zephyr/drivers/interrupt_controller/intc_gicv3.c
Fabio Baltieri 17ae9a7680 intc: gic: convert SYS_INIT to DEVICE_DT_INST_DEFINE
Convert SYS_INIT to DEVICE_DT_INST_DEFINE, this allows the build system
to track the device dependencies and ensure that the interrupt
controller is initialized before other devices using it.

Signed-off-by: Fabio Baltieri <fabiobaltieri@google.com>
2023-09-22 09:22:55 +02:00

623 lines
16 KiB
C

/*
* Copyright 2020 Broadcom
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sw_isr_table.h>
#include <zephyr/dt-bindings/interrupt-controller/arm-gic.h>
#include <zephyr/drivers/interrupt_controller/gic.h>
#include <zephyr/sys/barrier.h>
#include "intc_gic_common_priv.h"
#include "intc_gicv3_priv.h"
#include <string.h>
#define DT_DRV_COMPAT arm_gic_v3
/* Redistributor base addresses for each core */
mem_addr_t gic_rdists[CONFIG_MP_MAX_NUM_CPUS];
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
#define IGROUPR_VAL 0xFFFFFFFFU
#else
#define IGROUPR_VAL 0x0U
#endif
/*
* We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
* deal with (one configuration byte per interrupt). PENDBASE has to
* be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
*/
#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
#define LPI_PROPBASE_SZ(nrbits) ROUND_UP(BIT(nrbits), KB(64))
#define LPI_PENDBASE_SZ(nrbits) ROUND_UP(BIT(nrbits) / 8, KB(64))
#ifdef CONFIG_GIC_V3_ITS
static uintptr_t lpi_prop_table;
atomic_t nlpi_intid = ATOMIC_INIT(8192);
#endif
static inline mem_addr_t gic_get_rdist(void)
{
return gic_rdists[arch_curr_cpu()->id];
}
/*
* Wait for register write pending
* TODO: add timed wait
*/
static int gic_wait_rwp(uint32_t intid)
{
uint32_t rwp_mask;
mem_addr_t base;
if (intid < GIC_SPI_INT_BASE) {
base = (gic_get_rdist() + GICR_CTLR);
rwp_mask = BIT(GICR_CTLR_RWP);
} else {
base = GICD_CTLR;
rwp_mask = BIT(GICD_CTLR_RWP);
}
while (sys_read32(base) & rwp_mask) {
;
}
return 0;
}
#ifdef CONFIG_GIC_V3_ITS
static void arm_gic_lpi_setup(unsigned int intid, bool enable)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
if (enable) {
*cfg |= BIT(0);
} else {
*cfg &= ~BIT(0);
}
barrier_dsync_fence_full();
its_rdist_invall();
}
static void arm_gic_lpi_set_priority(unsigned int intid, unsigned int prio)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
*cfg &= 0xfc;
*cfg |= prio & 0xfc;
barrier_dsync_fence_full();
its_rdist_invall();
}
static bool arm_gic_lpi_is_enabled(unsigned int intid)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
return (*cfg & BIT(0));
}
#endif
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
static inline void arm_gic_write_irouter(uint64_t val, unsigned int intid)
{
mem_addr_t addr = IROUTER(GET_DIST_BASE(intid), intid);
#ifdef CONFIG_ARM
sys_write32((uint32_t)val, addr);
sys_write32((uint32_t)(val >> 32U), addr + 4);
#else
sys_write64(val, addr);
#endif
}
#endif
void arm_gic_irq_set_priority(unsigned int intid,
unsigned int prio, uint32_t flags)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_set_priority(intid, prio);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t shift;
uint32_t val;
mem_addr_t base = GET_DIST_BASE(intid);
/* Disable the interrupt */
sys_write32(mask, ICENABLER(base, idx));
gic_wait_rwp(intid);
/* PRIORITYR registers provide byte access */
sys_write8(prio & GIC_PRI_MASK, IPRIORITYR(base, intid));
/* Interrupt type config */
if (!GIC_IS_SGI(intid)) {
idx = intid / GIC_NUM_CFG_PER_REG;
shift = (intid & (GIC_NUM_CFG_PER_REG - 1)) * 2;
val = sys_read32(ICFGR(base, idx));
val &= ~(GICD_ICFGR_MASK << shift);
if (flags & IRQ_TYPE_EDGE) {
val |= (GICD_ICFGR_TYPE << shift);
}
sys_write32(val, ICFGR(base, idx));
}
}
void arm_gic_irq_enable(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_setup(intid, true);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ISENABLER(GET_DIST_BASE(intid), idx));
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
/*
* Affinity routing is enabled for Armv8-A Non-secure state (GICD_CTLR.ARE_NS
* is set to '1') and for GIC single security state (GICD_CTRL.ARE is set to '1'),
* so need to set SPI's affinity, now set it to be the PE on which it is enabled.
