTS(node_id), ( \
|
|
DT_DEP_ORD(node_id), \
|
|
DT_REQUIRES_DEP_ORDS(node_id) \
|
|
), ( \
|
|
DEVICE_HANDLE_NULL, \
|
|
)) \
|
|
DEVICE_HANDLE_SEP, \
|
|
Z_DEVICE_EXTRA_HANDLES(__VA_ARGS__) \
|
|
DEVICE_HANDLE_ENDS, \
|
|
};
|
|
|
|
#define Z_DEVICE_DEFINE_INIT(node_id, dev_name, pm_control_fn) \
|
|
.handles = Z_DEVICE_HANDLE_NAME(node_id, dev_name), \
|
|
Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn)
|
|
|
|
/* Like DEVICE_DEFINE but takes a node_id AND a dev_name, and trailing
|
|
* dependency handles that come from outside devicetree.
|
|
*/
|
|
#define Z_DEVICE_DEFINE(node_id, dev_name, drv_name, init_fn, pm_control_fn, \
|
|
data_ptr, cfg_ptr, level, prio, api_ptr, ...) \
|
|
Z_DEVICE_DEFINE_PRE(node_id, dev_name, __VA_ARGS__) \
|
|
COND_CODE_1(DT_NODE_EXISTS(node_id), (), (static)) \
|
|
const Z_DECL_ALIGN(struct device) \
|
|
DEVICE_NAME_GET(dev_name) __used \
|
|
__attribute__((__section__(".z_device_" #level STRINGIFY(prio)"_"))) = { \
|
|
.name = drv_name, \
|
|
.config = (cfg_ptr), \
|
|
.api = (api_ptr), \
|
|
.state = &Z_DEVICE_STATE_NAME(dev_name), \
|
|
.data = (data_ptr), \
|
|
Z_DEVICE_DEFINE_INIT(node_id, dev_name, pm_control_fn) \
|
|
}; \
|
|
BUILD_ASSERT(sizeof(Z_STRINGIFY(drv_name)) <= Z_DEVICE_MAX_NAME_LEN, \
|
|
Z_STRINGIFY(DEVICE_NAME_GET(drv_name)) " too long"); \
|
|
Z_INIT_ENTRY_DEFINE(DEVICE_NAME_GET(dev_name), init_fn, \
|
|
(&DEVICE_NAME_GET(dev_name)), level, prio)
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
#define Z_DEVICE_STATE_DEFINE(node_id, dev_name) \
|
|
static struct device_state Z_DEVICE_STATE_NAME(dev_name) = { \
|
|
.pm = { \
|
|
.flags = ATOMIC_INIT(COND_CODE_1( \
|
|
DT_NODE_EXISTS(node_id), \
|
|
(DT_PROP( \
|
|
node_id, wakeup_source)), \
|
|
(0)) << \
|
|
PM_DEVICE_FLAGS_WS_CAPABLE), \
|
|
}, \
|
|
};
|
|
|
|
#define Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn) \
|
|
.pm_control = (pm_control_fn), \
|
|
.pm = &Z_DEVICE_STATE_NAME(dev_name).pm,
|
|
#else
|
|
#define Z_DEVICE_STATE_DEFINE(node_id, dev_name) \
|
|
static struct device_state Z_DEVICE_STATE_NAME(dev_name);
|
|
#define Z_DEVICE_DEFINE_PM_INIT(dev_name, pm_control_fn)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
/* device_extern is generated based on devicetree nodes */
|
|
#include <device_extern.h>
|
|
|
|
#include <syscalls/device.h>
|
|
|
|
#endif /* ZEPHYR_INCLUDE_DEVICE_H_ */
|