*/
if (GIC_IS_SPI(intid)) {
arm_gic_write_irouter(MPIDR_TO_CORE(GET_MPIDR()), intid);
}
#endif
}
void arm_gic_irq_disable(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_setup(intid, false);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ICENABLER(GET_DIST_BASE(intid), idx));
/* poll to ensure write is complete */
gic_wait_rwp(intid);
}
bool arm_gic_irq_is_enabled(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
return arm_gic_lpi_is_enabled(intid);
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t val;
val = sys_read32(ISENABLER(GET_DIST_BASE(intid), idx));
return (val & mask) != 0;
}
bool arm_gic_irq_is_pending(unsigned int intid)
{
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t val;
val = sys_read32(ISPENDR(GET_DIST_BASE(intid), idx));
return (val & mask) != 0;
}
void arm_gic_irq_clear_pending(unsigned int intid)
{
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ICPENDR(GET_DIST_BASE(intid), idx));
}
unsigned int arm_gic_get_active(void)
{
int intid;
/* (Pending -> Active / AP) or (AP -> AP) */
intid = read_sysreg(ICC_IAR1_EL1);
return intid;
}
void arm_gic_eoi(unsigned int intid)
{
/*
* Interrupt request deassertion from peripheral to GIC happens
* by clearing interrupt condition by a write to the peripheral
* register. It is desired that the write transfer is complete
* before the core tries to change GIC state from 'AP/Active' to
* a new state on seeing 'EOI write'.
* Since ICC interface writes are not ordered against Device
* memory writes, a barrier is required to ensure the ordering.
* The dsb will also ensure *completion* of previous writes with
* DEVICE nGnRnE attribute.
*/
barrier_dsync_fence_full();
/* (AP -> Pending) Or (Active -> Inactive) or (AP to AP) nested case */
write_sysreg(intid, ICC_EOIR1_EL1);
}
void gic_raise_sgi(unsigned int sgi_id, uint64_t target_aff,
uint16_t target_list)
{
uint32_t aff3, aff2, aff1;
uint64_t sgi_val;
__ASSERT_NO_MSG(GIC_IS_SGI(sgi_id));
/* Extract affinity fields from target */
aff1 = MPIDR_AFFLVL(target_aff, 1);
aff2 = MPIDR_AFFLVL(target_aff, 2);
#if defined(CONFIG_ARM)
/* There is no Aff3 in AArch32 MPIDR */
aff3 = 0;
#else
aff3 = MPIDR_AFFLVL(target_aff, 3);
#endif
sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_id,
SGIR_IRM_TO_AFF, target_list);
barrier_dsync_fence_full();
write_sysreg(sgi_val, ICC_SGI1R);
barrier_isync_fence_full();
}
/*
* Wake up GIC redistributor.
* clear ProcessorSleep and wait till ChildAsleep is cleared.
* ProcessSleep to be cleared only when ChildAsleep is set
* Check if redistributor is not powered already.
*/
static void gicv3_rdist_enable(mem_addr_t rdist)
{
if (!(sys_read32(rdist + GICR_WAKER) & BIT(GICR_WAKER_CA))) {
return;
}
if (GICR_IIDR_PRODUCT_ID_GET(sys_read32(rdist + GICR_IIDR)) >= 0x2) {
if (sys_read32(rdist + GICR_PWRR) & BIT(GICR_PWRR_RDPD)) {
sys_set_bit(rdist + GICR_PWRR, GICR_PWRR_RDAG);
sys_clear_bit(rdist + GICR_PWRR, GICR_PWRR_RDPD);
while (sys_read32(rdist + GICR_PWRR) & BIT(GICR_PWRR_RDPD)) {
;
}
}
}
sys_clear_bit(rdist + GICR_WAKER, GICR_WAKER_PS);
while (sys_read32(rdist + GICR_WAKER) & BIT(GICR_WAKER_CA)) {
;
}
}
#ifdef CONFIG_GIC_V3_ITS
/*
* Setup LPIs Configuration & Pending tables for redistributors
* LPI configuration is global, each redistributor has a pending table
*/
static void gicv3_rdist_setup_lpis(mem_addr_t rdist)
{
unsigned int lpi_id_bits = MIN(GICD_TYPER_IDBITS(sys_read32(GICD_TYPER)),
ITS_MAX_LPI_NRBITS);
uintptr_t lpi_pend_table;
uint64_t reg;
uint32_t ctlr;
/* If not, alloc a common prop table for all redistributors */
if (!lpi_prop_table) {
lpi_prop_table = (uintptr_t)k_aligned_alloc(4 * 1024, LPI_PROPBASE_SZ(lpi_id_bits));
memset((void *)lpi_prop_table, 0, LPI_PROPBASE_SZ(lpi_id_bits));
}
lpi_pend_table = (uintptr_t)k_aligned_alloc(64 * 1024, LPI_PENDBASE_SZ(lpi_id_bits));
memset((void *)lpi_pend_table, 0, LPI_PENDBASE_SZ(lpi_id_bits));
ctlr = sys_read32(rdist + GICR_CTLR);
ctlr &= ~GICR_CTLR_ENABLE_LPIS;
sys_write32(ctlr, rdist + GICR_CTLR);
/* PROPBASE */
reg = (GIC_BASER_SHARE_INNER << GITR_PROPBASER_SHAREABILITY_SHIFT) |
(GIC_BASER_CACHE_RAWAWB << GITR_PROPBASER_INNER_CACHE_SHIFT) |
(lpi_prop_table & (GITR_PROPBASER_ADDR_MASK << GITR_PROPBASER_ADDR_SHIFT)) |
(GIC_BASER_CACHE_INNERLIKE << GITR_PROPBASER_OUTER_CACHE_SHIFT) |
((lpi_id_bits - 1) & GITR_PROPBASER_ID_BITS_MASK);
sys_write64(reg, rdist + GICR_PROPBASER);
/* TOFIX: check SHAREABILITY validity */
/* PENDBASE */
reg = (GIC_BASER_SHARE_INNER << GITR_PENDBASER_SHAREABILITY_SHIFT) |
(GIC_BASER_CACHE_RAWAWB << GITR_PENDBASER_INNER_CACHE_SHIFT) |
(lpi_pend_table & (GITR_PENDBASER_ADDR_MASK << GITR_PENDBASER_ADDR_SHIFT)) |
(GIC_BASER_CACHE_INNERLIKE << GITR_PENDBASER_OUTER_CACHE_SHIFT) |
GITR_PENDBASER_PTZ;
sys_write64(reg, rdist + GICR_PENDBASER);
/* TOFIX: check SHAREABILITY validity */
ctlr = sys_read32(rdist + GICR_CTLR);
ctlr |= GICR_CTLR_ENABLE_LPIS;
sys_write32(ctlr, rdist + GICR_CTLR);
barrier_dsync_fence_full();
}
#endif
/*
* Initialize the cpu interface. This should be called by each core.
*/
static void gicv3_cpuif_init(void)
{
uint32_t icc_sre;
uint32_t intid;
mem_addr_t base = gic_get_rdist() + GICR_SGI_BASE_OFF;
/* Disable all sgi ppi */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), ICENABLER(base, 0));
/* Any sgi/ppi intid ie. 0-31 will select GICR_CTRL */
gic_wait_rwp(0);
/* Clear pending */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), ICPENDR(base, 0));
/* Configure all SGIs/PPIs as G1S or G1NS depending on Zephyr
* is run in EL1S or EL1NS respectively.
* All interrupts will be delivered as irq
*/
sys_write32(IGROUPR_VAL, IGROUPR(base, 0));
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), IGROUPMODR(base, 0));
/*
* Configure default priorities for SGI 0:15 and PPI 0:15.
*/
for (intid = 0; intid < GIC_SPI_INT_BASE;
intid += GIC_NUM_PRI_PER_REG) {
sys_write32(GIC_INT_DEF_PRI_X4, IPRIORITYR(base, intid));
}
/* Configure PPIs as level triggered */
sys_write32(0, ICFGR(base, 1));
/*
* Check if system interface can be enabled.
* 'icc_sre_el3' needs to be configured at 'EL3'
* to allow access to 'icc_sre_el1' at 'EL1'
* eg: z_arch_el3_plat_init can be used by platform.
*/
icc_sre = read_sysreg(ICC_SRE_EL1);
if (!(icc_sre & ICC_SRE_ELx_SRE_BIT)) {
icc_sre = (icc_sre | ICC_SRE_ELx_SRE_BIT |
ICC_SRE_ELx_DIB_BIT | ICC_SRE_ELx_DFB_BIT);
write_sysreg(icc_sre, ICC_SRE_EL1);
icc_sre = read_sysreg(ICC_SRE_EL1);
__ASSERT_NO_MSG(icc_sre & ICC_SRE_ELx_SRE_BIT);
}
write_sysreg(GIC_IDLE_PRIO, ICC_PMR_EL1);
/* Allow group1 interrupts */
write_sysreg(1, ICC_IGRPEN1_EL1);
}
/*
* TODO: Consider Zephyr in EL1NS.
*/
static void gicv3_dist_init(void)
{
unsigned int num_ints;
unsigned int intid;
unsigned int idx;
mem_addr_t base = GIC_DIST_BASE;
num_ints = sys_read32(GICD_TYPER);
num_ints &= GICD_TYPER_ITLINESNUM_MASK;
num_ints = (num_ints + 1) << 5;
/* Disable the distributor */
sys_write32(0, GICD_CTLR);
gic_wait_rwp(GIC_SPI_INT_BASE);
#ifdef CONFIG_GIC_SINGLE_SECURITY_STATE
/*
* Before configuration, we need to check whether
* the GIC single security state mode is supported.
* Make sure GICD_CTRL_NS is 1.
*/
sys_set_bit(GICD_CTLR, GICD_CTRL_NS);
__ASSERT(sys_test_bit(GICD_CTLR, GICD_CTRL_NS),
"Current GIC does not support single security state");
#endif
/*
* Default configuration of all SPIs
*/
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_INTR_PER_REG) {
idx = intid / GIC_NUM_INTR_PER_REG;
/* Disable interrupt */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
ICENABLER(base, idx));
/* Clear pending */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
ICPENDR(base, idx));
sys_write32(IGROUPR_VAL, IGROUPR(base, idx));
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
IGROUPMODR(base, idx));
}
/* wait for rwp on GICD */
gic_wait_rwp(GIC_SPI_INT_BASE);
/* Configure default priorities for all SPIs. */
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_PRI_PER_REG) {
sys_write32(GIC_INT_DEF_PRI_X4, IPRIORITYR(base, intid));
}
/* Configure all SPIs as active low, level triggered by default */
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_CFG_PER_REG) {
idx = intid / GIC_NUM_CFG_PER_REG;
sys_write32(0, ICFGR(base, idx));
}
#ifdef CONFIG_ARMV8_A_NS
/* Enable distributor with ARE */
sys_write32(BIT(GICD_CTRL_ARE_NS) | BIT(GICD_CTLR_ENABLE_G1NS),
GICD_CTLR);
#elif defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
/*
* For GIC single security state, the config GIC_SINGLE_SECURITY_STATE
* means the GIC is under single security state which has only two
* groups: group 0 and group 1.
* Then set GICD_CTLR_ARE and GICD_CTLR_ENABLE_G1 to enable Group 1
* interrupt.
* Since the GICD_CTLR_ARE and GICD_CTRL_ARE_S share BIT(4), and
* similarly the GICD_CTLR_ENABLE_G1 and GICD_CTLR_ENABLE_G1NS share
* BIT(1), we can reuse them.
*/
sys_write32(BIT(GICD_CTRL_ARE_S) | BIT(GICD_CTLR_ENABLE_G1NS),
GICD_CTLR);
#else
/* enable Group 1 secure interrupts */
sys_set_bit(GICD_CTLR, GICD_CTLR_ENABLE_G1S);
#endif
}
static uint64_t arm_gic_mpidr_to_affinity(uint64_t mpidr)
{
uint64_t aff3, aff2, aff1, aff0;
#if defined(CONFIG_ARM)
/* There is no Aff3 in AArch32 MPIDR */
aff3 = 0;
#else
aff3 = MPIDR_AFFLVL(mpidr, 3);
#endif
aff2 = MPIDR_AFFLVL(mpidr, 2);
aff1 = MPIDR_AFFLVL(mpidr, 1);
aff0 = MPIDR_AFFLVL(mpidr, 0);
return (aff3 << 24 | aff2 << 16 | aff1 << 8 | aff0);
}
static bool arm_gic_aff_matching(uint64_t gicr_aff, uint64_t aff)
{
#if defined(CONFIG_GIC_V3_RDIST_MATCHING_AFF0_ONLY)
uint64_t mask = BIT64_MASK(8);
return (gicr_aff & mask) == (aff & mask);
#else
return gicr_aff == aff;
#endif
}
static inline uint64_t arm_gic_get_typer(mem_addr_t addr)
{
uint64_t val;
#if defined(CONFIG_ARM)
val = sys_read32(addr);
val |= (uint64_t)sys_read32(addr + 4) << 32;
#else
val = sys_read64(addr);
#endif
return val;
}
static mem_addr_t arm_gic_iterate_rdists(void)
{
uint64_t aff = arm_gic_mpidr_to_affinity(GET_MPIDR());
for (mem_addr_t rdist_addr = GIC_RDIST_BASE;
rdist_addr < GIC_RDIST_BASE + GIC_RDIST_SIZE;
rdist_addr += 0x20000) {
uint64_t val = arm_gic_get_typer(rdist_addr + GICR_TYPER);
uint64_t gicr_aff = GICR_TYPER_AFFINITY_VALUE_GET(val);
if (arm_gic_aff_matching(gicr_aff, aff)) {
return rdist_addr;
}
if (GICR_TYPER_LAST_GET(val) == 1) {
return (mem_addr_t)NULL;
}
}
return (mem_addr_t)NULL;
}
static void __arm_gic_init(void)
{
uint8_t cpu;
mem_addr_t gic_rd_base;
cpu = arch_curr_cpu()->id;
gic_rd_base = arm_gic_iterate_rdists();
__ASSERT(gic_rd_base != (mem_addr_t)NULL, "");
gic_rdists[cpu] = gic_rd_base;
#ifdef CONFIG_GIC_V3_ITS
/* Enable LPIs in Redistributor */
gicv3_rdist_setup_lpis(gic_get_rdist());
#endif
gicv3_rdist_enable(gic_get_rdist());
gicv3_cpuif_init();
}
int arm_gic_init(const struct device *dev)
{
gicv3_dist_init();
__arm_gic_init();
return 0;
}
DEVICE_DT_INST_DEFINE(0, arm_gic_init, NULL, NULL, NULL,
PRE_KERNEL_1, CONFIG_INTC_INIT_PRIORITY, NULL);
#ifdef CONFIG_SMP
void arm_gic_secondary_init(void)
{
__arm_gic_init();
#ifdef CONFIG_GIC_V3_ITS
/* Map this CPU Redistributor in all the ITS Collection tables */
its_rdist_map();
#endif
}
#endif